1
|
Romaldi B, Scirè A, Minnelli C, Frontini A, Casari G, Cianfruglia L, Mobbili G, de Bari L, Antognelli C, Pallardó FV, Armeni T. Overexpression of Glyoxalase 2 in Human Breast Cancer Cells: Implications for Cell Proliferation and Doxorubicin Resistance. Int J Mol Sci 2024; 25:10888. [PMID: 39456676 PMCID: PMC11507095 DOI: 10.3390/ijms252010888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Glyoxalase 2 (Glo2) is an enzyme of the glyoxalase system whose pathway parallels glycolysis and which aims to remove methylglyoxal (MGO). This study analyzed the possible additional roles of the Glo2 enzyme in breast cancer (MCF7) and non-cancer (HDF) cell lines, investigating its presence at the nuclear level and its potential involvement in cell proliferation and chemotherapy resistance. The results revealed that Glo2 is overexpressed in cancer cells, and its expression is higher during the proliferative (S and G2/M) phases of the cell cycle. The study also examined a post-translational modification (PTM) in which Glo2 could be involved, with S-glutathionylation revealing that Glo2 enhances this PTM in cancer cells both in the cytoplasm and nucleus. Inhibition of Glo2 by p-NCBG resulted in increased sensitivity to doxorubicin, a common chemotherapeutic agent. This suggests that Glo2 increases cancer cell resistance to chemotherapy, potentially through its role in regulating oxidative stress. These results highlight Glo2 as a potential therapeutic target to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Laura Cianfruglia
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06129 Perugia, Italy;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia-INCLIVA, Center for Biomedical Network Research on Rare Diseases (CIBERER), 46010 Valencia, Spain;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| |
Collapse
|
2
|
Elshaer SE, Hamad GM, Sobhy SE, Darwish AMG, Baghdadi HH, H Abo Nahas H, El-Demerdash FM, Kabeil SSA, Altamimi AS, Al-Olayan E, Alsunbul M, Docmac OK, Jaremko M, Hafez EE, Saied EM. Supplementation of Saussurea costus root alleviates sodium nitrite-induced hepatorenal toxicity by modulating metabolic profile, inflammation, and apoptosis. Front Pharmacol 2024; 15:1378249. [PMID: 38881874 PMCID: PMC11177093 DOI: 10.3389/fphar.2024.1378249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Sodium nitrite (NaNO2) is a widely used food ingredient, although excessive concentrations can pose potential health risks. In the present study, we evaluated the deterioration effects of NaNO2 additives on hematology, metabolic profile, liver function, and kidney function of male Wistar rats. We further explored the therapeutic potential of supplementation with S. costus root ethanolic extract (SCREE) to improve NaNO2-induced hepatorenal toxicity. In this regard, 65 adult male rats were divided into eight groups; Group 1: control, Groups 2, 3, and 4 received SCREE in 200, 400, and 600 mg/kg body weight, respectively, Group 5: NaNO2 (6.5 mg/kg body weight), Groups 6, 7 and 8 received NaNO2 (6.5 mg/kg body weight) in combination with SCREE (200, 400, and 600 mg/kg body weight), respectively. Our results revealed that the NaNO2-treated group shows a significant change in deterioration in body and organ weights, hematological parameters, lipid profile, and hepatorenal dysfunction, as well as immunohistochemical and histopathological alterations. Furthermore, the NaNO2-treated group demonstrated a considerable increase in the expression of TNF-α cytokine and tumor suppressor gene P53 in the kidney and liver, while a significant reduction was detected in the anti-inflammatory cytokine IL-4 and the apoptosis suppressor gene BCL-2, compared to the control group. Interestingly, SCREE administration demonstrated the ability to significantly alleviate the toxic effects of NaNO2 and improve liver function in a dose-dependent manner, including hematological parameters, lipid profile, and modulation of histopathological architecture. Additionally, SCREE exhibited the ability to modulate the expression levels of inflammatory cytokines and apoptotic genes in the liver and kidney. The phytochemical analysis revealed a wide set of primary metabolites in SCREE, including phenolics, flavonoids, vitamins, alkaloids, saponins and tannins, while the untargeted UPLC/T-TOF-MS/MS analysis identified 183 metabolites in both positive and negative ionization modes. Together, our findings establish the potential of SCREE in mitigating the toxic effects of NaNO2 by modulating metabolic, inflammatory, and apoptosis. Together, this study underscores the promise of SCREE as a potential natural food detoxifying additive to counteract the harmful impacts of sodium nitrite.
Collapse
Affiliation(s)
- Samy E Elshaer
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Gamal M Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sherien E Sobhy
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M Galal Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sanaa S A Kabeil
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omaima Kamel Docmac
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
4
|
Ma Y, She X, Liu Y, Qin X. MSC-derived exosomal miR-140-3p improves cognitive dysfunction in sepsis-associated encephalopathy by HMGB1 and S-lactoylglutathione metabolism. Commun Biol 2024; 7:562. [PMID: 38734709 PMCID: PMC11088640 DOI: 10.1038/s42003-024-06236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1β, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.
Collapse
Affiliation(s)
- Ying Ma
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Xingguo She
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Xian Qin
- Department of Gynaecology, The Third Xiangya Hospital, Central South University, 410013, Changsha, China.
| |
Collapse
|
5
|
Chen TH, Wang HC, Chang CJ, Lee SY. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int J Mol Sci 2024; 25:1314. [PMID: 38279310 PMCID: PMC10816320 DOI: 10.3390/ijms25021314] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Mitochondria are critical for providing energy to maintain cell viability. Oxidative phosphorylation involves the transfer of electrons from energy substrates to oxygen to produce adenosine triphosphate. Mitochondria also regulate cell proliferation, metastasis, and deterioration. The flow of electrons in the mitochondrial respiratory chain generates reactive oxygen species (ROS), which are harmful to cells at high levels. Oxidative stress caused by ROS accumulation has been associated with an increased risk of cancer, and cardiovascular and liver diseases. Glutathione (GSH) is an abundant cellular antioxidant that is primarily synthesized in the cytoplasm and delivered to the mitochondria. Mitochondrial glutathione (mGSH) metabolizes hydrogen peroxide within the mitochondria. A long-term imbalance in the ratio of mitochondrial ROS to mGSH can cause cell dysfunction, apoptosis, necroptosis, and ferroptosis, which may lead to disease. This study aimed to review the physiological functions, anabolism, variations in organ tissue accumulation, and delivery of GSH to the mitochondria and the relationships between mGSH levels, the GSH/GSH disulfide (GSSG) ratio, programmed cell death, and ferroptosis. We also discuss diseases caused by mGSH deficiency and related therapeutics.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Shih-Yu Lee
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
6
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
7
|
Braun BC, Müller K. Role of glyoxalase I and II in somatic and spermatogenic testicular cells during the postnatal development of the domestic cat. Theriogenology 2023; 197:10-15. [PMID: 36462331 DOI: 10.1016/j.theriogenology.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Like humans, many felid species suffer from teratozoospermia and frequently produce low numbers of normal spermatozoa. Male fertility can be affected by oxidative and dicarbonyl stress. Because of the high level of glycolytic activity in testes, reactive dicarbonyl metabolites may arise as side-products of glycolysis; their generation is further promoted by oxidative stress. Alpha-oxoaldehydes, including methylglyoxal (MG), are reactive dicarbonyl metabolites and substrates for the formation of advanced glycation end products. Elevated levels of both may lead to dicarbonyl stress and cause cellular dysfunction. However, MG and other α-oxoaldehydes can be converted to less dangerous molecules via the glyoxalase pathway. In this pathway, α-oxoaldehydes react with glutathione (GSH), forming a thioacetal, which becomes metabolized by glyoxalase I (GLO I) to S-D-lactoyl-glutathione (SLG). Glyoxalase II (GLO II) converts SLG to d-lactate upon the release of GSH. Nothing is known about the glyoxalase system in the feline testis and its capacity to mitigate an excess of dicarbonyl metabolites. To study whether GLO I and GLO II are present and have a specific function in the testis of the domestic cat, the gene expression of both enzymes were analyzed in testis samples of different developmental stages (prepubertal, pubertal, postpubertal). Furthermore, the presence of GLO I and GLO II proteins was investigated via immunohistochemistry. The GLO I gene expression does not change between developmental stages. Immunohistochemistry revealed strong signals for GLO I in the cytoplasm and nuclei of Sertoli and Leydig cells during all developmental stages. GLO I was described as catalyzing the rate-limiting step in the glyoxalase pathway. This implies a function on the part of this enzyme of sustaining the homeostasis of somatic testicular cells. For GLO II, we observed stage-dependent mRNA expression, which was significantly increased after puberty. In accordance with this observation, clear immunohistochemical GLO II signals were observed in nuclei of individual germ cells. The most intense signals were visible in spermatocytes. The different localizations of the strong GLO I and GLO II signals indicate that GLO II, in addition to the classical glyoxalase pathway, may have additional functions in meiotic germ cells, for example, providing lactate as an energy substrate and/or GSH as an antioxidant. Moreover, protein functions may be modulated via S-glutathionylation.
Collapse
Affiliation(s)
- Beate C Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
| | - Karin Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Reduced glutathione (GSH) is an essential non-enzymatic antioxidant in mammalian cells. GSH can act directly as an antioxidant to protect cells against free radicals and pro-oxidants, and as a cofactor for antioxidant and detoxification enzymes such as glutathione peroxidases, glutathione S-transferases, and glyoxalases. Glutathione peroxidases detoxify peroxides by a reaction that is coupled to GSH oxidation to glutathione disulfide (GSSG). GSSG is converted back to GSH by glutathione reductase and cofactor NADPH. GSH can regenerate vitamin E following detoxification reactions of vitamin E with lipid peroxyl radicals (LOO). GSH is a cofactor for GST during detoxification of electrophilic substances and xenobiotics. Dicarbonyl stress induced by methylglyoxal and glyoxal is alleviated by glyoxalase enzymes and GSH. GSH regulates redox signaling through reversible oxidation of critical protein cysteine residues by S-glutathionylation. GSH is involved in other cellular processes such as protein folding, protecting protein thiols from oxidation and crosslinking, degradation of proteins with disulfide bonds, cell cycle regulation and proliferation, ascorbate metabolism, apoptosis and ferroptosis.
Collapse
|
9
|
Tabler CT, Lodd E, Bennewitz K, Middel CS, Erben V, Ott H, Poth T, Fleming T, Morgenstern J, Hausser I, Sticht C, Poschet G, Szendroedi J, Nawroth PP, Kroll J. Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biol 2022; 59:102576. [PMID: 36535130 PMCID: PMC9792892 DOI: 10.1016/j.redox.2022.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2-/- larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2-/- livers displayed a reduced hexose concentration and a reduced postprandial P70-S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2-/- skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2-/- zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.
Collapse
Affiliation(s)
- Christoph Tobias Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Chiara Simone Middel
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Vanessa Erben
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tanja Poth
- CMCP - Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
11
|
Metabolic Shades of S-D-Lactoylglutathione. Antioxidants (Basel) 2022; 11:antiox11051005. [PMID: 35624868 PMCID: PMC9138017 DOI: 10.3390/antiox11051005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.
Collapse
|
12
|
Li X, Fargue S, Challa AK, Poore W, Knight J, Wood KD. Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels. Biochem Biophys Rep 2021; 28:101138. [PMID: 34584990 PMCID: PMC8453187 DOI: 10.1016/j.bbrep.2021.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hydroxyacylglutathione hydrolase (aka as GLO-2) is a component of the glyoxalase pathway involved in the detoxification of the reactive oxoaldehydes, glyoxal and methylglyoxal. These reactive metabolites have been linked to a variety of pathological conditions, including diabetes, cancer and heart disease and may be involved in the aging process. The objective of this study was to generate a mouse model deficient in GLO-2 to provide insight into the function of GLO-2 and to determine if it is potentially linked to endogenous oxalate synthesis which could influence urinary oxalate excretion. METHODS A GLO-2 knock out mouse was generated using CRISPR/Cas 9 techniques. Tissue and 24-h urine samples were collected under baseline conditions from adult male and female animals for biochemical analyses, including chromatographic measurement of glycolate, oxalate, glyoxal, methylglyoxal, D-lactate, ascorbic acid and glutathione levels. RESULTS The GLO-2 KO animals developed normally and there were no changes in 24-h urinary oxalate excretion, liver levels of methylglyoxal, glyoxal, ascorbic acid and glutathione, or plasma d-lactate levels. GLO-2 deficient males had lower plasma glycolate levels than wild type males while this relationship was not observed in females. CONCLUSIONS The lack of a unique phenotype in a GLO-2 KO mouse model under baseline conditions is consistent with recent evidence, suggesting a functional glyoxalase pathway is not required for optimal health. A lower plasma glycolate in male GLO-2 KO animals suggests glyoxal production may be a significant contributor to circulating glycolate levels, but not to endogenous oxalate synthesis.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Anil Kumar Challa
- Department of Genetics University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William Poore
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyle D. Wood
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
13
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
14
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
15
|
Yeasts as Complementary Model Systems for the Study of the Pathological Repercussions of Enhanced Synphilin-1 Glycation and Oxidation. Int J Mol Sci 2021; 22:ijms22041677. [PMID: 33562355 PMCID: PMC7915245 DOI: 10.3390/ijms22041677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Synphilin-1 has previously been identified as an interaction partner of α-Synuclein (αSyn), a primary constituent of neurodegenerative disease-linked Lewy bodies. In this study, the repercussions of a disrupted glyoxalase system and aldose reductase function on Synphilin-1 inclusion formation characteristics and cell growth were investigated. To this end, either fluorescent dsRed-tagged or non-tagged human SNCAIP, which encodes the Synphilin-1 protein, was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast strains devoid of enzymes Glo1, Glo2, and Gre3. Presented data shows that lack of Glo2 and Gre3 activity in S. cerevisiae increases the formation of large Synphilin-1 inclusions. This correlates with enhanced oxidative stress levels and an inhibitory effect on exponential growth, which is most likely caused by deregulation of autophagic degradation capacity, due to excessive Synphilin-1 aggresome build-up. These findings illustrate the detrimental impact of increased oxidation and glycation on Synphilin-1 inclusion formation. Similarly, polar-localised inclusions were observed in wild-type S. pombe cells and strains deleted for either glo1+ or glo2+. Contrary to S. cerevisiae, however, no growth defects were observed upon expression of SNCAIP. Altogether, our findings show the relevance of yeasts, especially S. cerevisiae, as complementary models to unravel mechanisms contributing to Synphilin-1 pathology in the context of neurodegenerative diseases.
Collapse
|
16
|
Interplay among Oxidative Stress, Methylglyoxal Pathway and S-Glutathionylation. Antioxidants (Basel) 2020; 10:antiox10010019. [PMID: 33379155 PMCID: PMC7824032 DOI: 10.3390/antiox10010019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are produced constantly inside the cells as a consequence of nutrient catabolism. The balance between ROS production and elimination allows to maintain cell redox homeostasis and biological functions, avoiding the occurrence of oxidative distress causing irreversible oxidative damages. A fundamental player in this fine balance is reduced glutathione (GSH), required for the scavenging of ROS as well as of the reactive 2-oxoaldehydes methylglyoxal (MGO). MGO is a cytotoxic compound formed constitutively as byproduct of nutrient catabolism, and in particular of glycolysis, detoxified in a GSH-dependent manner by the glyoxalase pathway consisting in glyoxalase I and glyoxalase II reactions. A physiological increase in ROS production (oxidative eustress, OxeS) is promptly signaled by the decrease of cellular GSH/GSSG ratio which can induce the reversible S-glutathionylation of key proteins aimed at restoring the redox balance. An increase in MGO level also occurs under oxidative stress (OxS) conditions probably due to several events among which the decrease in GSH level and/or the bottleneck of glycolysis caused by the reversible S-glutathionylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. In the present review, it is shown how MGO can play a role as a stress signaling molecule in response to OxeS, contributing to the coordination of cell metabolism with gene expression by the glycation of specific proteins. Moreover, it is highlighted how the products of MGO metabolism, S-D-lactoylglutathione (SLG) and D-lactate, which can be taken up and metabolized by mitochondria, could play important roles in cell response to OxS, contributing to cytosol-mitochondria crosstalk, cytosolic and mitochondrial GSH pools, energy production, and the restoration of the GSH/GSSG ratio. The role for SLG and glyoxalase II in the regulation of protein function through S-glutathionylation under OxS conditions is also discussed. Overall, the data reported here stress the need for further studies aimed at understanding what role the evolutionary-conserved MGO formation and metabolism can play in cell signaling and response to OxS conditions, the aberration of which may importantly contribute to the pathogenesis of diseases associated to elevated OxS.
Collapse
|
17
|
Doğan HO, Şenol O, Bolat S, Yıldız ŞN, Büyüktuna SA, Sarıismailoğlu R, Doğan K, Hasbek M, Hekim SN. Understanding the pathophysiological changes via untargeted metabolomics in COVID-19 patients. J Med Virol 2020; 93:2340-2349. [PMID: 33300133 DOI: 10.1002/jmv.26716] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease caused by a new strain of the coronavirus. There is limited data on the pathogenesis and the cellular responses of COVID-19. In this study, we aimed to determine the variation of metabolites between healthy control and COVID-19 via the untargeted metabolomics method. Serum samples were obtained from 44 COVID-19 patients and 41 healthy controls. Untargeted metabolomics analyses were performed by the LC/Q-TOF/MS (liquid chromatography quadrupole time-of-flight mass spectrometry) method. Data acquisition, classification, and identification were achieved by the METLIN database and XCMS. Significant differences were determined between patients and healthy controls in terms of purine, glutamine, leukotriene D4 (LTD4), and glutathione metabolisms. Downregulations were determined in R-S lactoglutathione and glutamine. Upregulations were detected in hypoxanthine, inosine, and LTD4. Identified metabolites indicate roles for purine, glutamine, LTD4, and glutathione metabolisms in the pathogenesis of the COVID-19. The use of selective leukotriene D4 receptor antagonists, targeting purinergic signaling as a therapeutic approach and glutamine supplementation may decrease the severity and mortality of COVID-19.
Collapse
Affiliation(s)
- Halef O Doğan
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Serkan Bolat
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Şeyma N Yıldız
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Seyit A Büyüktuna
- Department of Infectious Diseases, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | | | - Kübra Doğan
- Department of Biochemistry, Sivas Numune Hospital, Sivas, Turkey
| | - Mürşit Hasbek
- Department of Microbiology, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Süleyman N Hekim
- Department of Biochemistry, School of Medicine, University of Biruni, İstanbul, Turkey
| |
Collapse
|
18
|
Cianfruglia L, Morresi C, Bacchetti T, Armeni T, Ferretti G. Protection of Polyphenols against Glyco-Oxidative Stress: Involvement of Glyoxalase Pathway. Antioxidants (Basel) 2020; 9:antiox9101006. [PMID: 33081239 PMCID: PMC7602851 DOI: 10.3390/antiox9101006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic high glucose (HG) exposure increases methylglyoxal (MGO)-derived advanced glycation end-products (AGEs) and is involved in the onset of pathological conditions, such as diabetes, atherosclerosis and chronic-degenerative diseases. Under physiologic conditions the harmful effects of MGO are contrasted by glyoxalase system that is implicated in the detoxification of Reactive Carbonyl Species (RCS) and maintain the homeostasis of the redox environment of the cell. Polyphenols are the most abundant antioxidants in the diet and present various health benefits. Aims of the study were to investigate the effects of HG-chronic exposure on glyco-oxidation and glyoxalase system in intestinal cells, using CaCo-2 cells. Moreover, we studied the effect of apple polyphenols on glyco-oxidative stress. Our data demonstrated that HG-treatment triggers glyco-oxidation stress with a significant increase in intracellular Reactive Oxygen Species (ROS), lipid peroxidation, AGEs, and increase of Glyoxalase I (GlxI) activity. On the contrary, Glyoxalase II (GlxII) activity was lower in HG-treated cells. We demonstrate that apple polyphenols exert a protective effect against oxidative stress and dicarbonyl stress. The increase of total antioxidant capacity and glutathione (GSH) levels in HG-treated cells in the presence of apple polyphenols was associated with a decrease of GlxI activity.
Collapse
Affiliation(s)
- Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
- Correspondence: (T.B.); (T.A.)
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
- Correspondence: (T.B.); (T.A.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
| |
Collapse
|
19
|
Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020; 9:antiox9100909. [PMID: 32987701 PMCID: PMC7598719 DOI: 10.3390/antiox9100909] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the main source of reactive oxygen species (ROS), most of them deriving from the mitochondrial respiratory chain. Among the numerous enzymatic and non-enzymatic antioxidant systems present in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for maintaining the appropriate mitochondrial redox environment. mGSH’s ability to act directly or as a co-factor in reactions catalyzed by other mitochondrial enzymes makes its presence essential to avoid or to repair oxidative modifications that can lead to mitochondrial dysfunction and subsequently to cell death. Since mitochondrial redox disorders play a central part in many diseases, harboring optimal levels of mGSH is vitally important. In this review, we will highlight the participation of mGSH as a contributor to disease progression in pathologies as diverse as Alzheimer’s disease, alcoholic and non-alcoholic steatohepatitis, or diabetic nephropathy. Furthermore, the involvement of mitochondrial ROS in the signaling of new prescribed drugs and in other pathologies (or in other unmet medical needs, such as gender differences or coronavirus disease of 2019 (COVID-19) treatment) is still being revealed; guaranteeing that research on mGSH will be an interesting topic for years to come.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Network Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| |
Collapse
|
20
|
Lafita-Navarro MC, Perez-Castro L, Zacharias LG, Barnes S, DeBerardinis RJ, Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J Biol Chem 2020; 295:12398-12407. [PMID: 32611766 DOI: 10.1074/jbc.ac120.014189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer Barnes
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, Dallas, Texas, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Cortés-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodríguez-Orozco AR, Calderón-Cortés E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165801. [PMID: 32305451 DOI: 10.1016/j.bbadis.2020.165801] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are characterized by high NADH/NAD+ ratios due to excessive electron supply, causing defective mitochondrial function and impaired sirtuin-3 (SIRT-3) activity, the latter driving to oxidative stress and altered fatty acid β-oxidation. NADH is oxidized by the complex I in the electron transport chain, thereby factors inhibiting complex I like acetylation, cardiolipin peroxidation, and glutathionylation by low GSH/GSSG ratios affects SIRT3 function by increasing the NADH/NAD+ ratio. In this review, we summarized the evidence supporting a role of the above events in the development of insulin resistance, which is relevant in the pathogenesis of obesity and diabetes. We propose that maintenance of proper NADH/NAD+ and GSH/GSSG ratios are central to ameliorate insulin resistance, as alterations in these redox couples lead to complex I dysfunction, disruption of SIRT-3 activity, ROS production and impaired β-oxidation, the latter two being key effectors of insulin resistance.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México.
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58020, México
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58260, México
| |
Collapse
|
22
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
23
|
Caffarini M, Armeni T, Pellegrino P, Cianfruglia L, Martino M, Offidani A, Di Benedetto G, Arnaldi G, Campanati A, Orciani M. Cushing Syndrome: The Role of MSCs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Front Cell Dev Biol 2019; 7:227. [PMID: 31649930 PMCID: PMC6794435 DOI: 10.3389/fcell.2019.00227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022] Open
Abstract
Cushing syndrome (CS), caused by glucocorticoid (GCs) excess, is strictly connected to onset of different metabolic diseases and impaired wound healing. The source of excessively high levels of GCs allows the identification of endogenous and exogenous (iatrogenic) CS. Iatrogenic patients usually receive also anti-metabolites serving as the foundation to modern steroid-sparing immunosuppressive therapy. Tissues mainly targeted by CS are bone and fat, both derived from progenitor cells named mesenchymal stem cells (MSCs). In addition, the pathogenic role of MSCs in other diseases sharing common properties with CS, such as an altered inflammatory profile and increased oxidative stress, has been identified. In this light, MSCs isolated from skin of control healthy subjects (C-MSCs), patients affected by endogenous CS (ENDO-MSCs), patients affected by iatrogenic CS (IATRO-MSCs) and patients affected by exogenous CS receiving steroid-sparing drugs (SS-MSCs), respectively, have been isolated and analyzed. ENDO- and IATRO-MSCs showed a reduced differentiative potential toward osteogenic and adipogenic lineages compared to C-MSCs, whereas SS-MSCs re-acquired the ability to differentiate, with a trend similar to control cells. In addition, MSCs from CS groups, compared to control MSCs, displayed a reduction in the secretion of cytokines (immune-suppression), a decreased expression of genes related to wound healing and a dysregulation of the enzymes/genes related to antioxidant capacity. In conclusion, our results suggest that the hallmarks of CS, such as wound healing impairment and immunosuppression, are already detectable in undifferentiated cells, which could be considered a potential therapeutic early target for control of CS.
Collapse
Affiliation(s)
- Miriam Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Armeni
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Marianna Martino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Department of Experimental and Clinical Medicine, Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Arnaldi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
de Bari L, Atlante A, Armeni T, Kalapos MP. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer's disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res Rev 2019; 53:100915. [PMID: 31173890 DOI: 10.1016/j.arr.2019.100915] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.
Collapse
|
25
|
Galeazzi R, Laudadio E, Falconi E, Massaccesi L, Ercolani L, Mobbili G, Minnelli C, Scirè A, Cianfruglia L, Armeni T. Protein-protein interactions of human glyoxalase II: findings of a reliable docking protocol. Org Biomol Chem 2019; 16:5167-5177. [PMID: 29971290 DOI: 10.1039/c8ob01194j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glyoxalase II (GlxII) is an antioxidant glutathione-dependent enzyme, which catalyzes the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione (GSH). The last product is the most important thiol reducing agent present in all eukaryotic cells that have mitochondria and chloroplasts. It is generally known that GSH plays a crucial role not only in the cellular redox state but also in various cellular processes. One of them is protein S-glutathionylation, a process that can occur through an oxidation reaction of proteins' thiol groups by GSH. Changes in protein S-glutathionylation have been associated with a range of human diseases such as diabetes, cardiovascular and pulmonary diseases, neurodegenerative diseases and cancer. Within a major project aimed at elucidating the role of GlxII in the mechanism of S-glutathionylation, a reliable computational protocol consisting of a protein-protein docking approach followed by atomistic Molecular Dynamics (MD) simulations was developed and it was applied to the prediction of molecular associations between human GlxII (in the presence and absence of GSH) and some proteins that are known to be S-glutathionylated in vitro, such as actin, malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The computational results show a high propensity of GlxII to interact with actin and MDH through its active site and a high stability of the GlxII-protein systems when GSH is present. Moreover, close proximities of GSH with actin and MDH cysteine residues have been found, suggesting that GlxII could be able to perform protein S-glutathionylation by using the GSH molecule present in its catalytic site.
Collapse
Affiliation(s)
- Roberta Galeazzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
27
|
KRIT1 Loss-Of-Function Associated with Cerebral Cavernous Malformation Disease Leads to Enhanced S-Glutathionylation of Distinct Structural and Regulatory Proteins. Antioxidants (Basel) 2019; 8:antiox8010027. [PMID: 30658464 PMCID: PMC6356485 DOI: 10.3390/antiox8010027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity. Redox proteomic analyses showed that these effects are associated with increased S-glutathionylation of distinct proteins involved in adaptive responses to oxidative stress, including redox-sensitive chaperonins, metabolic enzymes, and cytoskeletal proteins, suggesting a novel molecular signature of KRIT1 loss-of-function. Besides providing further insights into the emerging pleiotropic functions of KRIT1, these findings point definitively to KRIT1 as a major player in redox biology, shedding new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis.
Collapse
|
28
|
Comparative analysis of the compatibility effects of Danggui-Sini Decoction on a blood stasis syndrome rat model using untargeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:164-175. [DOI: 10.1016/j.jchromb.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
|
29
|
Ali AS, Raju R, Kshirsagar R, Ivanov AR, Gilbert A, Zang L, Karger BL. Multi-Omics Study on the Impact of Cysteine Feed Level on Cell Viability and mAb Production in a CHO Bioprocess. Biotechnol J 2018; 14:e1800352. [PMID: 30485675 DOI: 10.1002/biot.201800352] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/18/2018] [Indexed: 12/12/2022]
Abstract
There is continual demand to maximize CHO cell culture productivity of a biotherapeutic while maintaining product quality. In this study, a comprehensive multi-omics analysis is performed to investigate the cellular response to the level of dosing of the amino acid cysteine (Cys) in the production of a monoclonal antibody (mAb). When Cys feed levels are insufficient, there is a significant decrease in protein titer. Multi-omics (metabolomics and proteomics, with support from RNAseq) is performed over the time course of the CHO bioprocess producing an IgG1 mAb in 5 L bioreactors. Pathway analysis reveals that insufficient levels of Cys in the feed lead to Cys depletion in the cell. This depletion negatively impacts antioxidant molecules, such as glutathione (GSH) and taurine, leading to oxidative stress with multiple deleterious cellular effects. In this paper, the resultant ER stress and subsequent apoptosis that affects cell viability and viable cell density has been considered. Key metabolic enzymes and metabolites are identified that can be potentially monitored as the process progresses and/or increased in the cell either by nutrient feeding or genetic engineering. This work reinforces the centrality of redox balance to cellular health and success of the bioprocess as well as the power of multi-omics to provide an in-depth understanding of the CHO cell biology during biopharmaceutical production.
Collapse
Affiliation(s)
- Amr S Ali
- Cell Culture Development, Biogen, Inc., Cambridge, MA, 02142, USA.,Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Ravali Raju
- Cell Culture Development, Biogen, Inc., Cambridge, MA, 02142, USA
| | | | - Alexander R Ivanov
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Alan Gilbert
- Cell Culture Development, Biogen, Inc., Cambridge, MA, 02142, USA
| | - Li Zang
- Analytical Development, Biogen, Inc., Cambridge, MA, 02142, USA
| | - Barry L Karger
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| |
Collapse
|
30
|
Modulation of Oxidative Status by Normoxia and Hypoxia on Cultures of Human Dermal Fibroblasts: How Does It Affect Cell Aging? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5469159. [PMID: 30405877 PMCID: PMC6199889 DOI: 10.1155/2018/5469159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) production in the skin is among the highest compared to other organs, and a clear correlation exists between ROS production and skin aging. Many attempts are underway to reduce oxidative stress in the skin by topical treatment or supplementation with antioxidants/cosmeceuticals, and cultures of human dermal fibroblasts (HDF) are widely used for these studies. Here, we examined the influence of oxygen tension on cell aging in HDF and how this impacted ROS production, the enzymatic and nonenzymatic antioxidant response system, and the efficacy of this defense system in limiting DNA damage and in modulating gene expression of proteins involved in the extracellular matrix, linked to skin aging. We investigated a selection of parameters that represent and reflect the behavior of cellular responses to aging and oxygen tension. Serial passaging of HDF under normoxia (21%) and hypoxia (5%) leads to cell aging as confirmed by β-galactosidase activity, p16 expression, and proliferation rate. However, in HDF under 21% O2, markers of aging were significantly increased compared to those under 5% O2 at matched cell passages despite having lower levels of intracellular ROS and higher levels of CoQ10, total GSH, SOD1, SOD3, and mitochondrial superoxide anion. miRNA-181a, which is known to be upregulated in HDF senescence, was also analyzed, and indeed, its expression was significantly increased in old cells at 21% O2 compared to those at 5% O2. Upregulation of MMP1 and downregulation of COL1A1 along with increased DNA damage were also observed under 21% O2 vs 5% O2. The data highlight that chronic exposure to atmospheric 21% O2 is able to trigger hormetic adaptive responses in HDF that however fail, in the long term, to prevent cellular aging. This information could be useful in further investigating molecular mechanisms involved in adaptation of skin fibroblasts to oxidative stress and may provide useful hints in addressing antiaging strategies.
Collapse
|
31
|
Comparative Genomics Analysis of Plasmid pPV989-94 from a Clinical Isolate of Pantoea vagans PV989. Int J Genomics 2018; 2018:1242819. [PMID: 29862249 PMCID: PMC5971314 DOI: 10.1155/2018/1242819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/25/2018] [Indexed: 11/18/2022] Open
Abstract
Pantoea vagans, a gram-negative bacterium from the genus Pantoea and family Enterobacteriaceae, is present in various natural environments and considered to be plant endophytes. We isolated the Pantoea vagans PV989 strain from the clinic and sequenced its whole genome. Besides a chromosome DNA molecule, it also harboured three large plasmids. A comparative genomics analysis was performed for the smallest plasmid, pPV989-94. It can be divided into four regions, including three conservative regions related to replication (R1), transfer conjugation (R2), and transfer leading (R3), and one variable region (R4). Further analysis showed that pPV989-94 is most similar to plasmids LA637P2 and pEA68 of Erwinia amylovora strains isolated from fruit trees. These three plasmids share three conservative regions (R1, R2, and R3). Interestingly, a fragment (R4′) in R4, mediated by phage integrase and phage integrase family site-specific recombinase and encoding 9 genes related to glycometabolism, resistance, and DNA repair, was unique in pPV989-94. Homologues of R4′ were found in other plasmids or chromosomes, suggesting that horizontal gene transfer (HGT) occurred among different bacteria of various species or genera. The acquired functional genes may play important roles in the adaptation of bacteria to different hosts or environmental conditions.
Collapse
|
32
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
33
|
Abstract
SIGNIFICANCE Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. CRITICAL ISSUES Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. FUTURE DIRECTIONS A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal. 27, 1130-1161.
Collapse
Affiliation(s)
- Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University , Heidelberg, Germany
| |
Collapse
|
34
|
Wezena CA, Alisch R, Golzmann A, Liedgens L, Staudacher V, Pradel G, Deponte M. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development. MICROBIAL CELL 2017; 5:32-41. [PMID: 29354648 PMCID: PMC5772037 DOI: 10.15698/mic2018.01.608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enzymes glyoxalase 1 and 2 (Glo1 and Glo2) are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE) in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Romy Alisch
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Alexandra Golzmann
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Linda Liedgens
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Minnelli C, Cianfruglia L, Laudadio E, Galeazzi R, Pisani M, Crucianelli E, Bizzaro D, Armeni T, Mobbili G. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2017; 26:242-251. [PMID: 28795851 DOI: 10.1080/1061186x.2017.1365873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liposomes are versatile platforms to carry anticancer drugs in targeted drug delivery; they can be surface modified by different strategies and, when coupled with targeting ligands, are able to increase cellular internalisation and organelle-specific drug delivery. An interesting strategy of antitumoral therapy could involve the use of lysosomotropic ligand-targeted liposomes loaded with molecules, which can induce lysosomal membrane permeabilization (LMP), leakage of cathepsins into the cytoplasm and subsequent apoptosis. We have previously demonstrated the ability of liposomes functionalised with a mannose-6-phosphate to reach lysosomes; in this research we compare the behaviour of M6P-modified and non-functionalised liposomes in MCF7 tumour cell and in HDF normal cells. With this aim, we first demonstrated by Western blotting the overexpression of mannose-6-phosphate/insulin-like growth factor (M6P/IGF-II) receptor in MCF7. Then, we prepared calcein-loaded liposomes and we revealed the increased uptake of M6P-functionalised liposomes in MCF7 cells respect to HDF cells by flow cytometry analysis. Finally, we loaded functionalised and not functionalised liposomes with N-hexanoyl-d-erythro-sphingosine (C6Cer), able to initiate LMP-induced apoptosis; after having studied the stability of both vesicles in the presence of serum by Dynamic Light Scattering and Spectrophotometric turbidity measurements, we showed that ceramide-loaded M6P-liposomes significantly increased apoptosis in MCF7 with respect to HDF cells.
Collapse
Affiliation(s)
- Cristina Minnelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Laura Cianfruglia
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Emiliano Laudadio
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Roberta Galeazzi
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Michela Pisani
- c Department of Materials, Environmental Sciences and Urban Planning , Università Politecnica delle Marche , Ancona , Italy
| | - Emanuela Crucianelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Davide Bizzaro
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Tatiana Armeni
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Giovanna Mobbili
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
36
|
Talesa VN, Ferri I, Bellezza G, Love HD, Sidoni A, Antognelli C. Glyoxalase 2 Is Involved in Human Prostate Cancer Progression as Part of a Mechanism Driven By PTEN/PI3K/AKT/mTOR Signaling With Involvement of PKM2 and ERα. Prostate 2017; 77:196-210. [PMID: 27696457 DOI: 10.1002/pros.23261] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glyoxalase 2 (Glo2), together with glyoxalase 1 (Glo1), forms the main scavenging system of methylglyoxal, a potent pro-apoptotic agent mainly generated by glycolysis. An increased rate of glycolysis is a well known signature of cancer cells. As a survival strategy, Glo1 is overexpressed in many human malignant cells, including prostate cancer (PCa), where it plays a crucial role in progression. No information is available on the role of Glo2 in the same ambit. PCa is the most common malignancy affecting men in the western world. Progression to a lethal hormone-refractory PCa represents the major concern in this pathology. Therefore, a deeper understanding of the molecular mechanisms underlying PCa invasiveness and metastasis is urgently needed in order to develop novel therapeutic targets for this incurable state of the malignancy. METHODS Glo2 and Glo1 expression was examined in clinical samples of PCa by immunohistochemistry and in different PCa cell models by western blotting and quantitative real-time polymerase chain reaction. Gene silencing/overexpression and scavenging/inhibitory agents were used for functional analyses. RESULTS We demonstrated that Glo2, together with Glo1, represents a novel mechanism in PCa progression as part of a pathway driven by PTEN/PI3K/AKT/mTOR signaling with involvement of PKM2 and ERα. Importantly, Glo1/Glo2 silencing did not alter the behavior of benign cells. CONCLUSIONS Targeting glyoxalases metabolic pathway may represent a strategy to selectively inhibit advanced PCa. Prostate 77:196-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincenzo N Talesa
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Ercolani L, Scirè A, Galeazzi R, Massaccesi L, Cianfruglia L, Amici A, Piva F, Urbanelli L, Emiliani C, Principato G, Armeni T. A possible S-glutathionylation of specific proteins by glyoxalase II: An in vitro and in silico study. Cell Biochem Funct 2017; 34:620-627. [PMID: 27935136 DOI: 10.1002/cbf.3236] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 01/07/2023]
Abstract
Glyoxalase II, the second of 2 enzymes in the glyoxalase system, is a hydroxyacylglutathione hydrolase that catalyses the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione, which is released from the active site. The tripeptide glutathione is the major sulfhydryl antioxidant and has been shown to control several functions, including S-glutathionylation of proteins. S-Glutathionylation is a way for the cells to store reduced glutathione during oxidative stress, or to protect protein thiol groups from irreversible oxidation, and few enzymes involved in protein S-glutathionylation have been found to date. In this work, the enzyme glyoxalase II and its substrate S-d-lactoylglutathione were incubated with malate dehydrogenase or with actin, resulting in a glutathionylation reaction. Glyoxalase II was also submitted to docking studies. Computational data presented a high propensity of the enzyme to interact with malate dehydrogenase or actin through its catalytic site and further in silico investigation showed a high folding stability of glyoxalase II toward its own reaction product glutathione both protonated and unprotonated. This study suggests that glyoxalase II, through a specific interaction of its catalytic site with target proteins, could be able to perform a rapid and specific protein S-glutathionylation using its natural substrate S-d-lactoylglutathione. SIGNIFICANCE This article reports for the first time a possible additional role of Glo2 that, after interacting with a target protein, is able to promote S-glutathionylation using its natural substrate SLG, a glutathione derived compound. In this perspective, Glo2 can play a new important regulatory role inS-glutathionylation, acquiring further significance in cellular post-translational modifications of proteins.
Collapse
Affiliation(s)
- Luisa Ercolani
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Massaccesi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Adolfo Amici
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Piva
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Lorena Urbanelli
- Department of Experimental Medicine and Biochemical Sciences, Università di Perugia, Perugia, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, Università di Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
38
|
Abstract
Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi.
Collapse
|
39
|
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5:151. [PMID: 25024695 PMCID: PMC4079069 DOI: 10.3389/fphar.2014.00151] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|