1
|
Viña J, Borrás C, Mas-Bargues C. Free radicals in Alzheimer's disease: From pathophysiology to clinical trial results. Free Radic Biol Med 2024; 225:296-301. [PMID: 39370055 DOI: 10.1016/j.freeradbiomed.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
In this review, we examine the role of oxidative stress in the pathophysiology of Alzheimer's Disease (AD). Amyloid-beta (Aβ) induces damage not only extracellularly but also within the intracellular environment. Mitochondria, a principal source of free radicals, are closely associated with Aβ, as it binds to heme, thereby disrupting the normal electron flow in the respiratory chain. At the turn of the century, it was hypothesized that the majority, if not all, pathological events in AD are linked to free radical damage. Notably, free radicals also possess signaling capabilities that contribute to the disease's progression. A substantial body of evidence suggests that radical signaling is implicated in the relationship between amyloid-β and tau hyperphosphorylation. Antioxidant therapy represents a potential strategy to delay the progression from cognitive impairment to overt dementia. Enhancing endogenous antioxidant defenses, for instance, through polyphenol supplementation, offers a promising approach to partially prevent dementia onset, particularly in at-risk populations. Understanding the redox-related pathophysiology of AD opens new avenues for prevention and treatment, providing a source of hope in the fight against Alzheimer's Disease.
Collapse
Affiliation(s)
- José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| |
Collapse
|
2
|
Correas AG, Olaso-Gonzalez G, Roca M, Blanco-Gandía MC, Nascimento C, Lahoz A, Rodriguez-Arias M, Miñarro J, Gomez-Cabrera MC, Viña J. Glucose 6 phosphate dehydrogenase overexpression rescues the loss of cognition in the double transgenic APP/PS1 mouse model of Alzheimer's disease. Redox Biol 2024; 75:103242. [PMID: 38908073 PMCID: PMC11253689 DOI: 10.1016/j.redox.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Mice models of Alzheimer's disease (APP/PS1) typically experience cognitive decline with age. G6PD overexpressing mice (G6PD-Tg) exhibit better protection from age-associated functional decline including improvements in metabolic and muscle functions as well as reduced frailty compared to their wild-type counterparts. Importantly G6PD-Tg mice show diminished accumulation of DNA oxidation in the brain at different ages in both males and females. To further explore the potential benefits of modulating the G6PD activity in neurodegenerative diseases, triple transgenic mice (3xTg G6PD) were generated, overexpressing APP, PSEN1, and G6PD genes. The cognitive decline characteristic of APP/PS1 mice was prevented in 3xTg G6PD mice, despite similar amyloid-β (Aβ) levels in the hippocampus. This challenges the dominant hypothesis in Alzheimer's disease (AD) etiology and the majority of therapeutic efforts in the field, based on the notion that Aβ is pivotal in cognitive preservation. Notably, the antioxidant properties of G6PD led to a decrease in oxidative stress parameters, such as improved GSH/GSSG and GSH/CysSSG ratios, without major changes in oxidative damage markers. Additionally, metabolic changes in 3xTg G6PD mice increased brain energy status, countering the hypometabolism observed in Alzheimer's models. Remarkably, a higher respiratory exchange ratio suggested increased carbohydrate utilization. The relative failures of Aβ-targeted clinical trials have raised significant skepticism on the amyloid cascade hypothesis and whether the development of Alzheimer's drugs has followed the correct path. Our findings highlight the significance of targeting glucose-metabolizing enzymes rather than solely focusing on Aβ in Alzheimer's research, advocating for a deeper exploration of glucose metabolism's role in cognitive preservation.
Collapse
Affiliation(s)
- Angela G Correas
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Marta Roca
- Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain
| | - Mari Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - Carla Nascimento
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Agustin Lahoz
- Analytical Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain; Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria Fundación Hospital La Fe, Valencia, Spain
| | - Marta Rodriguez-Arias
- Unidad de Investigacion Psicobiologia de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicologia, Universidad de Valencia, Valencia, Spain
| | - José Miñarro
- Unidad de Investigacion Psicobiologia de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicologia, Universidad de Valencia, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
3
|
Jyothidasan A, Sunny S, Devarajan A, Sayed A, Afortude JK, Dalley B, Nanda V, Pogwizd S, Litovsky SH, Trinity JD, Might M, Rajasekaran NS. Exercise mitigates reductive stress-induced cardiac remodeling in mice. Redox Biol 2024; 75:103263. [PMID: 39053266 PMCID: PMC11327476 DOI: 10.1016/j.redox.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
The endoplasmic reticulum (ER) regulates protein folding and maintains proteostasis in cells. We observed that the ER transcriptome is impaired during chronic reductive stress (RS) in cardiomyocytes. Here, we hypothesized that a prolonged moderate treadmill exercise mitigates the RS-induced ER dysfunction and cardiac remodeling in cardiac-specific constitutively active Nrf2 mice (CaNrf2-TG). RNA sequencing showed notable alterations in the ER transcriptome of TG hearts at 4, 12, and 24 weeks (16, 28, and 35 genes, respectively). Notably, the downregulation of ER genes was significant at 12 weeks, and further pronounced at 24 weeks, at which the cardiac pathology is evident. We also observed increased levels of ubiquitinated proteins in CaNrf2-TG hearts across all ages, along with VCP, a marker of ERAD function, at 24 weeks. These findings indicate that constitutive Nrf2 activation and RS impair protein-folding activity and augments ERAD function over time. Exercise intervention for 20 weeks (beginning at 6 weeks of age), reduced cardiomyocyte hypertrophy (from 448 μm2 to 280 μm2) in TG mice, through adaptive remodeling, and preserved the cardiac function. However, while exercise did not influence antioxidants or ER stress protein levels, it significantly improved ERAD function and autophagy flux (LC-I to LC-II) in the TG-EXE hearts. Collectively, our findings underscore the prophylactic potential of exercise in mitigating RS-associated pathology, highlighting its essential role in maintaining cellular proteostasis through ER-independent mechanisms.
Collapse
Affiliation(s)
- Arun Jyothidasan
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sini Sunny
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asokan Devarajan
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aniqa Sayed
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Kofi Afortude
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Dalley
- Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Vivek Nanda
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven Pogwizd
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvio H Litovsky
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel D Trinity
- Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA; Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Nepomuceno M, Monllor P, Cardells MJ, Ftara A, Magallon M, Dasí F, Badia MC, Viña J, Lloret A. Redox-associated changes in healthy individuals at risk of Alzheimer's disease. A ten-year follow-up study. Free Radic Biol Med 2024; 215:56-63. [PMID: 38417685 DOI: 10.1016/j.freeradbiomed.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Carrying an allele 4 of the apolipoprotein E (ApoE) is the best-established genetic risk factor to develop Alzheimer's disease (AD). Fifty percent of ApoE4/4 individuals develop the disease at 70 years of age. ApoE3/4 carriers have a lower risk of developing the disease, still 50% of them suffer AD at around 80 years. In a previous study we showed that healthy young individuals, who had a parent with AD and were carriers of at least one ApoE4 allele displayed reductive stress. This was evidenced as a decrease in oxidative markers, such as oxidized glutathione, p-p38, and NADP+/NADPH ratio, and an increase of antioxidant enzymes, such as glutathione peroxidase (Gpx1) and both the catalytic and regulatory subunits of glutamyl-cysteinyl (GCLM and GCLC). Moreover, we found an increase in stress-related proteins involved in tau physiopathology. Now, 10 years later, we have conducted a follow-up study measuring the same parameters in the same cohort. Our results show that reductive stress has reversed, as we could now observe an increase in lipid peroxidation and in the oxidation of glutathione along with a decrease in the expression of Gpx1 and SOD1 antioxidant enzymes in ApoE4 carriers. Furthermore, we found an increase in plasma levels of IL1β levels and in PKR (eukaryotic translation initiation factor 2 alpha kinase 2) gene expression in isolated lymphocytes. Altogether, our results suggest that, in the continuum of Alzheimer's disease, people at risk of developing the disease go through different redox phases, from stablished reductive stress to oxidative stress.
Collapse
Affiliation(s)
- Mariana Nepomuceno
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Internal Medicine Department, University Hospital of La Plana, Vila-Real, Spain
| | - Maria Jose Cardells
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Maria Magallon
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Francisco Dasí
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | | | - Jose Viña
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain.
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
5
|
Viña J, Borrás C, Mas-Bargues C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:S275-S283. [PMID: 39422955 DOI: 10.3233/jad-240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is recognized as a complex condition influenced by multiple factors, necessitating a similarly multifaceted approach to treatment. Ideally, interventions should prioritize averting the progression to dementia. Given the chronic nature of the disease, long-term management strategies are required. Within this framework, lifestyle modifications and dietary supplements emerge as appealing options due to their minimal toxicity, limited side effects, and cost-effectiveness. This study presents findings from a double-blind, placebo-controlled bicentric pilot clinical trial, demonstrating the significant cognitive preservation associated with genistein, a phytoestrogen found in soy and various other dietary sources, among individuals with prodromal Alzheimer's disease. Our prior investigation utilizing APP/PS1 mice elucidated the specific mechanisms through which genistein operates, including anti-amyloid-β, antioxidant, anti-inflammatory, and antiapoptotic effects. These findings underscore the potential of identifying bioactive compounds from dietary sources for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- José Viña
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Cristina Mas-Bargues
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| |
Collapse
|
6
|
Wu YH, Hsieh HL. Effects of Redox Homeostasis and Mitochondrial Damage on Alzheimer's Disease. Antioxidants (Basel) 2023; 12:1816. [PMID: 37891895 PMCID: PMC10604635 DOI: 10.3390/antiox12101816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Bioenergetic mitochondrial dysfunction is a common feature of several diseases, including Alzheimer's disease (AD), where redox imbalance also plays an important role in terms of disease development. AD is an age-related disease and begins many years before the appearance of neurodegenerative symptoms. Intracellular tau aggregation, extracellular β-amyloid (Aβ) deposition in the brain, and even the APOE4 genotype contribute to the process of AD by impairing redox homeostasis and mitochondrial dysfunction. This review summarizes the evidence for the redox imbalance and mitochondrial dysfunction in AD and demonstrates the current therapeutic strategies related to mitochondrial maintenance.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan or
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan or
- Department of Nursing, Division of Basic Medical Sciences, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
8
|
More than Just Antioxidants: Redox-Active Components and Mechanisms Shaping Redox Signalling Network. Antioxidants (Basel) 2022; 11:antiox11122403. [PMID: 36552611 PMCID: PMC9774234 DOI: 10.3390/antiox11122403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The concept of oxidative stress as a condition underlying a multitude of human diseases has led to immense interest in the search for antioxidant-based remedies. The simple and intuitive story of "the bad" reactive oxygen species (ROS) and "the good" antioxidants quickly (and unsurprisingly) lead to the commercial success of products tagged "beneficial to health" based solely on the presence of antioxidants. The commercial success of antioxidants by far preceded the research aimed at understanding the exact redox-related mechanisms that are in control of shaping the states of health and disease. This review describes the redox network formed by the interplay of ROS with cellular molecules and the resulting regulation of processes at the genomic and proteomic levels. Key players of this network are presented, both involved in redox signalling and control of cellular metabolism linked to most, if not all, physiological processes. In particular, this review focuses on the concept of reductive stress, which still remains less well-established compared to oxidative stress.
Collapse
|
9
|
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152:113208. [PMID: 35660246 DOI: 10.1016/j.biopha.2022.113208] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE REVIEW This study aimed to reveal the classical signal pathways and important potential targets of traditional Chinese medicine (TCM) for treating Alzheimer's disease (AD), and provide support for further investigation on TCM and its active ingredients. MATERIALS AND METHODS Literature survey was conducted using PubMed, Web of Science, Google Scholar, CNKI, and other databases, with "Alzheimer's disease," "traditional Chinese medicine," "medicinal herb," "Chinese herb," and "natural plant" as the primary keywords. RESULTS TCM could modulate signal pathways related to AD pathological progression, including NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome pathway, autophagy-lysosome pathway-related AMPK/mTOR, GSK-3/mTOR, and PI3K/Akt/mTOR, as well as SIRT1 and PPARα pathway. It could regulate crosstalk between pathways through a multitarget, thus maintaining chronic inflammatory interaction balance, inhibiting oxidative stress damage, regulating ubiquitin-proteasome system function, modulating autophagy, and eventually improving cognitive impairment in patients with AD. CONCLUSION TCM could be multilevel, multitargeted, and multifaceted to prevent and treat AD. In-depth research on the prevention and treatment of AD with TCM could provide new ideas for exploring the pathogenesis of AD and developing new anti-AD drugs.
Collapse
Affiliation(s)
- Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
10
|
Chen L, Jiang X, Lv M, Wang X, Zhao P, Zhang M, Lv G, Wu J, Liu Y, Yang Y, Chen J, Bu W. Reductive-damage-induced intracellular maladaptation for cancer electronic interference therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Qiao X, Zhang Y, Ye A, Zhang Y, Xie T, Lv Z, Shi C, Wu D, Chu B, Wu X, Zhang W, Wang P, Liu GH, Wang CC, Wang L, Chen C. ER reductive stress caused by Ero1α S-nitrosation accelerates senescence. Free Radic Biol Med 2022; 180:165-178. [PMID: 35033630 DOI: 10.1016/j.freeradbiomed.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Oxidative stress in aging has attracted much attention; however, the role of reductive stress in aging remains largely unknown. Here, we report that the endoplasmic reticulum (ER) undergoes reductive stress during replicative senescence, as shown by specific glutathione and H2O2 fluorescent probes. We constructed an ER-specific reductive stress cell model by ER-specific catalase overexpression and observed accelerated senescent phenotypes accompanied by disrupted proteostasis and a compromised ER unfolded protein response (UPR). Mechanistically, S-nitrosation of the pivotal ER sulfhydryl oxidase Ero1α led to decreased activity, therefore resulting in reductive stress in the ER. Inhibition of inducible nitric oxide synthase decreased the level of Ero1α S-nitrosation and decreased cellular senescence. Moreover, the expression of constitutively active Ero1α restored an oxidizing state in the ER and successfully rescued the senescent phenotypes. Our results uncover a new mechanism of senescence promoted by ER reductive stress and provide proof-of-concept that maintaining the oxidizing power of the ER and organelle-specific precision redox regulation could be valuable future geroprotective strategies.
Collapse
Affiliation(s)
- Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongli Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Boyu Chu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, Chen Y, Guo M, Han W, Ye A, Xie T, Chu B, Shi C, Yang S, Chen C. Precision Redox: The Key for Antioxidant Pharmacology. Antioxid Redox Signal 2021; 34:1069-1082. [PMID: 33270507 PMCID: PMC8080931 DOI: 10.1089/ars.2020.8212] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Significance: The redox balance of cells provides a stable microenvironment for biological macromolecules to perform their physiological functions. As redox imbalance is closely related to the occurrence and development of a variety of diseases, antioxidant therapies are an attractive option. However, redox-based therapeutic strategies have not yet shown satisfactory results. To find the key reason is of great significance. Recent Advances: We emphasize the precise nature of redox regulation and elucidate the importance and necessity of precision redox strategies from three aspects: differences in redox status, differences in redox function, and differences in the effects of redox therapy. We then propose the "5R" principle of precision redox in antioxidant pharmacology: "Right species, Right place, Right time, Right level, and Right target." Critical Issues: Redox status must be considered in the context of species, time, place, level, and target. The function of a biomacromolecule and its cellular signaling role are closely dependent on redox status. Accurate evaluation of redox status and specific interventions are critical for the success of redox treatments. Precision redox is the key for antioxidant pharmacology. The precise application of antioxidants as nutritional supplements is also key to the general health of the population. Future Directions: Future studies to develop more accurate methods for detecting redox status and accurately evaluating the redox state of different physiological and pathological processes are needed. Antioxidant pharmacology should consider the "5R" principle rather than continuing to apply global nonspecific antioxidant treatments. Antioxid. Redox Signal. 34, 1069-1082.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chuanxin Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuzhe Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Boyu Chu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangpo Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Dennis AG, Almaguer-Mederos LE, Raúl RA, Roberto RL, Luis VP, Dany CA, Yanetza GZ, Yaimeé VM, Annelié ED, Arnoy PA, Reydenis TV. Redox Imbalance Associates with Clinical Worsening in Spinocerebellar Ataxia Type 2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9875639. [PMID: 33688396 PMCID: PMC7920744 DOI: 10.1155/2021/9875639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/24/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease presenting with redox imbalance. However, the nature and implications of redox imbalance in SCA2 physiopathology have not been fully understood. OBJECTIVE The objective of this study is to assess the redox imbalance and its association with disease severity in SCA2 mutation carriers. METHODS A case-control study was conducted involving molecularly confirmed SCA2 patients, presymptomatic individuals, and healthy controls. Several antioxidant parameters were assessed, including serum thiol concentration and the superoxide dismutase, catalase, and glutathione S-transferase enzymatic activities. Also, several prooxidant parameters were evaluated, including thiobarbituric acid-reactive species and protein carbonyl concentrations. Damage, protective, and OXY scores were computed. Clinical correlates were established. RESULTS Significant differences were found between comparison groups for redox markers, including protein carbonyl concentration (F = 3.30; p = 0.041), glutathione S-transferase activity (F = 4.88; p = 0.009), and damage (F = 3.20; p = 0.045), protection (F = 12.75; p < 0.001), and OXY (F = 7.29; p = 0.001) scores. Protein carbonyl concentration was positively correlated with CAG repeat length (r = 0.27; p = 0.022), while both protein carbonyl concentration (r = -0.27; p = 0.018) and OXY score (r = -0.25; p = 0.013) were inversely correlated to the disease duration. Increasing levels of antioxidants and decreasing levels of prooxidant parameters were associated with clinical worsening. CONCLUSIONS There is a disruption of redox balance in SCA2 mutation carriers which depends on the disease stage. Besides, redox changes associate with markers of disease severity, suggesting a link between disruption of redox balance and SCA2 physiopathology.
Collapse
Affiliation(s)
- Almaguer-Gotay Dennis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Luis E. Almaguer-Mederos
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Rodríguez-Aguilera Raúl
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | | | - Velázquez-Pérez Luis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- Cuban Academy of Sciences, Cuba
| | - Cuello-Almarales Dany
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - González-Zaldívar Yanetza
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Vázquez-Mojena Yaimeé
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Peña-Acosta Arnoy
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Torres-Vega Reydenis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| |
Collapse
|
14
|
Gerasimov NY, Ivanenko GF, Bobkova NV, Nevrova OV, Goloshchapov AN. Investigation of Changes in the Microviscosity of the Erythrocyte Membranes and Glutathione in the Plasma of Animals with an Experimental Pathology Type Alzheimer’s Diseases. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Quiles JL, Sánchez-González C, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Xiao J, Llopis J, Battino M, Varela-López A. Reductive Stress, Bioactive Compounds, Redox-Active Metals, and Dormant Tumor Cell Biology to Develop Redox-Based Tools for the Treatment of Cancer. Antioxid Redox Signal 2020; 33:860-881. [PMID: 32064905 DOI: 10.1089/ars.2020.8051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Cancer is related to redox biology from many points of view, such as initiation and promotion, metabolism and growth, invasion and metastasis, vascularization, or through the interaction with the immune system. In addition, this extremely complex relationship depends on the redox homeostasis of each cellular compartment, which might be used to fight cancer. Recent Advances: New ways of modulating specific and little explored aspects of redox biology have been revealed, as well as new delivery methods or uses of previously known treatments against cancer. Here, we review the latest experimental evidence regarding redox biology in cancer treatment and analyze its potential impact in the development of improved and more effective antineoplastic therapies. Critical Issues: A critical issue that deserves particular attention is the understanding that both extremes of redox biology (i.e., oxidative stress [OS] and reductive stress) might be useful or harmful in relation to cancer prevention and treatment. Future Directions: Additional research is needed to understand how to selectively induce reductive or OS adequately to avoid cancer proliferation or to induce cancer cell death.
Collapse
Affiliation(s)
- José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.,College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramírez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), Granada, Spain
| | - Francesca Giampieri
- College of Food Science and Technology, Northwest University, Xi'an, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
S Narasimhan KK, Devarajan A, Karan G, Sundaram S, Wang Q, van Groen T, Monte FD, Rajasekaran NS. Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biol 2020; 37:101739. [PMID: 33242767 PMCID: PMC7695986 DOI: 10.1016/j.redox.2020.101739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Redox homeostasis regulates key cellular signaling in both physiology and pathology. While perturbations result in shifting the redox homeostasis towards oxidative stress are well documented, the influence of reductive stress (RS) in neurodegenerative diseases and its mechanisms are unknown. Here, we postulate that a redox shift towards the reductive arm (through the activation of Nrf2 signaling) will damage neurons and impair neurogenesis. In proliferating and differentiating neuroblastoma (Neuro 2a/N2a) cells, sulforaphane-mediated Nrf2 activation resulted in increased transcription/translation of antioxidants and glutathione (GSH) production along with significantly declined ROS in a dose-dependent manner leading to a reductive-redox state (i.e. RS). Interestingly, this resulted in endoplasmic reticulum (ER) stress leading to subsequent protein aggregation/proteotoxicity in neuroblastoma cells. Under RS, we also observed elevated Tau/α-synuclein and their co-localization with other protein aggregates in these cells. Surprisingly, we noticed that acute RS impaired neurogenesis as evidenced from reduced neurite outgrowth/length. Furthermore, maintaining the cells in a sustained RS condition (for five consecutive generations) dramatically reduced their differentiation and prevented the formation of axons (p < 0.05). This impairment in RS mediated neurogenesis occurs through the alteration of Tau dynamics i.e. RS activates the pathogenic GSK3β/Tau cascade thereby promoting the phosphorylation of Tau leading to proteotoxicity. Of note, intermittent withdrawal of sulforaphane from these cells suppressed the proteotoxic insult and re-activated the differentiation process. Overall, this results suggest that either acute or chronic RS could hamper neurogenesis through GSK3β/TAU signaling and proteotoxicity. Therefore, investigations identifying novel redox mechanisms impacting proteostasis are crucial to preserve neuronal health.
Collapse
Affiliation(s)
- Kishore Kumar S Narasimhan
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Asokan Devarajan
- Department of Medicine, Division of Cardiology, Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, United States
| | - Goutam Karan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical University & Research Institute, Chennai, India
| | - Qin Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Ogawa K, Noda A, Ueda J, Ogata T, Matsuyama R, Nishizawa Y, Qiao S, Iwata S, Ito M, Fujihara Y, Ichihara M, Adachi K, Takaoka Y, Iwamoto T. Forced expression of miR-143 and -145 in cardiomyocytes induces cardiomyopathy with a reductive redox shift. Cell Mol Biol Lett 2020; 25:40. [PMID: 32855642 PMCID: PMC7444248 DOI: 10.1186/s11658-020-00232-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored. METHODS We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer. RESULTS The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice. The expression of gamma-glutamylcysteine synthetase heavy subunit (γ-GCSc) and the in vitro activity of glutathione reductase (GR) were also higher, suggesting that the recycling of GSH and its de novo biosynthesis were augmented in transgenic hearts. Furthermore, the expression levels of glucose-6-phosphate dehydrogenase (G6PD, a rate-limiting enzyme for the PPP) and p62/SQSTM1 (a potent inducer of glycolysis and glutathione production) were elevated, while p62/SQSTM1 was upregulated at the mRNA level rather than as a result of autophagy inhibition. Consistent with this observation, nuclear factor erythroid-2 related factor 2 (Nrf2), Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) were activated, all of which are known to induce p62/SQSTM1 expression. CONCLUSIONS Overexpression of miR-143 and miR-145 leads to a unique dilated cardiomyopathy phenotype with a reductive redox shift despite marked downregulation of HK2 expression. Reductive stress may be involved in a wider range of cardiomyopathies than previously thought.
Collapse
Affiliation(s)
- Kota Ogawa
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Akiko Noda
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Jun Ueda
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
- Present address: Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Hokkaido Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rumiko Matsuyama
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Yuji Nishizawa
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Satoru Iwata
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Present address: Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Ichihara
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Koichi Adachi
- Radioisotope Research Center Medical Division, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuji Takaoka
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
| | - Takashi Iwamoto
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, Kasugai, Aichi Japan
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi Japan
| |
Collapse
|
19
|
Lloret A, Monllor P, Fuchsberger T, Giraldo E, Perluigi M, Vina J. Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult. Free Radic Res 2020; 54:442-454. [PMID: 32686528 DOI: 10.1080/10715762.2020.1798002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RCAN1 is an inhibitor of the phosphatase calcineurin, which is involved in the regulation of oxidative stress and apoptosis, among other important cell processes. Here we have used RCAN1 deficient mice (RCAN1-/-) to elucidate its role after an acute oxidative insult such as paraquat injection. We have observed that RCAN1-/- mice show less oxidative damage than wildtype (WT) mice after treatment. Under basal conditions, RCAN1-/- animals express more calcineurin, heme oxygenase-1, Nrf2, and catalase compared to WT mice (controls). This may explain the less severe effect of paraquat treatment on RCAN1-/- mice compared to WT. We showed that oxidative stress is involved in the early stages of apoptosis, thus we determined the apoptotic effector BAD and found that decreases in RCAN1-/- mice after treatment with paraquat compared with WT in similar experimental conditions. Our results suggest that RCAN1 may be involved in the balance between oxidant and antioxidant species production in vivo.
Collapse
Affiliation(s)
- Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Tanja Fuchsberger
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,The Principe Felipe Research Center, Valencia, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
20
|
López-Cuenca I, de Hoz R, Salobrar-García E, Elvira-Hurtado L, Rojas P, Fernández-Albarral JA, Barabash A, Salazar JJ, Ramírez AI, Ramírez JM. Macular Thickness Decrease in Asymptomatic Subjects at High Genetic Risk of Developing Alzheimer's Disease: An OCT Study. J Clin Med 2020; 9:jcm9061728. [PMID: 32503282 PMCID: PMC7355697 DOI: 10.3390/jcm9061728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
In this case control study, we examined the retinal thickness of the different layers in the macular region and peripapillary retinal nerve fiber layer (RNFL) with optical coherence tomography (OCT) in healthy cognitive subjects (from 51 to 74 years old) at high genetic risk for developing Alzheimer’s disease (AD). Thirty-five subjects with a family history of Alzheimer disease (AD) (FH+) and ApoE ɛ4 carriers and 29 age-matched control subjects without a family history of AD (FH−) and ApoE ɛ4 non-carriers were included. Compared to FH− ApoE ɛ4 non-carriers, in FH+ ApoE ɛ4 carriers, there were statistically significant decreases (p < 0.05) in (i) the foveal area of mRNFL; (ii) the inferior and nasal sectors in the outer and inner macular ring in the inner plexiform layer (IPL); (iii) the foveal area and the inferior sector in the outer macular ring in the inner nuclear layer (INL); and (iv) the inferior sector of the outer macular ring in the outer plexiform layer (OPL). However, no statistically significant differences were found in the peripapillary thickness of RNFL between both study groups. In subjects with cognitive health and high genetic risk for the development of AD, initial changes appeared in the macular area. OCT could be a promising, cost-effective and non-invasive test useful in early AD, before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, 28007 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Ana Barabash
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
- Correspondence: (A.I.R.); (J.M.R.)
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, UCM, 28040 Madrid, Spain
- Correspondence: (A.I.R.); (J.M.R.)
| |
Collapse
|
21
|
Ma WX, Li CY, Tao R, Wang XP, Yan LJ. Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5136957. [PMID: 32566086 PMCID: PMC7277050 DOI: 10.1155/2020/5136957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control & Prevention, 266034 Qingdao, Shandong, China
| | - Xin-Ping Wang
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
| |
Collapse
|
22
|
Carretero A, Gomez-Cabrera MC, Rios-Navarro C, Salvador-Pascual A, Bodi V, Viña J. Early reductive stress and late onset overexpression of antioxidant enzymes in experimental myocardial infarction. Free Radic Res 2020; 54:173-184. [PMID: 32103692 DOI: 10.1080/10715762.2020.1735632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reductive stress is defined as a pathophysiological situation in which the cell becomes more reduced than in the normal, resting state. It represents a disturbance in the redox state that is harmful to biological systems. Our aim was to study the occurrence of reductive stress in the early phases of experimental myocardial infarction and to determine the mechanisms leading to such stress using a swine model. During the ischemic period, we found a decrease in the oxidized to reduced glutathione ratio (GSSG/GSH) (0.7-0.3), in the lactate to pyruvate ratio (42.7-132.4), in protein glutathionylation (111.8-96.1), and in p38 phosphorylation (0.9-0.4). This was accompanied by a significant increase in the expression of Thioredoxin (TXN) (0.6-1.9) and peroxiredoxin (PRDX6) (0.6-1.6) in different left ventricle areas. After reperfusion, there was a massive increase in oxidative damage markers including lipid peroxidation (0.2-0.4), protein carbonylation (144.9-462.8), and glutathionylation (111.8-176.8). Concomitantly, we found an activation of nuclear factor erythroid 2-related factor 2 (Nrf2) (1.2-6.1) and of a set of antioxidant enzymes including TXN, PRDX6, glutathione peroxidase (GPX1), glutathione reductase (GSR), and glucose 6 phosphate dehydrogenase (G6PD). We describe an early reductive, followed by a late onset oxidative stress (1 week and 1 month after reperfusion) in a swine myocardial infarction model. The occurrence of an early reductive phase may explain the lack of effectiveness of antioxidant therapies when administered in the early phases after reperfusion of ischemic hearts.
Collapse
Affiliation(s)
- Aitor Carretero
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Cesar Rios-Navarro
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Department of Medicine, Faculty of Medicine, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBERCV), Madrid, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
23
|
Female mice with apolipoprotein E4 domain interaction demonstrated impairments in spatial learning and memory performance and disruption of hippocampal cyto-architecture. Neurobiol Learn Mem 2019; 161:106-114. [PMID: 30954674 DOI: 10.1016/j.nlm.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
We have previously reported cognitive impairments in both young and old mice, particularly in female mice expressing mouse Arg-61 apoE, with a point mutation to mimic the domain interaction feature of human apoE4, as compared to the wildtype mouse (C57BL/6J) apoE. In this study, we further evaluated water maze performance in the female Arg-61 mice at an additional time point and then investigated related hippocampal cyto-architecture in these young female Arg-61 apoE mice vs. the wildtype mice. The results of behavioral performance consistently support our previous report that the young female Arg-61 apoE showed cognitive impairment versus C57BL/6J at the same age. The cyto-architectural results showed that volume of the granular cell layer (GCL) was significantly larger in both 5- and 10-month old Arg-61 apoE mice versus C57BL/6J mice. While the number of newborn calretinin-positive neurons was greater in the sub-granular zone (SGZ) in 5-month old Arg-61 mice, this number dropped significantly in 10-month old Arg-61 mice to a lower level than in age-matched C57BL/6J mice. In addition, the amyloid β species was significantly higher in 5-month old Arg-61 mice versus age-matched C57BL/6J mice. In conclusion, impaired cognitive functions in female Arg-61 apoE mice appear correlated with larger GCL volume and higher calretinin-positive cell number and suggest a compensatory cellular response that may be related to amyloid beta perturbations early in life. Therefore this study suggests a novel cyto-architectural mechanism of apoE4-dependent pathologies and increased susceptibility of APOEε4 subjects to Alzheimer's disease.
Collapse
|
24
|
Wadley AJ, Holliday A, Morgan RG, Heesom KJ, Aldred S, Peters DM, Bueno AA, Coles SJ. Preliminary evidence of reductive stress in human cytotoxic T cells following exercise. J Appl Physiol (1985) 2018; 125:586-595. [DOI: 10.1152/japplphysiol.01137.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study investigated immunophenotypic differences in intracellular thiol redox state of peripheral blood mononuclear cells (PBMCs) isolated from trained [ n = 9, means ± SD: age 28 ± 5 yr; (body mass index) BMI 23.2 ± 2.6 kg/m2; V̇o2max (maximal oxygen intake)56.9 ± 6.1 ml·kg−1·min−1] and recreationally active (RA, n = 11, means ± SD: age 27 ± 6 yr; BMI 24.2 ± 3.7 kg/m2; V̇o2max 45.1 ± 6.4 ml·kg−1·min−1) participants before and after a maximal aerobic exercise tolerance test. Blood samples were taken before (Pre), during (sample acquired at 70% maximum heart rate), immediately after (Post + 0), and 15 min postexercise (Post + 15). PBMCs were isolated, and reduced thiol analysis [fluorescein-5 maleimide (F5M)] by immunophenotype [cluster of differentiation (CD)3+, CD4+, and CD8+] was performed using flow cytometry. A significant increase in cellular F5M fluorescence was observed in CD3+ T cells at Post + 0, with changes driven to a greater extent by CD8+ T cells (fold change in both groups CD4: +2.3, CD8: +2.8; P < 0.05). Further analysis revealed a population of highly reduced CD8+ T cells (CD8+T-reduced+) that significantly increased from Pre to Post + 0 in RA participants only (RA: +272 cell/µl, P < 0.05). To understand these results further, CD8+T-reduced+ and CD8+T-reduced− cells were analyzed for immunophenotype in response to the same exercise protocol ( n = 6, means ± SD: age 24 ± 5 yr; BMI 25.7 ± 4.1 kg·m−2; V̇o2max 41.33 ± 7.63 ml·kg−1·min−1). CD8+T-reduced+ had significantly less lymphoid homing potential (chemokine receptor type 7) Post + 0 compared with Pre. This study is the first, to our knowledge, to demonstrate that lymphocyte populations become more reductive in response to acute exercise. NEW & NOTEWORTHY The study presented provides the first evidence to suggest that cytotoxic T cells become transiently reductive in healthy individuals following a single bout of cycling. Detection of these cells was enabled via the use of a flow cytometric assay that incorporates the thiol reactive probe fluorescein-5 maleimide. Using this method, transient reductive stress in viable T cells is permissible and provides the basis for further research in the area of exercise immunology.
Collapse
Affiliation(s)
- Alex J. Wadley
- Institute of Science and the Environment, University of Worcester, Worcestershire, United Kingdom
| | - Adrian Holliday
- Institute of Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Rhys G. Morgan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom
| | - Derek M. Peters
- Institute of Health and Society, University of Worcester, Worcestershire, United Kingdom
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Allain A. Bueno
- Institute of Science and the Environment, University of Worcester, Worcestershire, United Kingdom
| | - Steven J. Coles
- Institute of Science and the Environment, University of Worcester, Worcestershire, United Kingdom
| |
Collapse
|
25
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
26
|
Ivanenko GF, Bobkova NV. The State of Glutathione in Animal Blood Plasma in the Development of Experimental Pathology that Simulates Neurodegeneration of the Alzheimer’s Disease Type. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, Pagni C, Giorgi FS, Ceravolo R, Tognoni G, Siciliano G, Bonuccelli U. Oxidative Stress Assessment in Alzheimer's Disease: A Clinic Setting Study. Am J Alzheimers Dis Other Demen 2018; 33:35-41. [PMID: 28931301 PMCID: PMC10852477 DOI: 10.1177/1533317517728352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oxidative stress (OS) is a physiological age-related brain process, dramatically overexpressed in neurodegenerative disorders like Alzheimer's disease (AD). Nevertheless, the pathophysiological role of OS in AD pathology has not been clarified yet. OS as a biomarker for AD is a controversial issue. A comparison of previous data is difficult due to a remarkable methodological variability. Most of the previous studies have shown higher levels of OS markers and lower antioxidant power in patients with dementia when compared to mild cognitive impairment (MCI) and healthy controls. METHODS We followed a strict protocol in order to limit intrasite variability of OS assessment. In addition, we have taken into account possible confounding factors. RESULTS In agreement with previous reports, we found both lower plasmatic OS and higher plasmatic antioxidant defenses when comparing patients with AD having dementia that is stably treated to patients with MCI-AD. DISCUSSION A speculative hypothesis based on correlative data is provided.
Collapse
Affiliation(s)
- Andrea Vergallo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leda Volpi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pagni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6435861. [PMID: 29636850 PMCID: PMC5831771 DOI: 10.1155/2018/6435861] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Collapse
|
29
|
Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer's Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front Immunol 2018; 8:1974. [PMID: 29375582 PMCID: PMC5768621 DOI: 10.3389/fimmu.2017.01974] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022] Open
Abstract
Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD), the age-related impairment of the immune system (immunosenescence), based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD) and severe AD, and of age-matched controls (elderly healthy subjects) as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE) test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at <18 MMSE; elderly subjects >27 MMSE). The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL)-10 release; higher basal proliferation, tumor necrosis factor (TNF)-α release, and IL-10/TNF-α ratio), others only in mAD subjects (higher adherence), meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release). This impairment of immune functions could be mediated by: (1) the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH) levels, high oxidized glutathione (GSSG)/GSH ratio, and GSSG and malondialdehyde contents], and (2) the higher release of basal pro-inflammatory cytokines (IL-6 and TNF-α) found in AD patients. Because the immune system parameters studied are markers of health and rate of aging, our results supported an accelerated immunosenescence in AD patients. We suggest the assessment of oxidative stress and function parameters in peripheral blood cells as well as in isolated neutrophils and mononuclear cells, respectively, as possible markers of AD progression.
Collapse
Affiliation(s)
- Carmen Vida
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Irene Martinez de Toda
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Antonio Garrido
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Eva Carro
- Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Antonio Molina
- Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mónica De la Fuente
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
30
|
Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int J Mol Sci 2017; 18:ijms18102098. [PMID: 28981461 PMCID: PMC5666780 DOI: 10.3390/ijms18102098] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract: Reductive stress (RS) is the counterpart oxidative stress (OS), and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD⁺/NADH, NADP⁺/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer's disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.
Collapse
|
31
|
Shanmugam G, Narasimhan M, Tamowski S, Darley-Usmar V, Rajasekaran NS. Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium. Redox Biol 2017; 12:937-945. [PMID: 28482326 PMCID: PMC5423345 DOI: 10.1016/j.redox.2017.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 02/01/2023] Open
Abstract
Redox homeostasis regulates key cellular signaling pathways in both physiology and pathology. The cell's antioxidant response provides a defense against oxidative stress and establishes a redox tone permissive for cell signaling. The molecular regulation of the well-known Keap1/Nrf2 system acts as sensor responding to changes in redox homeostasis and is poorly studied in the heart. Importantly, it is not yet known whether Nrf2 alone can serve as a master regulator of cellular redox homeostasis without compensation of the transcriptional regulation of antioxidant response element (ARE) genes through alternate mechanisms. Here, we addressed this question using cardiac-specific transgenic expression at two different levels of constitutively active nuclear erythroid related factor 2 (caNrf2) functioning independently of Keap1. The caNrf2 mice showed augmentation of glutathione (GSH), the key regulator of the cellular thiol redox state. The Trans-AM assay for Nrf2-binding to the antioxidant response element (ARE) showed a dose-dependent increase associated with upregulation of several major antioxidant genes and proteins. This was accompanied by a significant decrease in dihydroethidium staining and malondialdehyde (MDA) in the caNrf2-TG mice myocardium. Interestingly, caNrf2 gene-dosage dependent redox changes were noted resulting in generation of a multi-stage model of pro-reductive and reductive conditions in the myocardium of TG-low and TG-high mice, respectively. These data clearly show that Nrf2 levels alone are capable of serving as the master regulator of the ARE. These models provide an important platform to investigate the impact of the Nrf2 system independent of the need to regulate the activity of Keap1 and the consequent exposure to pro-oxidants or electrophiles, which have numerous off-target effects.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Susan Tamowski
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
32
|
Belkacemi A, Ramassamy C. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State. J Alzheimers Dis 2016; 50:981-98. [PMID: 26890747 DOI: 10.3233/jad-150770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Alzheimer's disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention.
Collapse
Affiliation(s)
- Abdenour Belkacemi
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada
| | - Charles Ramassamy
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| |
Collapse
|
33
|
Dose J, Nebel A, Piegholdt S, Rimbach G, Huebbe P. Influence of the APOE genotype on hepatic stress response: Studies in APOE targeted replacement mice and human liver cells. Free Radic Biol Med 2016; 96:264-72. [PMID: 27130033 DOI: 10.1016/j.freeradbiomed.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E (APOE) is a multifunctional plasma protein mainly acting in lipid metabolism. Human APOE is polymorphic with three major isoforms (APOE2, APOE3 and APOE4). Up to 75% of the body's APOE is produced by the liver. There is increasing evidence from studies in brain-derived cells that APOE4 affects mitochondrial function and biogenesis as well as stress and inflammatory responses - processes, whose disturbances are considered hallmarks of the ageing process. However, although the liver is the main production site of APOE, knowledge about the impact of the APOE genotype on hepatic stress response-related processes is rather limited. Therefore, we studied biomarkers of oxidative status (glutathione levels, 3-nitrotyrosine adducts, protein carbonyl concentration), ER stress (XBP1(S), BiP, DDIT3), proteasome activity, mitochondrial function (respiratory complexes, ATP levels and mitochondrial membrane potential as well as biomarkers of mitochondrial biogenesis, fission and fusion), autophagy (LC3, LAMP2A), apoptosis (BCL2, BAX, CYCS) and DNA damage in the liver of APOE targeted replacement (TR) mice and in Huh7 hepatocytes overexpressing the APOE3 and the APOE4 isoform, respectively. APOE4 mice exhibited a lower chymotrypsin-like and a higher trypsin-like proteasome activity. Levels of protein carbonyls were moderately higher in liver tissue of APOE4 vs. APOE3 mice. Other biomarkers of oxidative stress were similar between the two genotypes. Under basal conditions, the stress-response pathways investigated appeared largely unaffected by the APOE genotype. However, upon stress induction, APOE4 expressing cells showed lower levels of adenosine triphosphate (ATP) and lower mRNA levels of the ATP-generating complex V of the mitochondrial respiratory chain. Overall, our findings provide evidence for a rather low influence of the APOE genotype on the hepatic stress response processes investigated in this study.
Collapse
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Almut Nebel
- Institute of Clinical Molecular Biology, University of Kiel, University Hospital Schleswig-Holstein, Schittenhelmstr. 12, 24105 Kiel, Germany.
| | - Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
34
|
Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1116-1126. [PMID: 26997500 DOI: 10.1016/j.bbabio.2016.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, University of Newcastle, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
35
|
Abstract
Maintaining cellular redox status to allow cell signalling to occur requires modulation of both the controlled production of oxidants and the thiol-reducing networks to allow specific regulatory post-translational modification of protein thiols. The oxidative stress hypothesis captured the concept that overproduction of oxidants can be proteotoxic, but failed to predict the recent finding that hyperactivation of the KEAP1-NRF2 system also leads to proteotoxicity. Furthermore, sustained activation of thiol redox networks by KEAP1-NRF2 induces a reductive stress, by decreasing the lifetime of necessary oxidative post-translational modifications required for normal metabolism or cell signalling. In this context, it is now becoming clear why antioxidants or hyperactivation of antioxidant pathways with electrophilic therapeutics can be deleterious. Furthermore, it suggests that the autophagy-lysosomal pathway is particularly important in protecting the cell against redox-stress-induced proteotoxicity, since it can degrade redox-damaged proteins without causing aberrant changes to the redox network needed for metabolism or signalling. In this context, it is important to understand: (i) how NRF2-mediated redox signalling, or (ii) the autophagy-mediated antioxidant/reductant pathways sense cellular damage in the context of cellular pathogenesis. Recent studies indicate that the modification of protein thiols plays an important role in the regulation of both the KEAP1-NRF2 and autophagy pathways. In the present review, we discuss evidence demonstrating that the KEAP1-NRF2 pathway and autophagy act in concert to combat the deleterious effects of proteotoxicity. These findings are discussed with a special emphasis on their impact on cardiovascular disease and neurodegeneration.
Collapse
|
36
|
Luca M, Luca A, Calandra C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer's Disease and Vascular Dementia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:504678. [PMID: 26301043 PMCID: PMC4537746 DOI: 10.1155/2015/504678] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
Oxidative stress (OS) has been demonstrated to be involved in the pathogenesis of the two major types of dementia: Alzheimer's disease (AD) and vascular dementia (VaD). Evidence of OS and OS-related damage in AD is largely reported in the literature. Moreover, OS is not only linked to VaD, but also to all its risk factors. Several researches have been conducted in order to investigate whether antioxidant therapy exerts a role in the prevention and treatment of AD and VaD. Another research field is that pertaining to the heat shock proteins (Hsps), that has provided promising findings. However, the role of OS antioxidant defence system and more generally stress responses is very complex. Hence, research on this topic should be improved in order to reach further knowledge and discover new therapeutic strategies to face a disorder with such a high burden which is dementia.
Collapse
Affiliation(s)
- Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Antonina Luca
- Department of “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
37
|
Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway. PLoS Genet 2015; 11:e1005231. [PMID: 25996830 PMCID: PMC4440730 DOI: 10.1371/journal.pgen.1005231] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/20/2015] [Indexed: 12/29/2022] Open
Abstract
Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made between mutant lamins and the Nrf2 signaling pathway, suggesting new avenues of therapeutic intervention that include regulation of protein folding and metabolism, as well as maintenance of redox homoeostasis.
Collapse
|
38
|
Narasimhan M, Rajasekaran NS. Reductive potential - a savior turns stressor in protein aggregation cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:53-60. [PMID: 25446995 DOI: 10.1016/j.bbadis.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/02/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022]
Abstract
Redox homeostasis is essential for basal signaling of several physiological processes, but a unilateral shift towards an 'oxidative' or 'reductive' trait will alter intracellular redox milieu. Typically, such an event influences the structure and the native function of a cell or an organelle. Numerous experimental research and clinical trials over the last 6 decades have demonstrated that enhanced oxygen-derived free radicals constitute a major stimulus to trigger damage in several human diseases, including cardiovascular complications supporting the theory of oxidative stress (OS). However, until our key discovery, the dynamic interrelationship between "Reductive Stress (RS)" and cardiac health has been obscured by overwhelming OS studies (Rajasekaran et al., 2007). Notably, this seminal finding spurred considerable interest in investigations of other mechanistic insights, and thus far the results indicate a similar or stronger role for RS, as that of OS. In addition, from our own findings we strongly believe that constitutive activation of pathways that enable sustained generation of reducing equivalents of glutathione (GSH), reduced nicotinamide adenine dinucleotide phosphate (NADPH) will cause RS and impair the basal cellular signaling mechanisms operating through harmless pro-oxidative events, in turn, disrupting single and/or a combination of key cellular processes such as growth, maturation, differentiation, survival, death etc., that govern healthy cell physiology. Here, we have discussed the role of RS as a causal or contributing factor in relevant pathophysiology of a major cardiac disease of human origin.
Collapse
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180, United States; Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-2180, United States; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| |
Collapse
|
39
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Role of copper and cholesterol association in the neurodegenerative process. Int J Alzheimers Dis 2013; 2013:414817. [PMID: 24288650 PMCID: PMC3830777 DOI: 10.1155/2013/414817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023] Open
Abstract
Age is one of the main factors involved in the development of neurological illnesses, in particular, Alzheimer, and it is widely held that the rapid aging of the world population is accompanied by a rise in the prevalence and incidence of Alzheimer disease. However, evidence from recent decades indicates that Cu and Cho overload are emerging causative factors in neurodegeneration, a hypothesis that has been partially investigated in experimental models. The link between these two variables and the onset of Alzheimer disease has opened up interesting new possibilities requiring more in-depth analysis. The aim of the present study was therefore to investigate the effect of the association of Cu + Cho (CuCho) as a possible synergistic factor in the development of an Alzheimer-like pathology in Wistar rats. We measured total- and nonceruloplasmin-bound Cu and Cho (free and sterified) contents in plasma and brain zones (cortex and hippocampus), markers of oxidative stress damage, inflammation, and programmed cell death (caspase-3 and calpain isoforms). The ratio beta-amyloid (1-42)/(1-40) was determined in plasma and brain as neurodegenerative biomarker. An evaluation of visuospatial memory (Barnes maze test) was also performed. The results demonstrate the establishment of a prooxidative and proinflammatory environment after CuCho treatment, hallmarked by increased TBARS, protein carbonyls, and nitrite plus nitrate levels in plasma and brain zones (cortex and hippocampus) with a consequent increase in the activity of calpains and no significant changes in caspase-3. A simultaneous increase in the plasma Aβ1-42/Aβ1-40 ratio was found. Furthermore, a slight but noticeable change in visuospatial memory was observed in rats treated with CuCho. We conclude that our model could reflect an initial stage of neurodegeneration in which Cu and Cho interact with one another to exacerbate neurological damage.
Collapse
|
41
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|