1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Wójciak M, Paduch R, Drozdowski P, Wójciak W, Żuk M, Płachno BJ, Sowa I. Antioxidant and Anti-Inflammatory Effects of Nettle Polyphenolic Extract: Impact on Human Colon Cells and Cytotoxicity Against Colorectal Adenocarcinoma. Molecules 2024; 29:5000. [PMID: 39519642 PMCID: PMC11547774 DOI: 10.3390/molecules29215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Urtica dioica L. is one of the most widely utilized medicinal plants commonly applied in the form of tea, juice, and dietary supplements. This study aimed to assess the effect of the U. dioica ethanol-water extract (UdE) and polyphenolic fraction isolated from the extract (UdF) on normal human colon epithelial cells and to evaluate their protective activity against induced oxidative stress. The cytotoxic potential against human colorectal adenocarcinoma (HT29) and the anti-inflammatory effects were also investigated. UPLC-MS-DAD analysis revealed that both extracts were abundant in caffeic acid derivatives, specifically chlorogenic and caffeoylmalic acids, and therefore, they showed significant protective and ROS scavenging effects in normal human colon epithelial cells. Moreover, they had no negative impact on cell viability and morphology in normal cells and the extracts, particularly UdF, moderately suppressed adenocarcinoma cells. Furthermore, UdF significantly decreased IL-1β levels in HT29 cells. Our research indicates that U. dioica may provide significant health advantages because of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| |
Collapse
|
3
|
Arslan I. Naturally occurring caffeic acid phenethyl ester from chestnut honey-based propolis and virtual screening towards DYRK1A. Nat Prod Res 2024:1-5. [PMID: 38300844 DOI: 10.1080/14786419.2024.2309660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Neurodegenerative diseases (NDDs) are disorders with dysfunction and ongoing loss of neurons, glial cells and the neural networks in the brain and spinal cord. DYRK1A protein was reported to modulate to the cytoskeletal fraction in human and mouse brain, and the remaining protein is located in the cytosolic and nuclear fractions. Caffeic acid phenethyl ester (CAPE) is a natural derivative of caffeic acid and found in propolis, a bee product. In this study, we focused on isolation and characterisation of CAPE from chestnut honey-based propolis by HPLC-MS/MS technique and virtual screening of CAPE towards DYRK1A by molecular docking methods. Results revealed that CAPE might be a beneficial option to treat Alzheimer disease (AD) by suppressing DYRK1A protein.
Collapse
Affiliation(s)
- Idris Arslan
- Faculty of Science, Molecular Biology and Genetics, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Basagni F, Di Paolo ML, Cozza G, Dalla Via L, Fagiani F, Lanni C, Rosini M, Minarini A. Double Attack to Oxidative Stress in Neurodegenerative Disorders: MAO-B and Nrf2 as Elected Targets. Molecules 2023; 28:7424. [PMID: 37959843 PMCID: PMC10650714 DOI: 10.3390/molecules28217424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress and neuroinflammation play a pivotal role in triggering the neurodegenerative pathological cascades which characterize neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. In search for potential efficient treatments for these pathologies, that are still considered unmet medical needs, we started from the promising properties of the antidiabetic drug pioglitazone, which has been repositioned as an MAO-B inhibitor, characterized by promising neuroprotective properties. Herein, with the aim to broaden its neuroprotective profile, we tried to enrich pioglitazone with direct and indirect antioxidant properties by hanging polyphenolic and electrophilic features that are able to trigger Nrf2 pathway and the resulting cytoprotective genes' transcription, as well as serve as radical scavengers. After a preliminary screening on MAO-B inhibitory properties, caffeic acid derivative 2 emerged as the best inhibitor for potency and selectivity over MAO-A, characterized by a reversible mechanism of inhibition. Furthermore, the same compound proved to activate Nrf2 pathway by potently increasing Nrf2 nuclear translocation and strongly reducing ROS content, both in physiological and stressed conditions. Although further biological investigations are required to fully clarify its neuroprotective properties, we were able to endow the pioglitazone scaffold with potent antioxidant properties, representing the starting point for potential future pioglitazone-based therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy; (M.L.D.P.); (G.C.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy; (M.L.D.P.); (G.C.)
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (C.L.)
- Division of Neuroscience, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (C.L.)
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| |
Collapse
|
5
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
6
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
7
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
9
|
Zhao X, Liu Z, Liu H, Guo J, Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur J Med Chem 2022; 243:114745. [PMID: 36152388 DOI: 10.1016/j.ejmech.2022.114745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023]
Abstract
Caffeic acid-based compounds possess a high degree of structural diversity and show a variety of pharmacological properties, providing a useful framework for the discovery of new therapeutic agents. They are well-known analogues of antioxidants found in many natural products and synthetic compounds. The present review surveys the recent developments in structure-activity relationships (SAR) and mechanism of action (MOA) of various caffeic acid-containing compounds that play important roles in the design and synthesis of new bioactive molecules with antioxidant, antidiabetic, antiviral, antibacterial, anticancer, anti-inflammatory, and other properties. This review should provide inspiration to scientists in the research fields of organic synthesis and medicinal chemistry related to the development of new antioxidants with versatile therapeutic potential.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
10
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
11
|
Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Lan Q, Xue L, Cao J, Xie Y, Xiao T, Fang S. Caffeic Acid Phenethyl Ester (CAPE) Improves Boar Sperm Quality and Antioxidant Capacity in Liquid Preservation (17°C) Linked to AMPK Activity Maintenance. Front Vet Sci 2022; 9:904886. [PMID: 35754532 PMCID: PMC9219730 DOI: 10.3389/fvets.2022.904886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 μmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 μmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li'e Xue
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacheng Cao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingyu Xie
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Dai Z, An LY, Chen XY, Yang F, Zhao N, Li CC, Ren R, Li BY, Tao WY, Li P, Jiang C, Yan F, Jiang ZY, You QD, Di B, Xu LL. Target Fishing Reveals a Novel Mechanism of 1,2,4-Oxadiazole Derivatives Targeting Rpn6, a Subunit of 26S Proteasome. J Med Chem 2022; 65:5029-5043. [PMID: 35253427 DOI: 10.1021/acs.jmedchem.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,2,4-Oxadiazole derivatives, a class of Nrf2-ARE activators, exert an extensive therapeutic effect on inflammation, cancer, neurodegeneration, and microbial infection. Among these analogues, DDO-7263 is the most potent Nrf2 activator and used as the core structure for bioactive probes to explore the precise mechanism. In this work, we obtained compound 7, a mimic of DDO-7263, and biotin-labeled and fluorescein-based probes, which exhibited homologous biological activities to DDO-7263, including activating Nrf2 and its downstream target genes, anti-oxidative stress, and anti-inflammatory effects. Affinity chromatography and mass analysis techniques revealed Rpn6 as the potential target protein regulating the Nrf2 signaling pathway. In vitro affinity experiments further confirmed that DDO-7263 upregulated Nrf2 through binding to Rpn6 to block the assembly of 26S proteasome and the subsequent degradation of ubiquitinated Nrf2. These results indicated that Rpn6 is a promising candidate target to activate the Nrf2 pathway for protecting cells and tissues from oxidative, electrophilic, and exogenous microbial stimulation.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Yan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Jeong S, Kang C, Park S, Ju S, Yoo JW, Yoon IS, Yun H, Jung Y. Eletrophilic Chemistry of Tranilast Is Involved in Its Anti-Colitic Activity via Nrf2-HO-1 Pathway Activation. Pharmaceuticals (Basel) 2021; 14:ph14111092. [PMID: 34832874 PMCID: PMC8623426 DOI: 10.3390/ph14111092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Tranilast (TRL), a synthetic derivative of a tryptophan metabolite, is an anti-allergic drug used to treat bronchial asthma. We investigated how TRL activated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)-hemeoxygenase-1 (HO-1) pathway based on the electrophilic chemistry of the drug and whether TRL activity contributed to the treatment of rat colitis. In human colon carcinoma cells, TRL activated Nrf2, as represented by an increase in nuclear Nrf2 and induction of Nrf2-dependent luciferase and, subsequently, HO-1, a target gene product of Nrf2. TRL activation of Nrf2 and induction of HO-1 were completely prevented by chemical reduction of the electrophilic functional group (α, β-unsaturated carbonyl group) in the drug. In parallel, TRL was reactive with the nucleophilic thiol group in N-acetylcysteine, forming a covalent adduct. Moreover, TRL, but not reduced TRL, binds to Kelch-like ECH-associated protein 1 (KEAP1), releasing Nrf2. TRL administration ameliorated colonic damage and inflammation in rats with dinitrobenzene sulfonic acid-induced colitis, which was partly compromised by the chemical reduction of TRL or co-treatment with an HO-1 inhibitor. Our results suggest that TRL activated the Nrf2-HO-1 pathway via covalent binding to KEAP1, partly contributing to TRL amelioration in rat colitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunjin Jung
- Correspondence: ; Tel.: +82-51-510-2527; Fax: +82-51-513-6754
| |
Collapse
|
16
|
Šuran J, Cepanec I, Mašek T, Starčević K, Tlak Gajger I, Vranješ M, Radić B, Radić S, Kosalec I, Vlainić J. Nonaqueous Polyethylene Glycol as a Safer Alternative to Ethanolic Propolis Extracts with Comparable Antioxidant and Antimicrobial Activity. Antioxidants (Basel) 2021; 10:978. [PMID: 34207316 PMCID: PMC8235377 DOI: 10.3390/antiox10060978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
We compared the chemical composition, antioxidant and antimicrobial activity of two propolis extracts: one obtained with nonaqueous polyethylene glycol, PEG 400 (PgEP), and the other obtained with ethanol (EEP). We analyzed the total phenolic content (TPC) and the concentrations of ten markers of propolis antioxidant activity with HPLC-UV: caffeic acid, p-coumaric acid, trans-ferulic acid, trans-cinnamic acid, kaempferol, apigenin, pinocembrin, chrysin, CAPE, and galangin. Antioxidant activity was tested using DPPH and FRAP assay, and antimicrobial activity was assessed through minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentration (MBEC) determination. Maceration gave the yield of propolis of 25.2 ± 0.08% in EEP, and 21.5 ± 0.24% in PgEP. All ten markers of antioxidant activity were found in both extracts, with all marker concentrations, except kaempferol, higher in EEP. There was no significant difference between the TPC and antioxidant activity of the PgEP and the EEP extract; TPC of PgEP was 16.78 ± 0.23 mg/mL, while EEP had TPC of 15.92 ± 0.78 mg/mL. Both extracts had antimicrobial activity against most investigated pathogens and Staphylococcus aureus, Acinetobacter baumannii, and Escherichia coli biofilms. EEP was more effective against all tested susceptible pathogens, except E. coli, possibly due to higher content of kaempferol in PgEP relative to other polyphenols. Nonaqueous PEG 400 could be used for propolis extraction. It gives extracts with comparable concentrations of antioxidants and has a good antioxidant and antimicrobial activity. It is a safe excipient, convenient for pediatric and veterinary formulations.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivica Cepanec
- Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Mihaela Vranješ
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacica 1, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
17
|
Šuran J, Cepanec I, Mašek T, Radić B, Radić S, Tlak Gajger I, Vlainić J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021; 26:molecules26102930. [PMID: 34069165 PMCID: PMC8156449 DOI: 10.3390/molecules26102930] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivica Cepanec
- Director of Research & Development and CTO, Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
18
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Yordanov Y. Caffeic acid phenethyl ester (CAPE): cornerstone pharmacological studies and drug delivery systems. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e38571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Propolis is a natural product with a plethora of biological effects, utilized by traditional medicine since antiquity. However, its application as a pharmaceutical is hindered by its variable composition and difficult standardization. CAPE has been shown to be a major component of propolis, with a large contribution to its pharmacological effects, among which the anti-inflammatory, antioxidant and antineoplastic have been attracting most attention. The current review article aims to present the cornerstone pharmacological studies of CAPE throughout the years, following its discovery, which confirmed its primary importance among propolis constituents and opened the path to its intensive research as a potential pharmaceutical. We present the diversity of drug delivery systems of CAPE, which have been developed to improve its efficacy in in vitro and in vivo disease models and discuss their primary promises and weaknesses. The increased interest in recent years over more practical approaches of CAPE research such as its pharmaceutical formulation comes to show that it has a potential to become commercialized as a pharmaceutical.
Collapse
|
20
|
Okada Y, Okada M. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol Biol Rep 2019; 47:1021-1032. [PMID: 31773385 DOI: 10.1007/s11033-019-05194-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
The circadian timing system of mammals is synchronized in concert with a central clock, but is also influenced by additional stimuli, including nutrients. However, little research has been done on polyphenols other than resveratrol and there seem to be no studies on their influence on young and old cells. The purpose of this study was to analyse the potential effects of quercetin, caffeic acid, and resveratrol on young and old fibroblast cells in the expressions of different clock genes and aging-related genes, and further investigate the mechanism. The mRNA expression of different clock genes and aging-related genes was assessed by quantitative real-time PCR. The protein levels of clock genes (BMAL1, PER1 and SIRT1) and glucocorticoid receptor α (GRα) were assessed by ELISA. Quercetin and caffeic acid in old fibroblast cells showed higher clock gene expression than resveratrol, quercetin increased Sirt1 expression, and caffeic acid increased Sirt6 expression indicating the possibility of an anti-aging effect. Also, quercetin and caffeic acid showed higher clock-controlled gene (Sirt1 and NR1D1) expression than resveratrol in young fibroblast cells. It appears that caffeic acid acts on NRF2 expression, and in turn to the actions of GRα, GDF11, Sirt1, and Sirt6. Regarding the increased expression of Per1, the activation effect on NR1D1 was confirmed only for caffeic acid in young fibroblast cells. Our results have confirmed the interplay of the circadian clock genes and cellular aging.
Collapse
Affiliation(s)
- Yoshinori Okada
- Laboratory on Ageing & Health Management, Graduate School of Nursing & Health, Aichi Prefectural University, Tohgoku, Kamishidami, Moriyama, Nagoya, 463-8502, Japan.
| | - Mizue Okada
- Nutrition Section, Ageing and Nutrition Research, Yms Laboratory, Gifu, 503, Japan
| |
Collapse
|
21
|
Kim W, Lee H, Kim S, Joo S, Jeong S, Yoo JW, Jung Y. Sofalcone, a gastroprotective drug, covalently binds to KEAP1 to activate Nrf2 resulting in anti-colitic activity. Eur J Pharmacol 2019; 865:172722. [PMID: 31614142 DOI: 10.1016/j.ejphar.2019.172722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022]
Abstract
Sofalcone is a synthetic chalcone being used as a gastric mucosa protective agent in Japan. Sofalcone contains a 1,3-diaryl-2-propen-1-one moiety, which is a common chemical scaffold in naturally occurring chalcones. The α,β-unsaturated carbonyl group (Michael reaction acceptor) has electrophilic properties. We investigated the biochemical mechanisms by which sofalcone activated the cytoprotective and anti-inflammatory nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway. Furthermore, we investigated whether the activation of this pathway was involved in sofalcone -mediated protective effects in an experimental colitis model. Sofalcone induced HO-1 protein expression, which was dependent on increased nuclear accumulation of Nrf2 in human colon carcinoma cells. In addition, Sofalcone reacted with nucleophilic thiol compounds to form Michael adducts. A reduced form of sofalcone (SFCR) in which the Michael reaction acceptor was deactivated, did not exert biological or chemical activity. Biotin-tagged sofalcone bound to Kelch-like ECH-associated protein 1 (KEAP1), a cytosolic repressor of Nrf2. This binding was prevented by pretreatment with sofalcone and a thiol compound but not with SFCR. Furthermore, sofalcone treatment induced dissociation of the Nrf2-KEAP1 complex. Rectal administration of sofalcone alleviated colon damage and inflammation and increased colon nuclear accumulation of Nrf2 and HO-1 levels in a dinitrobenzene sulfonic acid-induced rat colitis model. The protective effects of sofalcone against colon damage and inflammation were significantly inhibited by co-administration of an HO-1 inhibitor. In conclusion, sofalcone activated the Nrf2-HO-1 pathway by covalently binding to KEAP1 via Michael addition, and may confer anti-colitic effects by inducing Nrf2 activation.
Collapse
Affiliation(s)
- Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hanju Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soojin Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Joo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
22
|
Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J, Jia G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem Biodivers 2019; 16:e1900400. [PMID: 31482617 DOI: 10.1002/cbdv.201900400] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
The Keap1-Nrf2/ARE signaling pathway is an important defense system against exogenous and endogenous oxidative stress injury. The dysregulation of the signaling pathway is associated with many diseases, such as cancer, diabetes, and respiratory diseases. Over the years, a wide range of natural products has provided sufficient resources for the discovery of potential therapeutic drugs. Among them, polyphenols possess Nrf2 activation, not only inhibit the production of ROS, inhibit Keap1-Nrf2 protein-protein interaction, but also degrade Keap1 and regulate the Nrf2 related pathway. In fact, with the continuous improvement of natural polyphenols separation and purification technology and further studies on the Keap1-Nrf2 molecular mechanism, more and more natural polyphenols monomer components of Nrf2 activators have been gradually discovered. In this view, we summarize the research status of natural polyphenols that have been found with apparent Nrf2 activation and their action modes. On the whole, this review may guide the design of novel Keap1-Nrf2 activator.
Collapse
Affiliation(s)
- Yanping Zhou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, 33136, USA
| | - Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Zhuyu Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China
| |
Collapse
|
23
|
Yordanov Y. Caffeic acid phenethyl ester (CAPE): pharmacodynamics and potential for therapeutic application. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e38573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is the major pharmacologically-active component of some propolis types, rich in polyphenols, such as poplar propolis types. CAPE has the potential to be applied as a pharmaceutical as it possesses most of the pharmacological activities of propolis, such as anti-proliferative, antioxidant, immunomodulatory, antidiabetic, anti-inflammatory and antimicrobial. Its advantage is that it lacks some of the downsides of total propolis extracts, such as inability for unified standardization, which is cornerstone for implementing its therapeutic potential as a drug. The current paper provides an overview on the pharmacodynamic principles of CAPE. We present literature search outcomes form ClinicalTrials.gov database and from scientific publications, available on Scopus and Crossref databases. We take a round view of CAPE’s potential therapeutic implications in light of approved drugs with related modes of action.
Collapse
|
24
|
Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel'sky AI, Fukin GK, Luzhnova SA, Tichkomirov AM, Ponomareva EN, Berberova NT. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem 2019; 89:103003. [PMID: 31132599 DOI: 10.1016/j.bioorg.2019.103003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
A number of asymmetrical thioethers based on 3,5-di-tert-butylcatechol containing sulfur atom bonding with physiologically active groups in the sixth position of aromatic ring have been synthesized and the electrochemical properties, antioxidant, cryoprotective activities of new thioethers have been evaluated. Cyclic voltammetry was used to estimate the oxidation potentials of thioethers in acetonitrile. The electrooxidation of compounds at the first stage leads to the formation of o-benzoquinones. The antioxidant activities of the compounds were determined using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assay, experiments on the oxidative damage of the DNA, the reaction of 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced glutathione depletion (GSH), the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro, and iron(II) chelation test. Compounds 1-9 have greater antioxidant effectiveness than 3,5-di-tert-butylcatechol (CatH2) in all assays. The variation of physiologically active groups at sulfur atom allows to regulate lipophilic properties and antioxidant activity of compounds. Thioethers 3, 4 and 7 demonstrate the combination of radical scavenging, antioxidant activity and iron(II) binding properties. The researched compounds 1-9 were studied as possible cryoprotectants of the media for cryopreservation of the Russian sturgeon sperm. Novel cryoprotective additives in cryomedium reduce significantly the content of membrane-permeating agent (DMSO). A cryoprotective effect of an addition of the catechol thioethers depends on the structure of groups at sulfur atom. The cryoprotective properties of compounds 3, 4 and 7 are caused by combination of catechol fragment, bonded by a thioether linker with a long hydrocarbon chain and a terminal ionizable group or with a biologically relevant acetylcysteine residue.
Collapse
Affiliation(s)
- Ivan V Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia.
| | - Olga V Pitikova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Eugenia O Korchagina
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Andrey I Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Svetlana A Luzhnova
- Department of Microbiology and Immunology, Pyatigorsk Medicinal and Pharmaceutical Institute, 11 Kalinina str., Pyatigorsk 357500, Russia
| | - Andrey M Tichkomirov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Elena N Ponomareva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia
| | - Nadezhda T Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| |
Collapse
|
25
|
Smolyaninov I, Pitikova O, Korchagina E, Poddel’sky A, Luzhnova S, Berberova N. Electrochemical behavior and anti/prooxidant activity of thioethers with redox-active catechol moiety. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2264-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Khan M, Shunmugavel A, Dhammu TS, Khan H, Singh I, Singh AK. Combined treatment with GSNO and CAPE accelerates functional recovery via additive antioxidant activities in a mouse model of TBI. J Neurosci Res 2018; 96:1900-1913. [PMID: 30027580 DOI: 10.1002/jnr.24279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Avtar K Singh
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
27
|
Gaisina IN, Lee SH, Kaidery NA, Ben Aissa M, Ahuja M, Smirnova NN, Wakade S, Gaisin A, Bourassa MW, Ratan RR, Nikulin SV, Poloznikov AA, Thomas B, Thatcher GRJ, Gazaryan IG. Activation of Nrf2 and Hypoxic Adaptive Response Contribute to Neuroprotection Elicited by Phenylhydroxamic Acid Selective HDAC6 Inhibitors. ACS Chem Neurosci 2018; 9:894-900. [PMID: 29338172 DOI: 10.1021/acschemneuro.7b00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of HIF-1α and Nrf2 is a primary component of cellular response to oxidative stress, and activation of HIF-1α and Nrf2 provides neuroprotection in models of neurodegenerative disorders, including ischemic stroke, Alzheimer's and Parkinson's diseases. Screening a library of CNS-targeted drugs using novel reporters for HIF-1α and Nrf2 elevation in neuronal cells revealed histone deacetylase (HDAC) inhibitors as potential activators of these pathways. We report the identification of phenylhydroxamates as single agents exhibiting tripartite inhibition of HDAC6, inhibition of HIF-1 prolyl hydroxylase (PHD), and activation of Nrf2. Two superior tripartite agents, ING-6 and ING-66, showed neuroprotection against various cellular insults, associated with stabilization of both Nrf2 and HIF-1, and expression of their respective target genes in vitro and in vivo. Discovery of the innate ability of phenylhydroxamate HDAC inhibitors to activate Nrf2 and HIF provides a novel route to multifunctional neuroprotective agents and cautions against HDAC6 selective inhibitors as chemical probes of specific HDAC isoform function.
Collapse
Affiliation(s)
- Irina N. Gaisina
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Sue H. Lee
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Navneet A. Kaidery
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Manel Ben Aissa
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Manuj Ahuja
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Natalya N. Smirnova
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Sushama Wakade
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Arsen Gaisin
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan W. Bourassa
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
| | - Rajiv R. Ratan
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
| | - Sergey V. Nikulin
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Andrey A. Poloznikov
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Bobby Thomas
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Gregory R. J. Thatcher
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Irina G. Gazaryan
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
- Department of Cell Biology and Anatomy, School of Medicine, New York Medical College, 15 Dana Road, Valhalla, New York 10595, United States
| |
Collapse
|
28
|
Pallavi P, Pretze M, Caballero J, Li Y, Hofmann BB, Stamellou E, Klotz S, Wängler C, Wängler B, Loesel R, Roth S, Theisinger B, Moerz H, Binzen U, Greffrath W, Treede RD, Harmsen MC, Krämer BK, Hafner M, Yard BA, Kälsch AI. Analyses of Synthetic N-Acyl Dopamine Derivatives Revealing Different Structural Requirements for Their Anti-inflammatory and Transient-Receptor-Potential-Channel-of-the-Vanilloid-Receptor-Subfamily-Subtype-1 (TRPV1)-Activating Properties. J Med Chem 2018. [PMID: 29543451 DOI: 10.1021/acs.jmedchem.8b00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the chemical entities within N-octanoyl dopamine (NOD) responsible for the activation of transient-receptor-potential channels of the vanilloid-receptor subtype 1 (TRPV1) and inhibition of inflammation. The potency of NOD in activating TRPV1 was significantly higher compared with those of variants in which the ortho-dihydroxy groups were acetylated, one of the hydroxy groups was omitted ( N-octanoyl tyramine), or the ester functionality consisted of a bulky fatty acid ( N-pivaloyl dopamine). Shortening of the amide linker (ΔNOD) slightly increased its potency, which was further increased when the carbonyl and amide groups (ΔNODR) were interchanged. With the exception of ΔNOD, the presence of an intact catechol structure was obligatory for the inhibition of VCAM-1 and the induction of HO-1 expression. Because TRPV1 activation and the inhibition of inflammation by N-acyl dopamines require different structural entities, our findings provide a framework for the rational design of TRPV1 agonists with improved anti-inflammatory properties.
Collapse
Affiliation(s)
- Prama Pallavi
- Institute for Molecular and Cellular Biology , Mannheim University of Applied Sciences , Mannheim 68163 , Germany
| | | | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering in Bioinformatics , Universidad de Talca , Talca 3460000 , Chile
| | | | | | | | | | | | | | - Ralf Loesel
- Department of Applied Chemistry , Technical University of Applied Sciences , Nuremberg 90489 , Germany
| | - Steffen Roth
- Department of Applied Chemistry , Technical University of Applied Sciences , Nuremberg 90489 , Germany
| | | | | | | | | | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University Medical Centre Groningen , University of Groningen , Groningen 9713 , The Netherlands
| | | | - Mathias Hafner
- Institute for Molecular and Cellular Biology , Mannheim University of Applied Sciences , Mannheim 68163 , Germany
| | | | | |
Collapse
|
29
|
Khan MN, Lane ME, McCarron PA, Tambuwala MM. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology 2017; 26:561-569. [PMID: 28528363 PMCID: PMC5859149 DOI: 10.1007/s10787-017-0364-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
Background Inhibition of the nuclear factor kappa beta (NF-κβ) pathway has been proposed as a therapeutic target due to its key role in the expression of pro-inflammatory genes, including pro-inflammatory cytokines, chemokines, and adhesion molecules. Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, and has been reported as a specific inhibitor of NF-κβ. However, the impact of CAPE on levels of myeloperoxidases (MPO) and pro-inflammatory cytokines during inflammation is not clear. The aims of this study were to investigate the protective efficacy of CAPE in the mouse model of colitis and determine its effect on MPO activity, pro-inflammatory cytokines levels, and intestinal permeability. Method Dextran sulphate sodium was administered in drinking water to induce colitis in C57/BL6 mice before treatment with intraperitoneal administration of CAPE (30 mg kg−1 day−1). Disease activity index (DAI) score, colon length and tissue histology levels of MPO, pro-inflammatory cytokines, and intestinal permeability were observed. Results CAPE-treated mice had lower DAI and tissue inflammation scores, with improved epithelial barrier protection and significant reduction in the level of MPO and pro-inflammatory cytokines. Conclusion Our results show that CAPE is effective in suppressing inflammation-triggered MPO activity and pro-inflammatory cytokines production while enhancing epithelial barrier function in experimental colitis. Thus, we conclude that CAPE could be a potential therapeutic agent for further clinical investigations for treatment of inflammatory bowel diseases in humans. Electronic supplementary material The online version of this article (doi:10.1007/s10787-017-0364-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammed N Khan
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Majella E Lane
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Paul A McCarron
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
30
|
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PLoS One 2017; 12:e0177549. [PMID: 28542357 PMCID: PMC5436741 DOI: 10.1371/journal.pone.0177549] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers worldwide, and is influenced by the interplay of various factors, including a very strong genetic component. For instance, incorrect mitochondrial biogenesis is correlated with increased risk of developing colorectal cancer. Thus, it is important to understand the consequences of changes in both the expression and the correct function of the transcription factors that regulate mitochondrial biogenesis, namely NRF2. OBJECTIVES The main objective of this paper is to characterise the relationship between NRF2 and colorectal cancer by compiling data from an exhaustive literature search. METHODS Information was obtained by defining specific search terms and searching in several databases. After a strict selection procedure, data were tabulated and the relationships between articles were assessed by measuring heterogeneity and by constructing conceptual maps. RESULTS AND DISCUSSION We found a general consensus in the literature that the presence of oxidizing agents as well as the inhibition of the NRF2 repressor Keap1 maintain NRF2 expression at basal levels. This predominantly exerts a cytoprotective effect on cells and decreases risk of colorectal cancer. However, if NRF2 is inhibited, protection against external agents disappears and risk of colorectal cancer increases. Interestingly, colorectal cancer risk is also increased when NRF2 becomes overexpressed. In this case, the increased risk arises from NRF2-induced inflammation and resistance to chemotherapy. CONCLUSION The proper basal function of NRF2 and Keap1 are essential for preventing oncogenic processes in the colon. Consequently, any disruption to the expression of these genes can promote the genesis and progression of colon cancer.
Collapse
Affiliation(s)
- C. Gonzalez-Donquiles
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - J. Alonso-Molero
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - T. Fernandez-Villa
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - L. Vilorio-Marqués
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - A. J. Molina
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - V. Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| |
Collapse
|
31
|
Wu S, Zhang K, Qin H, Niu M, Zhao W, Ye M, Zou H, Yang Y. Caffeic acid phenethyl ester (CAPE) revisited: Covalent modulation of XPO1/CRM1 activities and implication for its mechanism of action. Chem Biol Drug Des 2017; 89:655-662. [PMID: 27863053 DOI: 10.1111/cbdd.12905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is the bioactive constituent of propolis from honeybee hives and is well known for its anti-inflammatory, anticarcinogenic, antioxidant, and immunomodulatory properties. Herein, we revisited the cellular mechanism underlying the diverse biological effects of CAPE. We demonstrated that XPO1/CRM1, a major nuclear export receptor, is a cellular target of CAPE. Through nuclear export functional assay, we observed a clear shift of XPO1 cargo proteins from a cytoplasmic localization to nucleus when treated with CAPE. In particular, we showed that CAPE could specifically target the non-catalytic and conserved Cys528 of XPO1 through the means of mass spectrometric analysis. In addition, we demonstrated that the mutation of Cys528 residue in XPO1 could rescue the nuclear export defects caused by CAPE. Furthermore, we performed position-restraint molecular dynamics simulation to show that the Michael acceptor moiety of CAPE is the warhead to enable covalent binding with Cys528 residue of XPO1. The covalent modulation of nuclear export by CAPE may explain its diverse biological effects. Our findings may have general implications for further investigation of CAPE and its structural analogs.
Collapse
Affiliation(s)
- Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Keren Zhang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Hongqiang Qin
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Mingshan Niu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Weijie Zhao
- School of Pharmacology, Dalian University of Technology, Dalian, China
| | - Mingliang Ye
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Hanfa Zou
- Dalian Institute of Chemical Physics, National Chromatographic R&A Center, Chinese Academy of Sciences, Dalian, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
32
|
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15:99. [PMID: 27903278 PMCID: PMC5131407 DOI: 10.1186/s12937-016-0217-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Plant derived phenolic compounds have been shown to inhibit the initiation and progression of cancers by modulating genes regulating key processes such as: (a) oncogenic transformation of normal cells; (b) growth and development of tumors; and (c) angiogenesis and metastasis. Recent studies focusing on identifying the molecular basis of plant phenolics-induced cancer cell death have demonstrated down-regulation of: (a) oncogenic survival kinases such as PI3K and Akt; (b) cell proliferation regulators that include Erk1/2, D-type Cyclins, and Cyclin Dependent Kinases (CDKs); (c) transcription factors such as NF-kβ, NRF2 and STATs; (d) histone deacetylases HDAC1 and HDAC2; and (e) angiogenic factors VEGF, FGFR1 and MIC-1. Furthermore, while inhibiting oncogenic proteins, the phenolic compounds elevate the expression of tumor suppressor proteins p53, PTEN, p21, and p27. In addition, plant phenolic compounds and the herbal extracts rich in phenolic compounds modulate the levels of reactive oxygen species (ROS) in cells thereby regulate cell proliferation, survival and apoptosis. Furthermore, recent studies have demonstrated that phenolic compounds undergo transformation in gut microbiota thereby acquire additional properties that promote their biological activities. In vitro observations, preclinical and epidemiological studies have shown the involvement of plant phenolic acids in retarding the cancer growth. However, to date, there is no clinical trial as such testing the role of plant phenolic compounds for inhibiting tumor growth in humans. More over, several variations in response to phenolic acid rich diets-mediated treatment among individuals have also been reported, raising concerns about whether phenolic acids could be used for treating cancers. Therefore, we have made an attempt to (a) address the key structural features of phenolic acids required for exhibiting potent anti-cancer activity; (b) review the reported findings about the mechanisms of action of phenolic compounds and their transformation by gut microbiota; and (c) update the toxicological aspects and anti-tumor properties of phenolic compounds and extracts containing phenolic compounds in animals.
Collapse
Affiliation(s)
- Preethi G Anantharaju
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | - Prathima C Gowda
- Department of Pharmacology, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | | | - SubbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India.
| |
Collapse
|
33
|
Wang Y, Wang Y, Li J, Hua L, Han B, Zhang Y, Yang X, Zeng Z, Bai H, Yin H, Lou J. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease. Int J Mol Med 2016; 38:869-75. [DOI: 10.3892/ijmm.2016.2683] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/24/2016] [Indexed: 11/05/2022] Open
|
34
|
Kim W, Nam J, Lee S, Jeong S, Jung Y. 5-Aminosalicylic Acid Azo-Linked to Procainamide Acts as an Anticolitic Mutual Prodrug via Additive Inhibition of Nuclear Factor kappaB. Mol Pharm 2016; 13:2126-35. [PMID: 27112518 DOI: 10.1021/acs.molpharmaceut.6b00294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To improve the anticolitic efficacy of 5-aminosalicylic acid (5-ASA), a colon-specific mutual prodrug of 5-ASA was designed. 5-ASA was coupled to procainamide (PA), a local anesthetic, via an azo bond to prepare 5-(4-{[2-(diethylamino)ethyl]carbamoyl}phenylazo)salicylic acid (5-ASA-azo-PA). 5-ASA-azo-PA was cleaved to 5-ASA and PA up to about 76% at 10 h in the cecal contents while remaining stable in the small intestinal contents. Oral gavage of 5-ASA-azo-PA and sulfasalazine, a colon-specific prodrug currently used in clinic, to rats showed similar efficiency in delivery of 5-ASA to the large intestine, and PA was not detectable in the blood after 5-ASA-azo-PA administration. Oral gavage of 5-ASA-azo-PA alleviated 2,4,6-trinitrobenzenesulfonic acid-induced rat colitis. Moreover, combined intracolonic treatment with 5-ASA and PA elicited an additive ameliorative effect. Furthermore, combined treatment with 5-ASA and PA additively inhibited nuclear factor-kappaB (NFκB) activity in human colon carcinoma cells and inflamed colonic tissues. Finally, 5-ASA-azo-PA administered orally was able to reduce inflammatory mediators, NFκB target gene products, in the inflamed colon. 5-ASA-azo-PA may be a colon-specific mutual prodrug acting against colitis, and the mutual anticolitic effects occurred at least partly through the cooperative inhibition of NFκB activity.
Collapse
Affiliation(s)
- Wooseong Kim
- College of Pharmacy, Pusan National University , Busan 609-735, Republic of Korea
| | - Joon Nam
- College of Pharmacy, Pusan National University , Busan 609-735, Republic of Korea
| | - Sunyoung Lee
- College of Pharmacy, Pusan National University , Busan 609-735, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University , Busan 609-735, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University , Busan 609-735, Republic of Korea
| |
Collapse
|
35
|
Bak J, Kim HJ, Kim SY, Choi YS. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:279-86. [PMID: 27162482 PMCID: PMC4860370 DOI: 10.4196/kjpp.2016.20.3.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD.
Collapse
Affiliation(s)
- Jia Bak
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yun-Sik Choi
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| |
Collapse
|
36
|
Nabavi SF, Barber AJ, Spagnuolo C, Russo GL, Daglia M, Nabavi SM, Sobarzo-Sánchez E. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Crit Rev Clin Lab Sci 2016; 53:293-312. [PMID: 26926494 DOI: 10.3109/10408363.2015.1129530] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Alistair J Barber
- b Department of Ophthalmology , Penn State Hershey Eye Center, Penn State Hershey College of Medicine , Hershey , PA , USA
| | - Carmela Spagnuolo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Maria Daglia
- d Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Pavia , Italy , and
| | - Seyed Mohammad Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eduardo Sobarzo-Sánchez
- e Laboratory of Pharmaceutical Chemistry , Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago De Compostela , Santiago De Compostela , Spain
| |
Collapse
|
37
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
38
|
Lin D, Dai F, Sun LD, Zhou B. Toward an understanding of the role of a catechol moiety in cancer chemoprevention: The case of copper- and o-quinone-dependent Nrf2 activation by a catechol-type resveratrol analog. Mol Nutr Food Res 2015; 59:2395-406. [PMID: 26314862 DOI: 10.1002/mnfr.201500297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
SCOPE Catechol moieties are commonly present in dietary natural products that exert cancer chemopreventive activity. While the oxidative conversion of catechols into their corresponding o-quinones is generally considered to contribute to their cancer chemopreventive effects, the mechanism of the intracellular conversion has not been fully elucidated. METHODS AND RESULTS Among resveratrol and its hydroxylated analogs examined, only 3,4-dihydroxy-trans-stilbene exerted cytoprotective effects against t-butylhydroperoxide-induced death of HepG2 cells. This resveratrol analog activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway through stimulating phosphorylation of Akt and inducing keap1 modification, thereby resulting in its nuclear translocation and subsequent transcriptional induction of phase II detoxifying enzymes. Its cytoprotective effect through Nrf2 activation was largely abrogated by pretreatment of cells with DTT, a sulfhydryl-containing nucleophile, and neocuproine, a specific chelating agent for copper ions. CONCLUSION We identified 3,4-dihydroxy-trans-stilbene as a novel Nrf2 activator that is converted intracellularly into its corresponding o-quinone electrophile by copper ions. The copper-mediated oxidation was required for the Nrf2 activation, subsequent transcriptional induction of phase II detoxifying enzymes and ultimately for cytoprotection. The findings demonstrate a previously underrecognized role for intracellular copper ions in the cancer chemopreventive effects of catechol-containing dietary natural products.
Collapse
Affiliation(s)
- Dong Lin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Lan-Di Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
39
|
Yum S, Jeong S, Lee S, Nam J, Kim W, Yoo JW, Kim MS, Lee BL, Jung Y. Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4247-58. [PMID: 26273188 PMCID: PMC4532174 DOI: 10.2147/dddt.s88670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Piceatannol (PCT), an anti-colitic natural product, undergoes extensive Phase II hepatic metabolism, resulting in very low bioavailability. We investigated whether colon-targeted delivery of PCT could enhance anti-colitic effects and how therapeutic enhancement occurred at the molecular level. Molecular effects of PCT were examined in human colon carcinoma cells and inflamed colons. The anti-colitic effects of PCT in a colon-targeted capsule (colon-targeted PCT) were compared with PCT in a gelatin capsule (conventional PCT) in a trinitrobenzene sulfonic acid-induced rat colitis model. Colon-targeted PCT elicited greatly enhanced recovery of the colonic inflammation. In HCT116 cells, PCT inhibited nuclear factor kappaB while activating anti-colitic transcription factors, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2, and hypoxia-inducible factor-1. Colon-targeted PCT, but not conventional PCT, modulated production of the target gene products of the transcription factors in the inflamed colonic tissues. Rectal administration of PCT, which simulates the therapeutic action of colon-targeted PCT, also ameliorated rat colitis and reproduced the molecular effects in the inflamed colonic tissues. Colon-targeted delivery increased therapeutic efficacy of PCT against colitis, likely resulting from multitargeted effects exerted by colon-targeted PCT. The drug delivery technique may be useful for therapeutic optimization of anti-colitic lead compounds including natural products.
Collapse
Affiliation(s)
- Soohwan Yum
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Joon Nam
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Bok Luel Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
40
|
Xu LL, Zhu JF, Xu XL, Zhu J, Li L, Xi MY, Jiang ZY, Zhang MY, Liu F, Lu MC, Bao QC, Li Q, Zhang C, Wei JL, Zhang XJ, Zhang LS, You QD, Sun HP. Discovery and Modification of in Vivo Active Nrf2 Activators with 1,2,4-Oxadiazole Core: Hits Identification and Structure–Activity Relationship Study. J Med Chem 2015; 58:5419-36. [DOI: 10.1021/acs.jmedchem.5b00170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li-Li Xu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun-Feng Zhu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Yang Xi
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Ye Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Liu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-chen Lu
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Chao Bao
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Lian Wei
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jin Zhang
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Shan Zhang
- National Engineering and Research Center for Target Drugs, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222000, China
| | - Qi-Dong You
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- National Engineering and Research Center for Target Drugs, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222000, China
| | - Hao-Peng Sun
- Jiangsu
Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
41
|
Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach. PLoS One 2015; 10:e0129963. [PMID: 26098639 PMCID: PMC4476807 DOI: 10.1371/journal.pone.0129963] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects observed in vivo.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Ângelo Q. Maurício
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Daniel Rettori
- Laboratório de Química e Bioquímica de Espécies Altamente Reativas, Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo–UNIFESP, São Paulo, SP, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
42
|
Richter M, Winkel AF, Schummer D, Gerlitz M, de Hoop M, Brunner B, Glien M, Schmoll D. Pau d'arco activates Nrf2-dependent gene expression via the MEK/ERK-pathway. J Toxicol Sci 2014; 39:353-61. [PMID: 24646717 DOI: 10.2131/jts.39.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pau d'arco is a plant-derived traditional medicine that acts by poorly understood molecular mechanisms. Here, we studied the effect of pau d'arco on the cytoprotective transcription factor Nrf2. An aqueous extract of pau d'arco stimulated Nrf2-dependent gene expression and led to nuclear localization of Nrf2 in vitro. Chromatographic separation and mass spectrometry of the extract identified benzene trioles or benzene tetraoles within the active fractions. The extract stimulated the mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase (MEK)/extracellular-signal-regulated kinase (ERK1/2) pathway. The pharmacological inhibition of MEK, but not of p38 mitogen-activated protein kinase, glycogen synthase kinase-3 or phosphoinositide 3-kinase was required for the activation of Nrf2-dependent gene expression by pau d'arco, but not for the nuclear translocation of Nrf2. In vivo pau d'arco increased the expression of Nrf2-target genes in the intestine. The results suggest that the activation of Nrf2 could mediate beneficial effects of pau d'arco, in particular in the intestine.
Collapse
|
43
|
Kim JK, Jang HD. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int J Mol Sci 2014; 15:12149-65. [PMID: 25007817 PMCID: PMC4139835 DOI: 10.3390/ijms150712149] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Korea.
| | - Hae-Dong Jang
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Korea.
| |
Collapse
|
44
|
Kokoszko-Bilska A, Stepniak J, Lewinski A, Karbownik-Lewinska M. Protective antioxidative effects of caffeic acid phenethyl ester (CAPE) in the thyroid and the liver are similar to those caused by melatonin. Thyroid Res 2014; 7:5. [PMID: 25009581 PMCID: PMC4090180 DOI: 10.1186/1756-6614-7-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/19/2014] [Indexed: 11/12/2022] Open
Abstract
Background Whereas oxidative reactions occur in all tissues and organs, the thyroid constitutes such an organ, in which oxidative processes are indispensable for physiological functions. In turn, numerous metabolic reactions occurring in the liver create favourable conditions for huge oxidative stress. Melatonin is a well-known antioxidant with protective effects against oxidative damage perfectly documented in many tissues, the thyroid and the liver included. Caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, has been suggested to be also an effective antioxidant. The aim of the study was to evaluate the effects of CAPE on Fenton reaction-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in porcine thyroid and liver, and to compare the results with protective effects of melatonin. Methods Thyroid and liver homogenates were incubated in the presence of CAPE (500; 100; 50; 10; 5.0; 1.0 μM) or melatonin (500; 100; 50; 10; 5.0; 1.0 μM), without or with addition of FeSO4 (30 μM) + H2O2 (0.5 mM). The level of lipid peroxidation was measured spectrophotometrically and expressed as the amount of MDA + 4-HDA (nmol) per mg of protein. Results Whereas CAPE decreased the basal LPO in a concentration-dependent manner in both tissues, melatonin did not change the basal LPO level. When antioxidants were used together with Fenton reaction substrates, they prevented – in a concentration-dependent manner and to a similar extent – experimentally-induced LPO in both tissues. Conclusions Protective antioxidative effects of CAPE in the thyroid and the liver are similar to those caused by melatonin. CAPE constitutes a promising agent in terms of its application in experimental and, possibly, clinical studies.
Collapse
Affiliation(s)
- Agnieszka Kokoszko-Bilska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St, Lodz 90-752, Poland ; Polish Mother's Memorial Hospital - Research Institute, 281/289, Rzgowska St, Lodz 93-338, Poland
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St, Lodz 90-752, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St, Lodz 93-338, Poland ; Polish Mother's Memorial Hospital - Research Institute, 281/289, Rzgowska St, Lodz 93-338, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St, Lodz 90-752, Poland ; Polish Mother's Memorial Hospital - Research Institute, 281/289, Rzgowska St, Lodz 93-338, Poland
| |
Collapse
|
45
|
Park MH, Kang DW, Jung Y, Choi KY, Min DS. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation. Biochem Biophys Res Commun 2013; 442:1-7. [PMID: 24103753 DOI: 10.1016/j.bbrc.2013.09.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.
Collapse
Affiliation(s)
- Mi Hee Park
- Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|