1
|
Kansal H, Chopra V, Garg K, Sharma S. Genetic variations in the antioxidant genes and their role in modulating susceptibility towards chronic obstructive pulmonary disease in the North Indian population. Free Radic Biol Med 2024; 223:118-130. [PMID: 39094709 DOI: 10.1016/j.freeradbiomed.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a persistent inflammatory lung condition characterized by an obstruction in removing oxygen from the lungs. Oxidant and antioxidant imbalance have long been hallmarks of COPD development, where the amount of antioxidants produced is less than that of oxidants. Here, polymorphism in the antioxidant enzymes like Catalase, Superoxide dismutase and Glutathione peroxidase plays an essential role in regulating the levels of oxidants. METHODS 1000 subjects, including 500 COPD cases and 500 controls, have been recruited and genotyped to assess the correlation between COPD and the particular SNPS of antioxidant genes. Logistic regression was used to compute odds ratios (ORs) and 95 % confidence intervals (CIs) to assess the association between SNPs and COPD risk. The relationship between spirometry value and COPD for all SNPs has been analyzed using Kruskal Wallis's. Haplotype analysis has also been performed. The effect of SNP interactions on COPD risk was assessed through the Multifactor Dimensionality Reduction (MDR) approach, a nonparametric test for overcoming some of the limitations of the logistic regression for detecting and characterizing SNP interactions. RESULTS Our findings indicated a strong association between COPD and the variations in the CAT rs7943316 (OR = 0.61, Pc = 0.0001), SOD2 rs4880 (OR = 2.07, Pc = 0.0006), and GPx rs1050450 (OR = 0.60, Pc = 0.0018). Furthermore, SOD2 rs4880 was associated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) of COPD patients. Our study found that the triple combination of SOD1 (rs2234694), SOD1 (rs36232792) and SOD2 (rs4880) was found to be elevating the risk of COPD (OR = 2.83, Pc = 0.006). SOD2 rs4880 and GPx rs1050450 are also linked to cough and mucus production. The Haplotype study reveals a substantial relationship between CAT (rs7943316 and rs1001179) and SOD (rs2234694 and rs4880), which increases the risk of COPD. The three-locus model (CAT rs794331, CAT rs1101179, and GPx rs1050450) was the most effective for COPD risk assessment based on the MDR findings, which were statistically significant (p < 0.0001). CONCLUSION This study shows that rs7943316, rs4880, and rs1050450 are associated with the risk of COPD in the north Indian population and have the potential to enhance our knowledge of COPD at the molecular level, which in turn might pave the way for earlier detection, treatment, and preventive efforts.
Collapse
Affiliation(s)
- Heena Kansal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Vishal Chopra
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India.
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Liu Y, Lu L, Yang H, Wu X, Luo X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li Q, Li X, Li W, Wang F, Sun Y, Gu L, Chen M, Li M. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122730. [PMID: 37838314 DOI: 10.1016/j.envpol.2023.122730] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.
Collapse
Affiliation(s)
- Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyue Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients 2023; 15:nu15061454. [PMID: 36986182 PMCID: PMC10053245 DOI: 10.3390/nu15061454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We hypothesized that a rise in the levels of oxidative/nitrosative stress markers and a decline in antioxidants might take place in systemic and muscle compartments of chronic obstructive pulmonary disease (COPD) patients with non-anemic iron deficiency. In COPD patients with/without iron depletion (n = 20/group), markers of oxidative/nitrosative stress and antioxidants were determined in blood and vastus lateralis (biopsies, muscle fiber phenotype). Iron metabolism, exercise, and limb muscle strength were assessed in all patients. In iron-deficient COPD compared to non-iron deficient patients, oxidative (lipofuscin) and nitrosative stress levels were greater in muscle and blood compartments and proportions of fast-twitch fibers, whereas levels of mitochondrial superoxide dismutase (SOD) and Trolox equivalent antioxidant capacity (TEAC) decreased. In severe COPD, nitrosative stress and reduced antioxidant capacity were demonstrated in vastus lateralis and systemic compartments of iron-deficient patients. The slow- to fast-twitch muscle fiber switch towards a less resistant phenotype was significantly more prominent in muscles of these patients. Iron deficiency is associated with a specific pattern of nitrosative and oxidative stress and reduced antioxidant capacity in severe COPD irrespective of quadriceps muscle function. In clinical settings, parameters of iron metabolism and content should be routinely quantify given its implications in redox balance and exercise tolerance.
Collapse
|
6
|
Valero-Breton M, Valladares-Ide D, Álvarez C, Peñailillo RS, Peñailillo L. Changes in Blood Markers of Oxidative Stress, Inflammation and Cardiometabolic Patients with COPD after Eccentric and Concentric Cycling Training. Nutrients 2023; 15:nu15040908. [PMID: 36839267 PMCID: PMC9966444 DOI: 10.3390/nu15040908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients manifest muscle dysfunction and impaired muscle oxidative capacity, which result in reduced exercise capacity and poor health status. This study examined the effects of 12-week eccentric (ECC) and concentric (CONC) cycling training on plasma markers of cardiometabolic health, oxidative stress, and inflammation in COPD patients. A randomized trial in which moderate COPD was allocated to ECC (n = 10; 68.2 ± 10.0 year) or CONC (n = 10; 71.1 ± 10.3 year) training groups. Participants performed 12-week ECC or CONC training, 2-3 sessions per week, 10 to 30 min per session. Before and after training, peak oxygen consumption, maximal power output (VO2peak and POmax), and time-to-exhaustion (TTE) tests were performed. Plasma antioxidant and oxidative markers, insulin resistance, lipid profile, and systemic inflammation markers were measured before and after training at rest. VO2peak, POmax and TTE remained unchanged after ECC and CONC. CONC induced an increase in antioxidants (p = 0.01), while ECC decreased antioxidant (p = 0.02) markers measured at rest. CONC induced lesser increase in oxidative stress following TTE (p = 0.04), and a decrease in insulin resistance (p = 0.0006) compared to baseline. These results suggest that CONC training induced an increase in insulin sensitivity, antioxidant capacity at rest, and lesser exercise-induced oxidative stress in patients with moderate COPD.
Collapse
Affiliation(s)
- Mayalen Valero-Breton
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7550196, Chile
| | - Denisse Valladares-Ide
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Cristian Álvarez
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7550196, Chile
| | - Reyna S. Peñailillo
- Laboratory of Reproductive Biology, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7550196, Chile
- Correspondence:
| |
Collapse
|
7
|
Dharshini LCP, Rasmi RR, Kathirvelan C, Kumar KM, Saradhadevi KM, Sakthivel KM. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 2022; 195:2893-2916. [PMID: 36441404 DOI: 10.1007/s12010-022-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).
Collapse
Affiliation(s)
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Chinnadurai Kathirvelan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Kalavathi Murugan Kumar
- School of Lifescience, Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - K M Saradhadevi
- Department of Biochemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
8
|
Sevilla-Montero J, Munar-Rubert O, Pino-Fadón J, Aguilar-Latorre C, Villegas-Esguevillas M, Climent B, Agrò M, Choya-Foces C, Martínez-Ruiz A, Balsa E, Muñoz-Calleja C, Gómez-Punter RM, Vázquez-Espinosa E, Cogolludo A, Calzada MJ. Cigarette smoke induces pulmonary arterial dysfunction through an imbalance in the redox status of the soluble guanylyl cyclase. Free Radic Biol Med 2022; 193:9-22. [PMID: 36174878 DOI: 10.1016/j.freeradbiomed.2022.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), whose main risk factor is cigarette smoking (CS), is one of the most common diseases globally. Some COPD patients also develop pulmonary hypertension (PH), a severe complication that leads to premature death. Evidence suggests reactive oxygen species (ROS) involvement in COPD and PH, especially regarding pulmonary artery smooth muscle cells (PASMC) dysfunction. However, the effects of CS-driven oxidative stress on the pulmonary vasculature are not completely understood. Herein we provide evidence on the effects of CS extract (CSE) exposure on PASMC regarding ROS production, antioxidant response and its consequences on vascular tone dysregulation. Our results indicate that CSE exposure promotes mitochondrial fission, mitochondrial membrane depolarization and increased mitochondrial superoxide levels. However, this superoxide increase did not parallel a counterbalancing antioxidant response in human pulmonary artery (PA) cells. Interestingly, the mitochondrial superoxide scavenger mitoTEMPO reduced mitochondrial fission and membrane potential depolarization caused by CSE. As we have previously shown, CSE reduces PA vasoconstriction and vasodilation. In this respect, mitoTEMPO prevented the impaired nitric oxide-mediated vasodilation, while vasoconstriction remained reduced. Finally, we observed a CSE-driven downregulation of the Cyb5R3 enzyme, which prevents soluble guanylyl cyclase oxidation in PASMC. This might explain the CSE-mediated decrease in PA vasodilation. These results provide evidence that there might be a connection between mitochondrial ROS and altered vasodilation responses in PH secondary to COPD, and strongly support the potential of antioxidant strategies specifically targeting mitochondria as a new therapy for these diseases.
Collapse
Affiliation(s)
- J Sevilla-Montero
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - O Munar-Rubert
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - J Pino-Fadón
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - C Aguilar-Latorre
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - M Villegas-Esguevillas
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - B Climent
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - M Agrò
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - C Choya-Foces
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - A Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - E Balsa
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - C Muñoz-Calleja
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - R M Gómez-Punter
- Servicio de Neumología, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - E Vázquez-Espinosa
- Servicio de Neumología, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - A Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - M J Calzada
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Ma L, Sun D, Xiu G, Lazarus P, Vachani A, Penning TM, Whitehead AS, Muscat JE. Quantification of Plasma 8-Isoprostane by High-Performance Liquid Chromatography with Tandem Mass Spectrometry in a Case-Control Study of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12488. [PMID: 36231826 PMCID: PMC9566031 DOI: 10.3390/ijerph191912488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
AIM 8-iso-prostaglandin F2α is a biomarker of lipid peroxidation, and one of the most commonly used measures of oxidative stress. It is an established biomarker of lung cancer risk. It is commonly measured by enzyme-linked immunosorbent assay. Given its importance, we developed a stable isotope dilution UPLC-tandem mass spectrometric method for the rapid determination of 8-isoprostane in blood. METHODS We tested the discriminatory capability of the method in 49 lung cancer patients, 55 benign lung nodule patients detected by chest X-ray, and 41 patients with chronic obstructive pulmonary disease (COPD) or asthma. RESULTS Significant differences were found in mean 8-isoprostane levels between the three groups (p = 0.027), and post-hoc tests found higher levels in the lung cancer patients than in patients with benign nodules (p = 0.032) and COPD/asthma (p = 0.014). The receiving operating characteristic area under the curve (AUC) was 0.69 for differentiating the lung cancer group from the benign nodule group, and 0.7 for differentiating from the COPD/asthma group. CONCLUSIONS The UPLC-MS/MS-based method is an efficient analytical tool for measuring 8-isoprostane plasma concentrations. The results suggest exploring its utility as a marker for early lung cancer screening.
Collapse
Affiliation(s)
- Lin Ma
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facility, The Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Anil Vachani
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander S. Whitehead
- Department of Pharmacology, Center for Pharmacogenetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua E. Muscat
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Lee YJ, Lin YC, Liao CC, Chang YS, Huang YH, Tsai IJ, Chen JH, Lin SH, Lin YF, Hsieh TW, Chen YS, Wu CY, Chang CC, Lin CY. Using anti-malondialdehyde-modified peptide adduct autoantibodies in serum of taiwanese women to diagnose primary Sjogren's syndrome. Clin Biochem 2022; 108:27-41. [PMID: 35843269 DOI: 10.1016/j.clinbiochem.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sjogren's syndrome (SS) is a systemic autoimmune disease featured with a dry mouth and dry eyes. Several autoantibodies, including anti-SSA, anti-SSB, antinuclear antibodies can be detected in patients with SS. Oxidation-specific epitopes (OSEs) can be formed from malondialdehyde (MDA)-modified protein adducts and trigger chronic inflammation. In this study, our purposes were used serum levels of anti-MDA-modified peptide adducts autoantibodies to evaluate predictive performance by machine learning algorithms in primary Sjögren's syndrome (pSS) and assess the association between pSS and healthy controls. METHODS Three novel MDA-modified peptide adducts, including immunoglobulin (Ig) gamma heavy chain 1 (IGHG1)102-131, complement factor H (CFAH)1045-1062, and Ig heavy constant alpha 1 (IGHA1)307-327 were identified and validated. Serum levels of protein, MDA-modified protein adducts, MDA, and autoantibodies recognizing unmodified peptides and MDA-modified peptide adducts were measured. Statistically significance in correlations and odds ratios (ORs) were estimated. RESULTS The random forest classifier utilized autoantibodies combination composed of IgM anti-IGHG1102-131, IgM anti-IGHG1102-131 MDA and IgM anti-IGHA1307-327 achieved predictive performance as an accuracy of 88.0%, a sensitivity of 93.7%, and a specificity of 84.4% which may be as potential diagnostic biomarkers to differentiate patients with pSS from rheumatoid arthritis (RA), and secondary SS in RA and HCs. CONCLUSIONS Our findings imply that low levels of IgA anti-IGHG1102-131 MDA (OR = 2.646), IgA anti-IGHG1102-131 (OR = 2.408), IgA anti-CFAH1045-1062 (OR = 2.571), and IgA anti-IGHA1307-327 (OR = 2.905) may denote developing risks of pSS, respectively.
Collapse
Affiliation(s)
- Yuarn-Jang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hui Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan; Statistics Center, Office of Data Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Hong Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ting-Wan Hsieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Su Chen
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chi-Ching Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
11
|
Nucera F, Mumby S, Paudel KR, Dharwal V, DI Stefano A, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med 2022; 113:370-404. [PMID: 35142479 DOI: 10.23736/s0026-4806.22.07972-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inhalation of cigarette smoke is a prominent cause of chronic obstructive pulmonary disease (COPD) and provides an important source of exogenous oxidants. In addition, several inflammatory and structural cells are a source of endogenous oxidants in the lower airways of COPD patients, even in former smokers. This suggests that oxidants play a key role in the pathogenesis of COPD. This oxidative stress is counterbalanced by the protective effects of the various endogenous antioxidant defenses of the lower airways. A large amount of data from animal models and patients with COPD have shown that both the stable phase of the disease, and during exacerbations, have increased oxidative stress in the lower airways compared with age-matched smokers with normal lung function. Thus, counteracting the increased oxidative stress may produce clinical benefits in COPD patients. Smoking cessation is currently the most effective treatment of COPD patients and reduces oxidative stress in the lower airways. In addition, many drugs used to treat COPD have some antioxidant effects, however, it is still unclear if their clinical efficacy is related to pharmacological modulation of the oxidant/antioxidant balance. Several new antioxidant compounds are in development for the treatment of COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy -
| | - Sharon Mumby
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Novara, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ian M Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
12
|
Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J Clin Med 2021; 10:jcm10194534. [PMID: 34640555 PMCID: PMC8509750 DOI: 10.3390/jcm10194534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that in mild bronchiectasis patients, increased systemic inflammation and redox imbalance may take place and correlate with clinical parameters. In plasma samples from patients with very mild bronchiectasis, inflammatory cells and molecules and redox balance parameters were analyzed. In the patients, lung function and exercise capacity, nutritional status, bacterial colonization, and radiological extension were assessed. Correlations between biological and clinical variables were determined. Compared to healthy controls, levels of acute phase reactants, neutrophils, IgG, IgA, myeloperoxidase, protein oxidation, and GSH increased and lung function and exercise capacity were mildly reduced. GSH levels were even greater in ex-smoker and Pseudomona-colonized patients. Furthermore, radiological extension inversely correlated with airway obstruction and, disease severity, and positively correlated with neutrophil numbers in mild bronchiectasis patients with no nutritional abnormalities. In stable patients with mild bronchiectasis, several important inflammatory and oxidative stress events take place in plasma. These findings suggest that the extension of bronchiectasis probably plays a role in the development of redox imbalance and systemic inflammation in patients with mild bronchiectasis. These results have therapeutic implications in the management of bronchiectasis patients.
Collapse
|
13
|
Qin L, Guitart M, Curull V, Sánchez-Font A, Duran X, Tang J, Admetlló M, Barreiro E. Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines 2021; 9:biomedicines9101347. [PMID: 34680465 PMCID: PMC8533450 DOI: 10.3390/biomedicines9101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer (LC) risk increases in patients with chronic respiratory diseases (COPD). MicroRNAs and redox imbalance are involved in lung tumorigenesis in COPD patients. Whether systemic alterations of those events may also take place in LC patients remains unknown. Our objectives were to assess the plasma levels of microRNAs, redox balance, and cytokines in LC patients with/without COPD. MicroRNAs (RT-PCR) involved in LC, oxidized DNA, MDA-protein adducts, GSH, TEAC, VEGF, and TGF-beta (ELISA) were quantified in plasma samples from non-LC controls (n = 45), LC-only patients (n = 32), and LC-COPD patients (n = 91). In LC-COPD patients compared to controls and LC-only, MDA-protein adduct levels increased, while those of GSH decreased, and two patterns of plasma microRNA were detected. In both LC patient groups, miR-451 expression was downregulated, while those of microRNA-let7c were upregulated, and levels of TEAC and TGF-beta increased compared to the controls. Correlations were found between clinical and biological variables. A differential expression profile of microRNAs was detected in patients with LC. Moreover, in LC patients with COPD, plasma oxidative stress levels increased, whereas those of GSH declined. Systemic oxidative and antioxidant markers are differentially expressed in LC patients with respiratory diseases, thus implying its contribution to the pathogenesis of tumorigenesis in these patients.
Collapse
Affiliation(s)
- Liyun Qin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
14
|
Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101537. [PMID: 34679673 PMCID: PMC8533053 DOI: 10.3390/antiox10101537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Academic Field of Health Sciences, Okayama 700-8558, Japan;
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
- Correspondence:
| |
Collapse
|
15
|
Pérez-Peiró M, Martín-Ontiyuelo C, Rodó-Pi A, Piccari L, Admetlló M, Durán X, Rodríguez-Chiaradía DA, Barreiro E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021; 9:1191. [PMID: 34572377 PMCID: PMC8470868 DOI: 10.3390/biomedicines9091191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
In COPD patients, non-anemic iron deficiency (NAID) is a common systemic manifestation. We hypothesized that in COPD patients with NAID, iron therapy may improve systemic oxidative stress. The FACE (Ferinject assessment in patients with COPD and iron deficiency to improve exercise tolerance) study was a single-blind, unicentric, parallel-group, placebo-controlled clinical trial (trial registry: 2016-001238-89). Sixty-six patients were enrolled (randomization 2:1): iron arm, n = 44 and placebo arm, n = 22, with similar clinical characteristics. Serum levels of 3-nitrotyrosine, MDA-protein adducts, and reactive carbonyls, catalase, superoxide dismutase (SOD), glutathione, Trolox equivalent antioxidant capacity (TEAC), and iron metabolism biomarkers were quantified in both groups. In the iron-treated patients compared to placebo, MDA-protein adducts and 3-nitrotyrosine serum levels significantly declined, while those of GSH increased and iron metabolism parameters significantly improved. Hepcidin was associated with iron status parameters. This randomized clinical trial evidenced that iron replacement elicited a decline in serum oxidative stress markers along with an improvement in GSH levels in patients with stable severe COPD. Hepcidin may be a surrogate biomarker of iron status and metabolism in patients with chronic respiratory diseases. These findings have potential clinical implications in the management of patients with severe COPD.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Clara Martín-Ontiyuelo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Anna Rodó-Pi
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Lucilla Piccari
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Diego A. Rodríguez-Chiaradía
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
16
|
Xiong R, Wu Y, Wu Q, Muskhelishvili L, Davis K, Tripathi P, Chen Y, Chen T, Bryant M, Rosenfeldt H, Healy SM, Cao X. Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol 2021; 95:1739-1761. [PMID: 33660061 PMCID: PMC8113308 DOI: 10.1007/s00204-021-03008-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Exposure to cigarette smoke (CS) is a known risk factor in the pathogenesis of smoking-caused diseases, such as chronic obstructive pulmonary diseases (COPD) and lung cancer. To assess the effects of CS on the function and phenotype of airway epithelial cells, we developed a novel repeated treatment protocol and comprehensively evaluated the progression of key molecular, functional, and structural abnormalities induced by CS in a human in vitro air-liquid-interface (ALI) airway tissue model. Cultures were exposed to CS (diluted with 0.5 L/min, 1.0 L/min, and 4.0 L/min clean air) generated from smoking five 3R4F University of Kentucky reference cigarettes under the International Organization for Standardization (ISO) machine smoking regimen, every other day for 4 weeks (3 days per week, 40 min/day). By integrating the transcriptomics-based approach with the in vitro pathophysiological measurements, we demonstrated CS-mediated effects on oxidative stress, pro-inflammatory cytokines and matrix metalloproteinases (MMPs), ciliary function, expression and secretion of mucins, and squamous cell differentiation that are highly consistent with abnormalities observed in airways of smokers. Enrichment analysis on the transcriptomic profiles of the ALI cultures revealed key molecular pathways, such as xenobiotic metabolism, oxidative stress, and inflammatory responses that were perturbed in response to CS exposure. These responses, in turn, may trigger aberrant tissue remodeling, eventually leading to the onset of respiratory diseases. Furthermore, changes of a panel of genes known to be disturbed in smokers with COPD were successfully reproduced in the ALI cultures exposed to CS. In summary, findings from this study suggest that such an integrative approach may be a useful tool for identifying genes and adverse cellular events caused by inhaled toxicants, like CS.
Collapse
Affiliation(s)
- Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yue Wu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR, 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Sheila M Healy
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
17
|
Zi Shen Decoction Inhibits Growth and Metastasis of Lung Cancer via Regulating the AKT/GSK-3 β/ β-Catenin Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685282. [PMID: 33777320 PMCID: PMC7969097 DOI: 10.1155/2021/6685282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become the leading cause of cancer-related death worldwide. Oxidative stress plays important roles in the pathogenesis of lung cancer. Many natural products show antioxidative activities in cancer treatment. Zi Shen decoction (ZSD) is a classic prescription for the treatment of lung disease. However, its effect on lung cancer lacks evidence-based efficacy. In this study, we investigated the anticancer effects of ZSD on lung cancer in vivo and in vitro. Our results showed that oral administration of ZSD suppressed the Lewis lung cancer (LLC) growth in a subcutaneous allograft model and promoted necrosis and inflammatory cell infiltration in the tumor tissues. Furthermore, ZSD not only inhibited tumor cell proliferation and migration but also induced cell apoptosis in lung cancer cells. PI3K/AKT signaling is well characterized in response to oxidative stress. The bioinformatics analysis and western blot assays suggested that ZSD decreased the enzyme activity of PI3K and AKT in vivo and in vitro. We also found that the AKT/GSK-3β/β-catenin pathway medicated anticancer effect of ZSD in lung cancer cells. In conclusion, we demonstrate for the first time that ZSD possesses antitumor properties, highlighting its potential use as an alternative strategy or adjuvant treatment for lung cancer therapy.
Collapse
|
18
|
Saad MI, McLeod L, Hodges C, Vlahos R, Rose-John S, Ruwanpura S, Jenkins BJ. ADAM17 Deficiency Protects against Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021; 64:183-195. [PMID: 33181031 DOI: 10.1165/rcmb.2020-0214oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary emphysema is the major debilitating component of chronic obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality worldwide. The ADAM17 (A disintegrin and metalloproteinase 17) protease mediates inflammation via ectodomain shedding of numerous proinflammatory cytokines, cytokine receptors, and adhesion molecules; however, its role in the pathogenesis of emphysema and COPD is poorly understood. This study aims to define the role of the protease ADAM17 in the pathogenesis of pulmonary emphysema. ADAM17 protein expression and activation was investigated in lung biopsies from patients with emphysema, as well as lungs of the emphysematous gp130F/F mouse model and an acute (4 d) cigarette smoke (CS)-induced lung pathology model. The Adam17ex/ex mice, which display significantly reduced global ADAM17 expression, were coupled with emphysema-prone gp130F/F mice to produce gp130F/F:Adam17ex/ex. Both Adam17ex/ex and wild-type mice were subjected to acute CS exposure. Histological, immunohistochemical, immunofluorescence, and molecular analyses as well as lung function tests were performed to assess pulmonary emphysema, inflammation, and alveolar cell apoptosis. ADAM17 was hyperphosphorylated in the lungs of patients with emphysema and also in emphysematous gp130F/F and CS-exposed mice. ADAM17 deficiency ameliorated the development of pulmonary emphysema in gp130F/F mice by suppressing elevated alveolar cell apoptosis. In addition, genetic blockade of ADAM17 protected mice from CS-induced pulmonary inflammation and alveolar cell apoptosis. Our study places the protease ADAM17 as a central molecular switch implicated in the development of pulmonary emphysema, which paves the way for using ADAM17 inhibitors as potential therapeutic agents to treat COPD and emphysema.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Saleela Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Bel’skaya LV, Sarf EA, Solomatin DV, Kosenok VK. Salivary Metabolic Profile of Patients with Lung Cancer, Chronic Obstructive Pulmonary Disease of Varying Severity and Their Comorbidity: A Preliminary Study. Diagnostics (Basel) 2020; 10:diagnostics10121095. [PMID: 33333922 PMCID: PMC7765349 DOI: 10.3390/diagnostics10121095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the work was to study the features of the salivary biochemical composition in the combined pathology of lung cancer and chronic obstructive pulmonary disease (COPD) of varying severity (COPD I, COPD II). The study group included patients with lung cancer (n = 392), non-malignant lung pathologies (n = 168) and healthy volunteers (n = 500). Before treatment, the salivary biochemical composition was determined according to 34 indicators. Survival analysis performed by the Kaplan-Meier method. Biochemical parameters (catalase, imidazole compounds ICs, sialic acids, lactate dehydrogenase (LDH)) that can be used to monitor patients at risk (COPD I) for timely diagnosis of lung cancer are determined. A complex of salivary biochemical indicators with prognostic value in lung cancer was revealed. For patients with lung cancer without COPD, a group of patients with a favorable prognosis can be distinguished with a combination of ICs < 0.478 mmol/L and LDH >1248 U/L (HR = 1.56, 95% CI 0.40–6.07, p = 0.03891). For COPD I, a level of ICs < 0.182 mmol/L are prognostically favorable (HR = 1.74, 95% CI 0.71–4.21, p = 0.07270). For COPD II, combinations of pH < 6.74 and LDH >1006 U/L are prognostically favorable. In general, for patients with lung cancer in combination with COPD I, the prognosis is more favorable than without COPD.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
- Correspondence:
| | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 12, Lenina str, 644099 Omsk, Russia;
| |
Collapse
|
20
|
Xue Y, Guo X, Huang X, Zhu Z, Chen M, Chu J, Yang G, Wang Q, Kong X. Shortened telomere length in peripheral blood leukocytes of patients with lung cancer, chronic obstructive pulmonary disease in a high indoor air pollution region in China. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503250. [PMID: 33198931 DOI: 10.1016/j.mrgentox.2020.503250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) are closely linked diseases. In Xuanwei, China, the extremely high incidence and mortality rates of lung cancer and COPD are associated with exposure to household smoky coal burning. Previous studies found that telomere length was related to lung disease. The objective of this study is to investigate the relationship of peripheral blood leukocyte telomere length to both lung cancer and COPD, as well as indoor coal smoke exposure in Xuanwei. We measured telomere length using quantitative polymerase chain reaction (qPCR) in peripheral blood leukocytes of 216 lung cancer patients, 296 COPD patients, and 426 healthy controls from Xuanwei. The telomere length ratios (mean ± SD) in patients with lung cancer (0.76 ± 0.35) and COPD (0.81 ± 0.35) were significantly shorter than in that of controls (0.95 ± 0.39). Individuals with the shortest tertile telomere length had 3.90- and 4.54-fold increased risks of lung cancer and COPD, respectively, compared with individuals with the longest tertile telomere length. No correlation was found between telomere length and pack-years of smoking. In healthy subjects, coal smoke exposure level affected telomere length. Lung function was positively and negatively associated with telomere length and environmental exposure, respectively, when combination the control and COPD groups. The result suggests that shortened telomere length in peripheral blood leukocytes was associated with lung cancer and COPD and might be affected by coal smoke exposure level in Xuanwei. Whether variation in telomere length caused by environmental exposure has a role in lung cancer and COPD development and exacerbation needs further research.
Collapse
Affiliation(s)
- Yanfeng Xue
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Medical School, Kunming University of Science and Technology, Kunming, China; Medical School, Kunming University, Kunming, China
| | - Xiaoran Guo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xinwei Huang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zongxin Zhu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Minghui Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jiang Chu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guixian Yang
- Department of Nephropathy, Traditional Chinese Medicine Hospital of Yunnan Province, Kunming, China
| | - Qiang Wang
- Physical Examination Center, Second People's Hospital of Yunnan Province, Kunming, China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
21
|
Reliability and Usefulness of Different Biomarkers of Oxidative Stress in Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4982324. [PMID: 32509143 PMCID: PMC7244946 DOI: 10.1155/2020/4982324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airflow limitation that is not fully reversible after inhaled bronchodilator use associated with an abnormal inflammatory condition. The biggest risk factor for COPD is cigarette smoking. The exposure to noxious chemicals contained within tobacco smoke is known to cause airway epithelial injury through oxidative stress, which in turn has the ability to elicit an inflammatory response. In fact, the disruption of the delicate balance between oxidant and antioxidant defenses leads to an oxidative burden that has long been held responsible to play a pivotal role in the pathogenesis of COPD. There are currently several biomarkers of oxidative stress in COPD that have been evaluated in a variety of biological samples. The aim of this review is to identify the best studied molecules by summarizing the key literature findings, thus shedding some light on the subject. Methods We searched for relevant case-control studies examining oxidative stress biomarkers in stable COPD, taking into account the analytical method of detection as an influence factor. Results Many oxidative stress biomarkers have been evaluated in several biological matrices, mostly in the blood. Some of them consistently differ between the cases and controls even when allowing different analytical methods of detection. Conclusions The present review provides an overview of the oxidative stress biomarkers that have been evaluated in patients with COPD, bringing focus on those molecules whose reliability has been confirmed by the use of different analytical methods.
Collapse
|
22
|
Yao Y, Zhou J, Diao X, Wang S. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis 2020; 13:1753466619866096. [PMID: 31390957 PMCID: PMC6688146 DOI: 10.1177/1753466619866096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Patients diagnosed with chronic obstructive pulmonary disease (COPD) have
increased risks for a series of physical and mental illnesses. Tumor
necrosis factor-α (TNF-α) has been reported to participate in the
development of COPD and its complications. However, the values of blood
TNF-α level used in the diagnosis of COPD remains controversial. In view of
this, we performed a systematic review and meta-analysis to evaluate the
correlation between TNF-α level and COPD. Methods: We searched PubMed, Web of Science, Embase and CNKI up to May 2018. The
selection criteria were set according to the PICOS framework. A
random-effects model was then applied to evaluate the overall effect sizes
by calculating standard mean difference (SMD) and its 95% confidence
intervals (CIs). Results: A total of 40 articles containing 4189 COPD patients and 1676 healthy
controls were included in this meta-analysis. The results indicated a
significant increase in TNF-α level in the COPD group compared with the
control group (SMD: 1.24, 95% CI: 0.78–1.71,
p < 0.00001). According to the subgroup analyses, we
noted that TNF-α level was associated with predicted first second of forced
expiration (FEV1) (%) and study region. However, no association
between TNF-α level and COPD was found when the participants were
nonsmokers, and the mean age was less than 60 years. Conclusions: Our results indicated that TNF-α level was increased in COPD patients when
compared with healthy controls. Illness progression and a diagnosis of COPD
might contribute to higher TNF-α levels. However, the underlying mechanism
still remains unknown and needs further investigation. The reviews of this paper are available via the supplemental
material section.
Collapse
Affiliation(s)
- Yang Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Xin Diao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Shengyu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710002, PR China
| |
Collapse
|
23
|
Bel’skaya LV, Sarf EA, Kosenok VK, Gundyrev IA. Biochemical Markers of Saliva in Lung Cancer: Diagnostic and Prognostic Perspectives. Diagnostics (Basel) 2020; 10:E186. [PMID: 32230883 PMCID: PMC7235830 DOI: 10.3390/diagnostics10040186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the work is to study the metabolic characteristics of saliva in lung cancer for use in early diagnosis and determining the prognosis of the disease. The patient group included 425 lung cancer patients, 168 patients with non-cancerous lung diseases, and 550 healthy volunteers. Saliva samples were collected from all participants in the experiment before treatment and 34 biochemical saliva parameters were determined. Participants were monitored for six years to assess survival rates. The statistical analysis was performed by means of Statistica 10.0 (StatSoft) program and R package (version 3.2.3). To construct the classifier, the Random Forest method was used; the classification quality was assessed using the cross-validation method. Prognostic factors were analyzed by multivariate analysis using Cox's proportional hazard model in a backward step-wise fashion to adjust for potential confounding factors. A complex of metabolic changes occurring in saliva in lung cancer is described. Seven biochemical parameters were identified (catalase, triene conjugates, Schiff bases, pH, sialic acids, alkaline phosphatase, chlorides), which were used to construct the classifier. The sensitivity and specificity of the method were 69.5% and 87.5%, which is practically not inferior to the diagnostic characteristics of markers routinely used in the diagnosis of lung cancer. Significant independent factors in the poor prognosis of lung cancer are imidazole compounds (ICs) above 0.478 mmol/L and salivary lactate dehydrogenase activity below 545 U/L. Saliva has been shown to have great potential for the development of diagnostic and prognostic tests for lung cancer.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Elena A. Sarf
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 12, Lenina str, 644099 Omsk, Russia;
| | | |
Collapse
|
24
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
25
|
Immunotherapy with Monoclonal Antibodies in Lung Cancer of Mice: Oxidative Stress and Other Biological Events. Cancers (Basel) 2019; 11:cancers11091301. [PMID: 31487876 PMCID: PMC6770046 DOI: 10.3390/cancers11091301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Lung cancer (LC) is a major leading cause of death worldwide. Immunomodulators that target several immune mechanisms have proven to reduce tumor burden in experimental models through induction of the immune microenvironment. We hypothesized that other biological mechanisms may also favor tumor burden reduction in lung cancer-bearing mice treated with immunomodulators. Methods: Tumor weight, area, T cells and tumor growth (immunohistochemistry), oxidative stress, apoptosis, autophagy, and signaling (NF-κB and sirtuin-1) markers were analyzed (immunoblotting) in subcutaneous tumor of BALB/c mice injected with LP07 adenocarcinoma cells treated with monoclonal antibodies (CD-137, CTLA-4, PD-1, and CD-19, N = 9/group) and non-treated control animals. Results: Compared to non-treated cancer mice, in tumors of monoclonal-treated animals, tumor area and weight and ki-67 were significantly reduced, while T cell counts, oxidative stress, apoptosis, autophagy, activated p65, and sirtuin-1 markers were increased. Conclusions: Immunomodulators elicited a reduction in tumor burden (reduced tumor size and weight) through decreased tumor proliferation and increased oxidative stress, apoptosis, autophagy, and signaling markers, which may have interfered with the immune profile of the tumor microenvironment. Future research should be devoted to the elucidation of the specific contribution of each biological mechanism to the reduced tumor burden.
Collapse
|
26
|
Mouronte-Roibás C, Leiro-Fernández V, Ruano-Raviña A, Ramos-Hernández C, Casado-Rey P, Botana-Rial M, García-Rodríguez E, Fernández-Villar A. Predictive value of a series of inflammatory markers in COPD for lung cancer diagnosis: a case-control study. Respir Res 2019; 20:198. [PMID: 31455338 PMCID: PMC6712782 DOI: 10.1186/s12931-019-1155-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is a relationship between Chronic Obstructive Pulmonary Disease (COPD) and the development of lung cancer (LC). The aim of this study is to analyse several blood markers and compare their concentrations in patients with only COPD and LC + COPD. METHODS Case-control study with cases presenting combined LC and COPD and two control groups (patients presenting only COPD and patients presenting only LC). We also included LC patients with descriptive purposes. In both groups, peripheral blood analyses of TNF-α, IL-6, IL-8, total leukocyte, lymphocyte and neutrophil counts, neutrophil-to-lymphocyte ratio, total platelet count, mean platelet volume, platelet-to-lymphocyte ratio, alpha 1-antitripsin (A1AT), IgE, C-reactive protein, fibrinogen, cholesterol and bilirubin were performed. We developed univariate and multivariate analyses of these markers, as well as a risk score variable, and we evaluated its performance through ROC curves. RESULTS We included 280 patients, 109 cases (LC + COPD), 83 controls (COPD) and 88 LC without COPD. No differences were observed in the distribution by sex, age, BMI, smoking, occupational exposure, lung function, GOLD stage or comorbidity. Patients with LC + COPD had significantly higher levels of neutrophils [OR 1.00 (95%CI 1.00-1.00), p = 0.03] and A1AT [OR 1.02 (95%CI 1.01-1.03), p = 0.003] and lower cholesterol levels [OR 0.98 (95%CI 0.97-0.99), p = 0.009] than COPD controls. We developed a risk score variable combining neutrophils, A1AT and cholesterol, achieving a sensitivity of 80%, a negative predictive value of 90.7% and an area under the curve of 0.78 (95%CI 0.71-0.86). CONCLUSIONS COPD patients who also have LC have higher levels of neutrophils and A1AT and lower of cholesterol. These parameters could be potentially predicting biomarkers of LC in COPD patients.
Collapse
Affiliation(s)
- Cecilia Mouronte-Roibás
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Virginia Leiro-Fernández
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain.
| | - Alberto Ruano-Raviña
- University of Santiago de Compostela, Preventive Medicine and Public Health. School of Medicine, San Francisco st s/n Santiago de Compostela, A Coruña, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Cristina Ramos-Hernández
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Pedro Casado-Rey
- Clinical Analysis Department, Hospital Álvaro Cunqueiro, Vigo Health Area, Vigo, Spain
| | - Maribel Botana-Rial
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Esmeralda García-Rodríguez
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area; NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| |
Collapse
|
27
|
Song JL, Qian B, Pan C, Lv F, Wang H, Gao Y, Zhou Y. Protective activity of mogroside V against ovalbumin-induced experimental allergic asthma in Kunming mice. J Food Biochem 2019; 43:e12973. [PMID: 31489660 DOI: 10.1111/jfbc.12973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
We investigated the antiasthmatic effect of mogroside V (Mog V) in mice with ovalbumin (OVA)-induced asthma. Administration of Mog V effectively attenuated OVA-induced airway hyperresponsiveness and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histological examination showed that Mog V reduced the inflammatory infiltration of the lungs in the asthmatic mice. ELISAs suggested that Mog V effectively decreased the levels of IL-4, IL-5, and IL-13 in BALF and serum levels of OVA-specific IgE and IgG1 in the asthmatic mice. A quantitative reverse-transcription PCR assay also indicated that Mog V decreased the mRNA levels of IL-17A, IL-23, and RORγt in the lungs of the asthmatic mice (the opposite effect on Foxp3 mRNA). Furthermore, Mog V significantly reduced the OVA-induced activation of NF-κB in the lungs. This study indicates that Mog V alleviates OVA-induced inflammation in airways, and this effect is associated with a reduction in NF-κB activation. PRACTICAL APPLICATIONS: A traditional Chinese medicine herb has been reported to have a strong curative effect on asthma in clinical practice. Siraitia grosvenorii is known in China as a functional food product with the ability to improve lung function. Mogroside V is a triterpene glycoside isolated from S. grosvenorii. Nonetheless, the antiasthmatic effect of mogroside V has not been evaluated yet. The aim of this study was to investigate the antiasthmatic activity of mogroside V in mice with chemically induced asthma. The data from this study will provide some scientific evidence supporting wider use of S. grosvenorii in functional foods.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland.,Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Cailing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Fangfang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Haipeng Wang
- Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, People's Republic of China
| | - Yanyuan Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
28
|
Alcazar J, Losa-Reyna J, Rodriguez-Lopez C, Navarro-Cruz R, Alfaro-Acha A, Ara I, García-García FJ, Alegre LM, Guadalupe-Grau A. Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. Scand J Med Sci Sports 2019; 29:1591-1603. [PMID: 31169924 DOI: 10.1111/sms.13494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Oxidative stress is associated with disease severity and limb muscle dysfunction in COPD. Our main goal was to assess the effects of exercise training on systemic oxidative stress and limb muscle dysfunction in older people with COPD. Twenty-nine outpatients with COPD (66-90 years) were randomly assigned to a 12-week exercise training (ET; high-intensity interval training (HIIT) plus power training) or a control (CT; usual care) group. We evaluated mid-thigh muscle cross-sectional area (CSA; computed tomography); vastus lateralis (VL) muscle thickness, pennation angle, and fascicle length (ultrasonography); peak VO2 uptake (VO2peak ) and work rate (Wpeak ) (incremental cardiopulmonary exercise test); rate of force development (RFD); maximal muscle power (Pmax ; force-velocity testing); systemic oxidative stress (plasma protein carbonylation); and physical performance and quality of life. ET subjects experienced changes in mid-thigh muscle CSA (+4%), VL muscle thickness (+11%) and pennation angle (+19%), VO2peak (+14%), Wpeak (+37%), RFD (+32% to 65%), Pmax (+38% to 51%), sit-to-stand time (-24%), and self-reported health status (+20%) (all P < 0.05). No changes were noted in the CT group (P > 0.05). Protein carbonylation decreased among ET subjects (-27%; P < 0.05), but not in the CT group (P > 0.05). Changes in protein carbonylation were associated with changes in muscle size and pennation angle (r = -0.44 to -0.57), exercise capacity (r = -0.46), muscle strength (r = -0.45), and sit-to-stand performance (r = 0.60) (all P < 0.05). The combination of HIIT and power training improved systemic oxidative stress and limb muscle dysfunction in older people with COPD. Changes in oxidative stress were associated with exercise-induced structural and functional adaptations.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Jose Losa-Reyna
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Roberto Navarro-Cruz
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ana Alfaro-Acha
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Francisco J García-García
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Amelia Guadalupe-Grau
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain.,ImFINE Research Group, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Husebø GR, Nielsen R, Hardie J, Bakke PS, Lerner L, D'Alessandro-Gabazza C, Gyuris J, Gabazza E, Aukrust P, Eagan T. Risk factors for lung cancer in COPD - results from the Bergen COPD cohort study. Respir Med 2019; 152:81-88. [PMID: 31128615 DOI: 10.1016/j.rmed.2019.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND COPD patients have an increased risk of developing lung cancer, but the underlying mechanisms are poorly understood. We aimed to identify risk factors for lung cancer in patients from the Bergen COPD Cohort Study. METHODS We compared 433 COPD patients with 279 healthy controls, all former or current smokers. All COPD patients had FEV1<80% and FEV1/FVC-ratio<0.7. Baseline predictors were sex, age, spirometry, body composition, smoking history, emphysema assessed by CT, chronic bronchitis, prior exacerbation frequency, Charlson Comorbidity Score, inhalation medication and 44 serum/plasma inflammatory biomarkers. Patients were followed up for 9 years recording incidence of lung cancer. Cox-regression models were fitted for the statistical analyses. The biomarkers were evaluated using principal component analysis. RESULTS 28 COPD patients and 3 controls developed lung cancer, COPD patients had a significantly higher risk of developing lung cancer, (HR 5.0; 95% CI 1.5-17.1, p < 0.01, adjusted values). Among COPD patients, emphysema (HR 4.4; 1.7-10.8, p < 0.01) and obesity (HR 3.3; 1.3-8.5, p = 0.02) were associated with a higher cancer rate. Use of inhaled steroids was associated with a lower rate (HR 0.4; 0.2-0.9, p = 0.03). Smoking status, pack-years smoked or levels of systemic inflammatory markers, except for interferon gamma-induced protein 10, did not affect the lung cancer rate in patients with COPD. CONCLUSION Patients with COPD have a higher lung cancer rate compared to healthy controls adjusted for smoking. The presence of emphysema and obesity in COPD predicted a higher lung cancer risk in COPD patients. Systemic inflammation was not associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Gunnar R Husebø
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway; Dept. of Clinical Science, University of Bergen, Norway.
| | - Rune Nielsen
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jon Hardie
- Dept. of Clinical Science, University of Bergen, Norway
| | | | | | | | | | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomas Eagan
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway; Dept. of Clinical Science, University of Bergen, Norway
| |
Collapse
|
30
|
Tan N, Song J, Yan M, Wu J, Sun Y, Xiong Z, Ding Y. Association between IL-4 tagging single nucleotide polymorphisms and the risk of lung cancer in China. Mol Genet Genomic Med 2019; 7:e00585. [PMID: 30729744 PMCID: PMC6465665 DOI: 10.1002/mgg3.585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In China, lung cancer is also the most commonly diagnosed cancer with a lower 5-year survival rate, leading to high social burdens. Recently, many studies highlighted the importance of inflammation in the initiation and progression of cancer. The goal of this study was to investigate the association between interleukin-4 (IL-4, OMIM#147780) single nucleotide polymorphisms (SNPs) and lung cancer susceptibility. METHODS A case-control study was conducted in a Chinese population including 199 male patients with lung cancer and 266 healthy men. Six SNPs selected from the HapMap database were genotyped using Agena MassARRAY. Genetic models and haplotype analyses were utilized to evaluate the association between SNPs and lung cancer risk. RESULTS In our findings, rs2243250 was associated with a decreased lung cancer risk under the log-additive model (odds ratio, OR = 0.71, 95% confidence interval, CI = 0.51-0.97, p = 0.030), and the G/G genotype of rs2227284 conferred a negative effect; the risk of lung cancer under the codominant (OR = 0.19, 95% CI = 0.04-0.87, p = 0.040) and recessive models (OR = 0.20, 95% CI = 0.04-0.88, p = 0.012) after adjusted by age. CONCLUSIONS These data indicated potential associations between IL-4 polymorphisms and lung cancer susceptibility. That may help to improve the understanding of the relationship between inflammation and lung cancer in the future.
Collapse
Affiliation(s)
- Nan Tan
- Department of Cadre's Ward, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Jiangjiang Song
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yipeng Ding
- Department of Emergency, Hainan General Hospital, Haikou, Hainan, P. R. China
| |
Collapse
|
31
|
Mouronte-Roibás C, Ruano-Raviña A, Fernández-Villar A. Lung cancer and chronic obstructive pulmonary disease: understanding the complexity of carcinogenesis. Transl Lung Cancer Res 2018; 7:S214-S217. [PMID: 30393605 DOI: 10.21037/tlcr.2018.08.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cecilia Mouronte-Roibás
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Alberto Ruano-Raviña
- Preventive Medicine and Public Health, School of Medicine, University of Santiago de Compostela, San Francisco st s/n Santiago de Compostela, A Coruña, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| |
Collapse
|
32
|
Jiang Y, Liu G, Zhang L, Cheng S, Luo C, Liao Y, Guo S. Therapeutic efficacy of hydrogen‑rich saline alone and in combination with PI3K inhibitor in non‑small cell lung cancer. Mol Med Rep 2018; 18:2182-2190. [PMID: 29901139 PMCID: PMC6072234 DOI: 10.3892/mmr.2018.9168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the effects of combination therapy of LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), with hydrogen-rich saline on the proliferation and apoptosis of the non-small cell lung cancer (NSCLC) A549 cell line and the mechanisms underpinning this. Excessive production of reactive oxygen species (ROS) may induce DNA mutations, DNA damage, genomic instability and cell proliferation, and ROS are involved in several types of cancer, particularly lung cancer. In a previous study, hydrogen was recognized as an antioxidant in preventive and therapeutic applications. The PI3K/protein kinase B (Akt) pathway is an important signaling pathway that may activate downstream of a series of extracellular signals and impact on cellular processes including cell proliferation, apoptosis and survival. To date, the PI3K/Akt signaling pathway has been indicated as a feasible target for novel antineoplastic drugs. Different strategies combining the two treatment modalities have been used in cancer therapy in order to achieve an improved therapeutic response and longer control of tumor modalities control. The present study investigated the effect of hydrogen-rich saline alone and in combination with the PI3K inhibitor, LY294002, on the proliferation, oxidative stress and apoptosis of NSCLC A549 cells. This combination therapy may be more effective than separate drug treatment; it decreased the malondialdehyde level and increased the superoxide dismutase activity. The combination therapy also enhanced the efficacy of anti-proliferation and apoptosis. Similarly, the results of the present study demonstrated that administration of the two agents in combination may inhibit phospho-Akt activity, and reduce expression of heme oxygenase-1 and nuclear factor-κB p65. The results further suggested that the combination therapy may reduce cell proliferation and promote cell apoptosis by downregulating Akt phosphorylation and inhibiting the PI3K pathway in NSCLC cell lines. Therefore, the present study provided evidence that combined therapy may be a novel therapeutic option for patients with NSCLC.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The University‑Town Hospital Affiliated to Chongqing Medical University, Chongqing 401331, P.R. China
| | - Gang Liu
- Department of Respiratory Medicine, The University‑Town Hospital Affiliated to Chongqing Medical University, Chongqing 401331, P.R. China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sheng Cheng
- Department of Respiratory Medicine, The University‑Town Hospital Affiliated to Chongqing Medical University, Chongqing 401331, P.R. China
| | - Chun Luo
- Department of Respiratory Medicine, The University‑Town Hospital Affiliated to Chongqing Medical University, Chongqing 401331, P.R. China
| | - Yang Liao
- Department of Respiratory Medicine, The University‑Town Hospital Affiliated to Chongqing Medical University, Chongqing 401331, P.R. China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
33
|
Gea J, Sancho-Muñoz A, Chalela R. Nutritional status and muscle dysfunction in chronic respiratory diseases: stable phase versus acute exacerbations. J Thorac Dis 2018; 10:S1332-S1354. [PMID: 29928517 PMCID: PMC5989104 DOI: 10.21037/jtd.2018.02.66] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
Nutritional abnormalities are frequent in different chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis, cystic fibrosis (CF), interstitial fibrosis and lung cancer, having important clinical consequences. However, nutritional abnormalities often remained underdiagnosed due to the relative lack of awareness of health professionals. Therefore, systematic anthropometry or even better, assessment of body composition, should be performed in all patients with chronic respiratory conditions, especially following exacerbation periods when malnutrition becomes more accentuated. Nutritional abnormalities very often include the loss of muscle mass, which is an important factor for the occurrence of muscle dysfunction. The latter can be easily detected with the specific assessment of muscle strength and endurance, and also negatively influences patients' quality of life and prognosis. Both nutritional abnormalities and muscle dysfunction result from the interaction of several factors, including tobacco smoking, low physical activity-sedentarism, systemic inflammation and the imbalance between energy supply and requirements, which essentially lead to a negative balance between protein breakdown and synthesis. Therapeutic approaches include improvements in lifestyle, nutritional supplementation and training. Anabolic drugs may be administered in some cases.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| | - Antoni Sancho-Muñoz
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| | - Roberto Chalela
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
34
|
Mateu-Jimenez M, Curull V, Rodríguez-Fuster A, Aguiló R, Sánchez-Font A, Pijuan L, Gea J, Barreiro E. Profile of epigenetic mechanisms in lung tumors of patients with underlying chronic respiratory conditions. Clin Epigenetics 2018; 10:7. [PMID: 29371906 PMCID: PMC5771157 DOI: 10.1186/s13148-017-0437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and epigenetic events underlie lung cancer (LC) development. The study objective was that lung tumor expression levels of specific microRNAs and their downstream biomarkers may be differentially regulated in patients with and without COPD. Methods In lung specimens (tumor and non-tumor), microRNAs known to be involved in lung tumorigenesis (miR-21, miR-200b, miR-126, miR-451, miR-210, miR-let7c, miR-30a-30p, miR-155 and miR-let7a, qRT-PCR), DNA methylation, and downstream biomarkers were determined (qRT-PCR and immunoblotting) in 40 patients with LC (prospective study, subdivided into LC-COPD and LC, N = 20/group). Results Expression of miR-21, miR-200b, miR-210, and miR-let7c and DNA methylation were greater in lung tumor specimens of LC-COPD than of LC patients. Expression of downstream markers PTEN, MARCKs, TPM-1, PDCD4, SPRY-2, ETS-1, ZEB-2, FGFRL-1, EFNA-3, and k-RAS together with P53 were selectively downregulated in tumor samples of LC-COPD patients. In these patients, tumor expression of miR-126 and miR-451 and that of the biomarkers PTEN, MARCKs, FGFRL-1, SNAIL-1, P63, and k-RAS were reduced. Conclusions Biomarkers of mechanisms involved in tumor growth, angiogenesis, migration, and apoptosis were differentially expressed in tumors of patients with underlying respiratory disease. These findings shed light into the underlying biology of the reported greater risk to develop LC seen in patients with chronic respiratory conditions. The presence of an underlying respiratory disease should be identified in all patients with LC as the differential biological profile may help determine tumor progression and the therapeutic response. Additionally, epigenetic events offer a niche for pharmacological therapeutic targets.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
35
|
Paul T, Salazar-Degracia A, Peinado VI, Tura-Ceide O, Blanco I, Barreiro E, Barberà JA. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental Chronic Obstructive Pulmonary Disease. PLoS One 2018; 13:e0190628. [PMID: 29304131 PMCID: PMC5755849 DOI: 10.1371/journal.pone.0190628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Objective Soluble guanylate cyclase (sGC) is a key enzyme of the nitric oxide–cyclic guanosine 3′,5′-monophosphate (NO–cGMP) signaling pathway, and its pharmacological stimulation has been shown to prevent the development of emphysema and pulmonary vascular remodeling in animal models of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the effects of sGC stimulation on oxidative stress in the plasma of guinea pigs chronically exposed to cigarette smoke (CS). Methods and results Guinea pigs were exposed to CS or sham for three months, and received either the sGC stimulator BAY 41–2272 or vehicle. Body weight was measured weekly; and markers of oxidative stress in plasma, and airspace size and inflammatory cell infiltrate in lung tissue were analyzed at the end of the study. Compared to sham-exposed guinea pigs, CS-exposed animals gained less body weight and showed higher plasma levels of nitrated tyrosine residues (3-NT), 4-hydroxynonenal (4-HNE), and 8-hydroxydeoxyguanosine (8-OHdG). Treatment with the sGC stimulator led to a body weight gain in the CS-exposed guinea pigs similar to non-exposed and attenuated the increase in 3-NT and 4-HNE. Plasma levels of 3-NT correlated with the severity of inflammatory cell infiltrate in the lung. Conclusion Stimulation of sGC prevents oxidative stress induced by CS exposure and is associated with an attenuated inflammatory response in the lung.
Collapse
Affiliation(s)
- Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Salazar-Degracia
- Pulmonology Department-Lung Cancer and Muscle Research group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Victor I. Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- * E-mail:
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan A. Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
36
|
Zhu HX, Shi L, Zhang Y, Zhu YC, Bai CX, Wang XD, Zhou JB. Myocyte enhancer factor 2D provides a cross-talk between chronic inflammation and lung cancer. J Transl Med 2017; 15:65. [PMID: 28340574 PMCID: PMC5366127 DOI: 10.1186/s12967-017-1168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Patients with chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), are exposed to a higher risk of developing lung cancer. Chronic inflammation may play an important role in the lung carcinogenesis among those patients. The present study aimed at identifying candidate biomarker predicting lung cancer risk among patients with chronic respiratory diseases. Methods We applied clinical bioinformatics tools to analyze different gene profile datasets with a special focus on screening the potential biomarker during chronic inflammation-lung cancer transition. Then we adopted an in vitro model based on LPS-challenged A549 cells to validate the biomarker through RNA-sequencing, quantitative real time polymerase chain reaction, and western blot analysis. Results Bioinformatics analyses of the 16 enrolled GSE datasets from Gene Expression Omnibus online database showed myocyte enhancer factor 2D (MEF2D) level significantly increased in COPD patients coexisting non-small-cell lung carcinoma (NSCLC). Inflammation challenge increased MEF2D expression in NSCLC cell line A549, associated with the severity of inflammation. Extracellular signal-regulated protein kinase inhibition could reverse the up-regulation of MEF2D in inflammation-activated A549. MEF2D played a critical role in NSCLC cell bio-behaviors, including proliferation, differentiation, and movement. Conclusions Inflammatory conditions led to increased MEF2D expression, which might further contribute to the development of lung cancer through influencing cancer microenvironment and cell bio-behaviors. MEF2D might be a potential biomarker during chronic inflammation-lung cancer transition, predicting the risk of lung cancer among patients with chronic respiratory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1168-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai-Xing Zhu
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Lin Shi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Yi-Chun Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chun-Xue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Xiang-Dong Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Jie-Bai Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Respiratory Research Institute, Shanghai, China.
| |
Collapse
|
37
|
Dalle-Donne I, Colombo G, Gornati R, Garavaglia ML, Portinaro N, Giustarini D, Bernardini G, Rossi R, Milzani A. Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies. Antioxid Redox Signal 2017; 26:406-426. [PMID: 27393565 DOI: 10.1089/ars.2016.6772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS. CRITICAL ISSUES We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models. FUTURE DIRECTIONS The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.
Collapse
Affiliation(s)
| | - Graziano Colombo
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Rosalba Gornati
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Maria L Garavaglia
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Nicola Portinaro
- 3 Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano and Pediatric Orthopaedic Unit, Humanitas Clinical and Research Center , Rozzano (Milan), Italy
| | | | - Giovanni Bernardini
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Ranieri Rossi
- 4 Department of Life Sciences, University of Siena , Siena, Italy
| | - Aldo Milzani
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
38
|
Zinellu E, Zinellu A, Fois AG, Carru C, Pirina P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 2016; 17:150. [PMID: 27842552 PMCID: PMC5109807 DOI: 10.1186/s12931-016-0471-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by airflow limitation associated with an abnormal inflammatory response of the lungs to noxious particles and gases, caused primarily by cigarette smoking. Increased oxidative burden plays an important role in the pathogenesis of COPD. There is a delicate balance between the toxicity of oxidants and the protective function of the intracellular and extracellular antioxidant defense systems, which is critically important for the maintenance of normal pulmonary functions. Several biomarkers of oxidative stress are available and have been evaluated in COPD. In this review, we summarize the main literature findings about circulating oxidative stress biomarkers, grouped according to their method of detection, measured in COPD subjects.
Collapse
Affiliation(s)
- Elisabetta Zinellu
- Department of Respiratory Diseases, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Giuseppe Fois
- Department of Respiratory Diseases, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Ciriaco Carru
- Quality Control Unit, University Hospital of Sassari (AOU SS); Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Respiratory Diseases, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy.
| |
Collapse
|
39
|
Mateu-Jimenez M, Curull V, Pijuan L, Sánchez-Font A, Rivera-Ramos H, Rodríguez-Fuster A, Aguiló R, Gea J, Barreiro E. Systemic and Tumor Th1 and Th2 Inflammatory Profile and Macrophages in Lung Cancer: Influence of Underlying Chronic Respiratory Disease. J Thorac Oncol 2016; 12:235-248. [PMID: 27793775 DOI: 10.1016/j.jtho.2016.09.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Chronic respiratory conditions, especially chronic obstructive pulmonary disease (COPD), and inflammatory events underlie lung cancer (LC). We hypothesized that profiles of T helper 1 and T helper 2 cytokines and type 1 and type 2 macrophages (M1 and M2) are differentially expressed in lung tumors and blood of patients with NSCLC with and without COPD and that the ratio M1/M2 specifically may influence their survival. METHODS In blood, inflammatory cytokines (determined by enzyme-linked immunosorbent assay) were quantified in 80 patients with LC (60 with LC and COPD [the LC-COPD group] and 20 with LC only [the LC-only group]) and lung specimens (tumor and nontumor) from those undergoing thoracotomy (20 in the LC-COPD group and 20 in the LC-only group). RESULTS In the LC-COPD group compared with in the LC-only group, systemic levels of tumor necrosis factor-α, interleukin-2 (IL-2), transforming growth factor-β, and IL-10 were increased, whereas vascular endothelial growth factor and IL-4 levels were decreased. In lung tumors, levels of tumor necrosis factor-α, transforming growth factor-β, and IL-10 were higher than in nontumor parenchyma in the LC-COPD group, whereas IL-2 and vascular endothelial growth factor levels were higher in tumors of both the LC-only and LC-COPD groups. Compared with in nontumor lung, M1 macrophage counts were reduced whereas M2 counts were increased in tumors of both patient groups, and the M1/M2 ratio was higher in the LC-COPD group than the LC-only group. M1 and M2 counts did not influence patients' survival. CONCLUSIONS The relative predominance of T helper 1 cytokines and M1 macrophages in the blood and tumors of patients with underlying COPD imply that a stronger proinflammatory pattern exists in these patients. Inflammation should not be targeted systematically in all patients with LC. Screening for the presence of underlying respiratory diseases and identification of the specific inflammatory pattern should be carried out in patients with LC, at least in early stages of their disease.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Hugo Rivera-Ramos
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain
| | - Alberto Rodríguez-Fuster
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar Medical Research Institute, Health Park Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar Medical Research Institute, Health Park Mar, Health and Experimental Sciences Department, Pompeu Fabra University, Autonomous University of Barcelona, Biomedical Barcelona Research Park, Barcelona, Spain; Center of Biomedical Research Network of Respiratory diseases (CIBERES), Carlos III Health Institute, Barcelona, Spain.
| |
Collapse
|
40
|
Barreiro E, Bustamante V, Curull V, Gea J, López-Campos JL, Muñoz X. Relationships between chronic obstructive pulmonary disease and lung cancer: biological insights. J Thorac Dis 2016; 8:E1122-E1135. [PMID: 27867578 DOI: 10.21037/jtd.2016.09.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lung cancer (LC) has become one of the leading causes of preventable death in the last few decades. Cigarette smoking (CS) stays as the main etiologic factor of LC despite that many other causes such as occupational exposures, air pollution, asbestos, or radiation have also been implicated. Patients with chronic obstructive pulmonary disease (COPD), which also represents a major cause of morbidity and mortality in developed countries, exhibit a significantly greater risk of LC. The study of the underlying biological mechanisms that may predispose patients with chronic respiratory diseases to a higher incidence of LC has also gained much attention in the last few years. The present review has been divided into three major sections in which different aspects have been addressed: (I) relevant etiologic agents of LC; (II) studies confirming the hypothesis that COPD patients are exposed to a greater risk of developing LC; and (III) evidence on the most relevant underlying biological mechanisms that support the links between COPD and LC. Several carcinogenic agents have been described in the last decades but CS remains to be the leading etiologic agent in most geographical regions in which the incidence of LC is very high. Growing evidence has put the line forward the implications of COPD and especially of emphysema in LC development. Hence, COPD represents a major risk factor of LC in patients. Different avenues of research have demonstrated the presence of relevant biological mechanisms that may predispose COPD patients to develop LC. Importantly, the so far identified biological mechanisms offer targets for the design of specific therapeutic strategies that will further the current treatment options for patients with LC. Prospective screening studies, in which patients with COPD should be followed up for several years will help identify biomarkers that may predict the risk of LC among these patients.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Víctor Bustamante
- Pneumology Department, Basurto University Hospital, Osakidetza, Department of Medicine, EHU-University of the Basque Country, Bilbao, Bizkaia, Spain
| | - Víctor Curull
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - José Luis López-Campos
- Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain; ; Medical-Surgery Unit of Respiratory Disease, Sevilla Biomedicine Institute (IBIS), Virgen del Rocío University Hospital, University of Seville, Seville, Spain
| | - Xavier Muñoz
- Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain; ; Pulmonology Service, Medicine Department, Vall d'Hebron University Hospital, Barcelona Autonomous University (UAB), Barcelona, Spain
| |
Collapse
|
41
|
Protein oxidation and degradation caused by particulate matter. Sci Rep 2016; 6:33727. [PMID: 27644844 PMCID: PMC5028717 DOI: 10.1038/srep33727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.
Collapse
|
42
|
Krawczyk A, Nowak D, Nowak PJ, Padula G, Kwiatkowska S. Elevated exhalation of hydrogen peroxide in patients with non-small cell lung cancer is not affected by chemotherapy. Redox Rep 2016; 22:308-314. [PMID: 27611345 DOI: 10.1080/13510002.2016.1229885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Reactive oxygen species, which are implicated in the process of carcinogenesis, are also responsible for cell death during chemotherapy (CHT). Therefore, the aim of the study was to evaluate exhaled H2O2 levels in non-small cell lung cancer (NSCLC) patients before and after CHT. METHODS Thirty patients (age 61.3 ± 9.3 years) with advanced NSCLC (stage IIIB-IV) and 15 age-matched healthy cigarette smokers were enrolled into the study. Patients received four cycles of cisplatin or carboplatin with vinorelbine every three weeks. Before and after the first, second, and fourth cycle, the concentration of H2O2 in exhaled breath condensate was measured with respect to treatment response. RESULTS At the baseline, NSCLC patients exhaled 3.8 times more H2O2 than the control group (0.49 ± 0.14 vs. 0.13 ± 0.03 µmol/L, P < 0.05); this difference persisted throughout the study. CHT had no noticeable effect on exhaled H2O2 levels independent of the treatment response (partial remission vs. progressive disease). Pre- and post-CHT cycles of H2O2 levels generally correlated positively. DISCUSSION The study demonstrated the occurrence of oxidative stress in the airways of advanced NSCLC patients. Exhaled H2O2 level was not affected by CHT and independent of treatment results and changes in the number of circulating neutrophils.
Collapse
Affiliation(s)
| | - Dariusz Nowak
- b Department of Clinical Physiology , Medical University of Lodz , Lodz , Poland
| | - Piotr Jan Nowak
- c Department of Nephrology, Hypertension and Kidney Transplantation , Medical University of Lodz , Lodz , Poland
| | - Gianluca Padula
- d DynamoLab Academic Laboratory of Movement and Human Physical Performance , Medical University of Lodz , Lodz , Poland
| | | |
Collapse
|
43
|
Villar Álvarez F, Muguruza Trueba I, Belda Sanchis J, Molins López-Rodó L, Rodríguez Suárez PM, Sánchez de Cos Escuín J, Barreiro E, Borrego Pintado MH, Disdier Vicente C, Flandes Aldeyturriaga J, Gámez García P, Garrido López P, León Atance P, Izquierdo Elena JM, Novoa Valentín NM, Rivas de Andrés JJ, Royo Crespo Í, Salvatierra Velázquez Á, Seijo Maceiras LM, Solano Reina S, Aguiar Bujanda D, Avila Martínez RJ, de Granda Orive JI, de Higes Martinez E, Diaz-Hellín Gude V, Embún Flor R, Freixinet Gilart JL, García Jiménez MD, Hermoso Alarza F, Hernández Sarmiento S, Honguero Martínez AF, Jimenez Ruiz CA, López Sanz I, Mariscal de Alba A, Martínez Vallina P, Menal Muñoz P, Mezquita Pérez L, Olmedo García ME, Rombolá CA, San Miguel Arregui I, de Valle Somiedo Gutiérrez M, Triviño Ramírez AI, Trujillo Reyes JC, Vallejo C, Vaquero Lozano P, Varela Simó G, Zulueta JJ. Executive Summary of the SEPAR Recommendations for the Diagnosis and Treatment of Non-small Cell Lung Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.arbr.2016.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Villar Álvarez F, Muguruza Trueba I, Belda Sanchis J, Molins López-Rodó L, Rodríguez Suárez PM, Sánchez de Cos Escuín J, Barreiro E, Borrego Pintado MH, Disdier Vicente C, Flandes Aldeyturriaga J, Gámez García P, Garrido López P, León Atance P, Izquierdo Elena JM, Novoa Valentín NM, Rivas de Andrés JJ, Royo Crespo Í, Salvatierra Velázquez Á, Seijo Maceiras LM, Solano Reina S, Aguiar Bujanda D, Avila Martínez RJ, de Granda Orive JI, de Higes Martinez E, Diaz-Hellín Gude V, Embún Flor R, Freixinet Gilart JL, García Jiménez MD, Hermoso Alarza F, Hernández Sarmiento S, Honguero Martínez AF, Jimenez Ruiz CA, López Sanz I, Mariscal de Alba A, Martínez Vallina P, Menal Muñoz P, Mezquita Pérez L, Olmedo García ME, Rombolá CA, San Miguel Arregui I, de Valle Somiedo Gutiérrez M, Triviño Ramírez AI, Trujillo Reyes JC, Vallejo C, Vaquero Lozano P, Varela Simó G, Zulueta JJ. Executive summary of the SEPAR recommendations for the diagnosis and treatment of non-small cell lung cancer. Arch Bronconeumol 2016; 52:378-88. [PMID: 27237592 DOI: 10.1016/j.arbres.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
The Thoracic Surgery and Thoracic Oncology groups of the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) have backed the publication of a handbook on recommendations for the diagnosis and treatment of non-small cell lung cancer. Due to the high incidence and mortality of this disease, the best scientific evidence must be constantly updated and made available for consultation by healthcare professionals. To draw up these recommendations, we called on a wide-ranging group of experts from the different specialties, who have prepared a comprehensive review, divided into 4 main sections. The first addresses disease prevention and screening, including risk factors, the role of smoking cessation, and screening programs for early diagnosis. The second section analyzes clinical presentation, imaging studies, and surgical risk, including cardiological risk and the evaluation of respiratory function. The third section addresses cytohistological confirmation and staging studies, and scrutinizes the TNM and histological classifications, non-invasive and minimally invasive sampling methods, and surgical techniques for diagnosis and staging. The fourth and final section looks at different therapeutic aspects, such as the role of surgery, chemotherapy, radiation therapy, a multidisciplinary approach according to disease stage, and other specifically targeted treatments, concluding with recommendations on the follow-up of lung cancer patients and surgical and endoscopic palliative interventions in advanced stages.
Collapse
Affiliation(s)
| | | | - José Belda Sanchis
- Servicio de Cirugía Torácica, Hospital Universitari Mútua Terrassa, España
| | | | | | | | - Esther Barreiro
- Grupo de Investigación en Desgaste Muscular y Caquexia en Enfermedades Crónicas Respiratorias y Cáncer de Pulmón, Instituto de Investigación del Hospital del Mar (IMIM)-Hospital del Mar, Departamento de Ciencias Experimentales y de la Salud (CEXS), Universidad Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB); Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Barcelona. España
| | | | | | - Javier Flandes Aldeyturriaga
- Unidad de Broncoscopias y Neumología Intervencionista, Servicio de Neumología, ISS Fundación Jiménez Díaz, UAM, CIBERES, Madrid, España
| | - Pablo Gámez García
- Servicio de Cirugía Torácica, Hospital Universitario 12 de Octubre, Madrid, España
| | - Pilar Garrido López
- Servicio de Oncología Médica, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Pablo León Atance
- Servicio de Cirugía Torácica, Complejo Hospitalario Universitario de Albacete, España
| | | | | | - Juan José Rivas de Andrés
- Hospital Universitario Miguel Servet, Hospital Clínico Universitario Lozano Blesa e IIS Aragón, Zaragoza, España
| | - Íñigo Royo Crespo
- Hospital Universitario Miguel Servet, Hospital Clínico Universitario Lozano Blesa e IIS Aragón, Zaragoza, España
| | | | | | | | - David Aguiar Bujanda
- Servicio de Oncología Médica, Hospital Universitario de Gran Canaria «Dr. Negrín», España
| | | | | | | | | | - Raúl Embún Flor
- Hospital Universitario Miguel Servet, Hospital Clínico Universitario Lozano Blesa e IIS Aragón, Zaragoza, España
| | | | | | | | | | | | | | - Iker López Sanz
- Servicio de Cirugía Torácica, Hospital Universitario Donostia, España
| | | | - Primitivo Martínez Vallina
- Hospital Universitario Miguel Servet, Hospital Clínico Universitario Lozano Blesa e IIS Aragón, Zaragoza, España
| | - Patricia Menal Muñoz
- Servicio de Radiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - Laura Mezquita Pérez
- Servicio de Oncología Médica, Hospital Universitario Ramón y Cajal, Madrid, España
| | | | - Carlos A Rombolá
- Servicio de Cirugía Torácica, Complejo Hospitalario Universitario de Albacete, España
| | - Iñigo San Miguel Arregui
- Servicio de Oncología Radioterápica, Hospital Universitario de Gran Canaria «Dr. Negrín», España
| | - María de Valle Somiedo Gutiérrez
- Unidad de Broncoscopias y Neumología Intervencionista, Servicio de Neumología, ISS Fundación Jiménez Díaz, UAM, CIBERES, Madrid, España
| | | | | | - Carmen Vallejo
- Servicio de Oncología Radioterápica, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Paz Vaquero Lozano
- Unidad de Tabaquismo, Servicio de Neumología H.G.U. Gregorio Marañón, Madrid, España
| | - Gonzalo Varela Simó
- Servicio de Cirugía Torácica, Complejo Asistencial Universitario de Salamanca, España
| | | |
Collapse
|
45
|
Milevoj Kopčinović L, Domijan AM, Posavac K, Čepelak I, Žanić Grubišić T, Rumora L. Systemic redox imbalance in stable chronic obstructive pulmonary disease. Biomarkers 2016; 21:692-698. [PMID: 27121533 DOI: 10.3109/1354750x.2016.1172110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Increased oxidative burden is found in chronic obstructive pulmonary disease (COPD). OBJECTIVE To assess the association of ceruloplasmin, albumin, bilirubin, transferrin, thiols and malondialdehyde (MDA) with stable COPD. MATERIALS AND METHODS Oxidative stress markers measured in 106 COPD patients and 45 healthy subjects were evaluated. RESULTS Higher ceruloplasmin and MDA, and lower albumin, transferrin and thiols in COPD patients were found. Ceruloplasmin was the strongest single predictor of COPD. The model combining ceruloplasmin, albumin and thiols improved their individual diagnostic performances. CONCLUSIONS Diagnostic characteristics of ceruloplasmin, albumin, transferrin, thiols and MDA suggest their potential value as additional tools in disease diagnosis.
Collapse
Affiliation(s)
- Lara Milevoj Kopčinović
- a University Department of Chemistry, Medical School University Hospital Centre Sestre Milosrdnice , Zagreb , Croatia
| | - Ana-Marija Domijan
- b Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | - Ksenija Posavac
- c Department of Medical Biochemistry and Hematology , Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia
| | - Ivana Čepelak
- c Department of Medical Biochemistry and Hematology , Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia
| | - Tihana Žanić Grubišić
- c Department of Medical Biochemistry and Hematology , Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia
| | - Lada Rumora
- c Department of Medical Biochemistry and Hematology , Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia
| |
Collapse
|
46
|
Mateu-Jiménez M, Sánchez-Font A, Rodríguez-Fuster A, Aguilό R, Pijuan L, Fermoselle C, Gea J, Curull V, Barreiro E. Redox Imbalance in Lung Cancer of Patients with Underlying Chronic Respiratory Conditions. Mol Med 2016; 22:85-98. [PMID: 26772773 DOI: 10.2119/molmed.2015.00199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic respiratory diseases such as obstructive pulmonary disease (COPD) and oxidative stress may underlie lung cancer (LC). We hypothesized that the profile of oxidative and antioxidant events may differ in lung tumors and blood compartments of patients with non-small cell LC (NSCLC) with and without COPD. Redox markers (immunoblotting, ELISA, chemiluminescence, 2D electrophoresis and proteomics) were analyzed in blood samples of 17 control subjects and 80 LC patients (59 LC-COPD and 21 LC) and lung specimens (tumor and nontumor) from those undergoing thoracotomy (35 patients: 23 LC-COPD and 12 LC). As smoking history was more prevalent in LC-COPD patients, these were further analyzed post hoc as heavy and moderate smokers (cutoff, 60 pack-years). Malondialdehyde (MDA)-protein adducts and SOD1 levels were higher in tumor and nontumor samples of LC-COPD than in LC. In tumors compared with nontumors, SOD2 protein content was greater, whereas catalase levels were decreased in both LC and LC-COPD patients. Blood superoxide anion levels, protein carbonylation and nitration were greater in LC and LC-COPD patients than in the controls, and in the latter patients compared with the former. Systemic superoxide anion, protein carbonyls and nitrotyrosine above specific cutoff values best identified underlying COPD among all patients. Smoking did not influence the study results. A differential expression profile of oxidative stress markers exists in blood and, to a lesser extent, in the tumors of LC-COPD patients. These findings suggest that systemic oxidative stress and lung antioxidants (potential biomarkers) may predispose patients with chronic respiratory diseases to a higher risk for LC.
Collapse
Affiliation(s)
- Mercè Mateu-Jiménez
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Alberto Rodríguez-Fuster
- Thoracic Surgery Department and Pathology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Rafael Aguilό
- Thoracic Surgery Department and Pathology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Clara Fermoselle
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Victor Curull
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
47
|
Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid. Mediators Inflamm 2016; 2016:1903849. [PMID: 27057092 PMCID: PMC4735930 DOI: 10.1155/2016/1903849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.
Collapse
|
48
|
Mateu-Jiménez M, Cucarull-Martínez B, Yelamos J, Barreiro E. Reduced tumor burden through increased oxidative stress in lung adenocarcinoma cells of PARP-1 and PARP-2 knockout mice. Biochimie 2015; 121:278-86. [PMID: 26700152 DOI: 10.1016/j.biochi.2015.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Lung cancer (LC) is currently a major leading cause of cancer deaths worldwide. Poly(ADP-ribose) polymerases (PARP)-1 and -2 play important roles in DNA repair and other cell functions. Oxidative stress triggers autophagy and apoptosis. PARP inhibitors are currently used as anticancer strategies including LC. We hypothesized that inhibition of either PARP-1 or -2 expressions in the host animals influences tumor burden through several biological mechanisms, mainly redox imbalance (enhanced oxidative stress and/or decreased antioxidants, and cell regulators) in wild type (WT) lung adenocarcinoma cells. Compared to WT control tumors, in those of Parp-1(-/-) and Parp-2(-/-) mice: 1) tumor burden, as measured by weight, and cell proliferation rates were decreased, 2) oxidative stress levels were greater, whereas those of the major antioxidant enzymes were lower especially catalase, 3) tumor apoptosis and autophagy levels were significantly increased, and 4) miR-223 and nuclear factor of activated T-cells (NFAT)c-2 expression was decreased (the latter only in Parp-1(-/-) mice). Furthermore, whole body weight gain at the end of the study period also improved in Parp-1(-/-) and Parp-2(-/-) mice compared to WT animals. We conclude that PARP-1 and -2 genetic deletions in the host mice induced a significant reduction in tumor burden most likely through alterations in redox balance (downregulation of antioxidants, NFATc-2 and miR223, and increased oxidative stress), which in turn led to increased apoptosis and autophagy. Furthermore, tumor progression was also reduced probably as a result of cell cycle arrest induced by PARP-1 and -2 inhibition in the host mice. These results highlight the relevance of the host status in tumor biology, at least in this experimental model of lung adenocarcinoma in mice. Future research will shed light on the effects of selective pharmacological inhibitors of PARP-1 and PARP-1 in the host and tumor burden, which could eventually be applied in actual clinical settings.
Collapse
Affiliation(s)
- Mercè Mateu-Jiménez
- Pulmonology Department-Lung Cancer Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Blanca Cucarull-Martínez
- Pulmonology Department-Lung Cancer Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, Barcelona, Spain
| | - Jose Yelamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer Research Group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|
49
|
Barreiro E, Puig-Vilanova E, Marin-Corral J, Chacón-Cabrera A, Salazar-Degracia A, Mateu X, Puente-Maestu L, García-Arumí E, Andreu AL, Molina L. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure. J Cell Physiol 2015; 231:1495-513. [DOI: 10.1002/jcp.25241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Barreiro
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Ester Puig-Vilanova
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
| | - Judith Marin-Corral
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
| | - Alba Chacón-Cabrera
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Anna Salazar-Degracia
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Xavier Mateu
- Servicio de Neumología, Hospital General Gregorio Marañón; Universidad Complutense de Madrid; Madrid Spain
| | - Luis Puente-Maestu
- Servicio de Neumología, Hospital General Gregorio Marañón; Universidad Complutense de Madrid; Madrid Spain
| | - Elena García-Arumí
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); ISCIII; Barcelona Spain
| | - Antoni L. Andreu
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); ISCIII; Barcelona Spain
| | - Luis Molina
- Department of Cardiology, Hospital del Mar, Heart Diseases Biomedical Research Group, IMIM, and Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
50
|
Evaluation of the impact of radical tumor resection in lung cancer patients on the activity of selected antioxidant enzymes. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2015; 11:414-20. [PMID: 26336459 PMCID: PMC4349034 DOI: 10.5114/kitp.2014.47342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/09/2014] [Accepted: 10/06/2014] [Indexed: 11/24/2022]
Abstract
Introduction Oxidative stress appears to play an essential role as a secondary messenger in such physiological processes as apoptosis and survival as well as in proliferative signaling pathways. Oxidative damage is also considered to play a pivotal role in ageing, several degenerative diseases, and carcinogenesis. Lung cancer is the most common type of cancer, resulting in over 1.3 million deaths each year worldwide. Aim The aim of this study was to evaluate the activity of selected antioxidative enzymes in patients with lung cancer before and after radical surgery. Material and methods The study included 20 patients in the study group and 10 healthy volunteers in the control group. In the study group, blood samples were collected twice: one day before and one day after the operation. In the control group, blood samples were collected once. We estimated the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in erythrocytes. The total antioxidant status in blood plasma was also determined. Results The activity of the selected antioxidative enzymes was greater in the case of GPX and CAT after surgery; the results were statistically significant in the study group. The activity of SOD remained at a comparable level. The total antioxidant status also increased after surgery in the study group in comparison to its preoperative level.
Collapse
|