1
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
2
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. Int J Mol Sci 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
3
|
Wang W, Shen Q. Tranilast reduces cardiomyocyte injury induced by ischemia‑reperfusion via Nrf2/HO‑1/NF‑κB signaling. Exp Ther Med 2023; 25:160. [PMID: 36911371 PMCID: PMC9996351 DOI: 10.3892/etm.2023.11859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Tranilast, a synthetic derivative of a tryptophan metabolite, can be used to treat heart diseases. However, the specific mechanism underlying the effect of tranilast on ischemia-reperfusion (I/R) injury-induced cardiomyocyte apoptosis remains unclear. Therefore, the present study aimed to determine if tranilast could attenuate I/R-induced cardiomyocyte injury. A hypoxia/reoxygenation (H/R) model of H9c2 cardiomyocytes was established to simulate I/R-induced cardiomyocyte injury. The viability, apoptosis, inflammation and oxidative stress in H/R-induced H9c2 cells following treatment with tranilast were evaluated by Cell Counting Kit-8 and TUNEL assay. Commercially available kits were used to detect the levels of inflammatory markers and oxidative stress indicators. In addition, the expression levels of the apoptosis- and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NF-κB signalling pathway-associated proteins were detected by western blotting. The levels of reactive oxygen species were determined using 2',7'-dichlorofluorescin diacetate assay kit. The viability of H9c2 cells was decreased following induction with H/R. However, treatment with tranilast increased viability while decreasing apoptosis, oxidative stress and inflammatory response in H/R-induced H9c2 cells by activating Nrf2/HO-1/NF-κB signalling. Furthermore, treatment with ML-385, an Nrf2 inhibitor, reversed the effects of tranilast on H/R-induced H9c2 cells. In conclusion, the results of the present study suggested that tranilast could attenuate I/R-induced cardiomyocyte injury via the Nrf2/HO-1/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Quality Management Office, Zhejiang Sian International Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Qifeng Shen
- Department of Cardiovascular Diseases, Zhejiang Sian International Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
4
|
Urushima H, Matsubara T, Miyakoshi M, Kimura S, Yuasa H, Yoshizato K, Ikeda K. Hypo-osmolarity induces apoptosis resistance via TRPV2-mediated AKT-Bcl-2 pathway. Am J Physiol Gastrointest Liver Physiol 2023; 324:G219-G230. [PMID: 36719093 PMCID: PMC9988531 DOI: 10.1152/ajpgi.00138.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
In cirrhosis, several molecular alterations such as resistance to apoptosis could accelerate carcinogenesis. Recently, mechanotransduction has been attracting attention as one of the causes of these disturbances. In patients with cirrhosis, the serum sodium levels progressively decrease in the later stage of cirrhosis, and hyponatremia leads to serum hypo-osmolality. Since serum sodium levels in patients with cirrhosis with liver cancer are inversely related to cancer's number, size, stage, and cumulative survival, we hypothesized that hypo-osmolality-induced mechanotransduction under cirrhotic conditions might contribute to oncogenesis and/or progression of hepatocellular carcinoma (HCC). In this study, we adjusted osmosis of culture medium by changing the sodium chloride concentration and investigated the influence of hypotonic conditions on the apoptosis resistance of an HCC cell line, HepG2, using a serum-deprivation-induced apoptosis model. By culturing the cells in a serum-free medium, the levels of an antiapoptotic protein Bcl-2 were downregulated. In contrast, the hypotonic conditions caused apoptosis resistance by upregulation of Bcl-2. Next, we examined which pathway was involved in the apoptosis resistance. Hypotonic conditions enhanced AKT signaling, and constitutive activation of AKT in HepG2 cells led to upregulation of Bcl-2. Moreover, we revealed that the enhancement of AKT signaling was caused by intracellular calcium influx via a mechanosensor, TRPV2. Our findings suggested that hyponatremia-induced serum hypotonic in patients with cirrhosis promoted the progression of hepatocellular carcinoma.NEW & NOTEWORTHY Our study first revealed that hypo-osmolarity-induced mechanotransduction enhanced calcium-mediated AKT signaling via TRPV2 activation, resulting in contributing to apoptosis resistance. The finding indicates a possible view that liver cirrhosis-induced hyponatremia promotes hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaaki Miyakoshi
- Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima University, Kagoshima, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Huang R, Li S, Tian C, Zhou P, Zhao H, Xie W, Xiao J, Wang L, Habimana JDD, Lin Z, Yang Y, Cheng N, Li Z. Thermal stress involved in TRPV2 promotes tumorigenesis through the pathways of HSP70/27 and PI3K/Akt/mTOR in esophageal squamous cell carcinoma. Br J Cancer 2022; 127:1424-1439. [PMID: 35896815 PMCID: PMC9553907 DOI: 10.1038/s41416-022-01896-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The transient receptor potential vanilloid receptor 2 (TRPV2) has been found to participate in the pathogenesis of various types of cancers, however, its role(s) in the tumorigenesis of ESCC remain poorly understood. METHODS Western blotting and immunohistochemistry were performed to determine the expression profiles of TRPV2 in the ESCC patient tissues. A series of in vitro and in vivo experiments were conducted to reveal the role of TRPV2 in the tumorigenesis of ESCC. RESULTS Our study first uncovered that the activation of TRPV2 by recurrent acute thermal stress (54 °C) or O1821 (20 μM) promoted cancerous behaviours in ESCC cells. The pro-angiogenic capacity of the ESCC cells was found to be enhanced profoundly and both tumour formation and metastasis that originated from the cells were substantially promoted in nude mouse models upon the activation of TRPV2. These effects were inhibited significantly by tranilast (120 μM) and abolished by TRPV2 knockout. Conversely, overexpression of TRPV2 could switch the cells to tumorigenesis upon activation of TRPV2. Mechanistically, the driving role of TRPV2 in the progression of ESCC is mainly regulated by the HSP70/27 and PI3K/Akt/mTOR signalling pathways. CONCLUSIONS We revealed that TRPV2-PI3K/Akt/mTOR is a novel and promising target for the prevention and treatment of ESCC.
Collapse
Affiliation(s)
- Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Peng Zhou
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Huifang Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Xie
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Hepatobiliary Surgery, Provincial Cancer Hospital of Hunan, Changsha, China
| | - Jie Xiao
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ling Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yuchen Yang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Na Cheng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Zhao J, Li M, Xu J, Cheng W. The modulation of ion channels in cancer chemo-resistance. Front Oncol 2022; 12:945896. [PMID: 36033489 PMCID: PMC9399684 DOI: 10.3389/fonc.2022.945896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.
Collapse
|
7
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
8
|
Fallah HP, Ahuja E, Lin H, Qi J, He Q, Gao S, An H, Zhang J, Xie Y, Liang D. A Review on the Role of TRP Channels and Their Potential as Drug Targets_An Insight Into the TRP Channel Drug Discovery Methodologies. Front Pharmacol 2022; 13:914499. [PMID: 35685622 PMCID: PMC9170958 DOI: 10.3389/fphar.2022.914499] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a large group of ion channels that control many physiological functions in our body. These channels are considered potential therapeutic drug targets for various diseases such as neurological disorders, cancers, cardiovascular disease, and many more. The Nobel Prize in Physiology/Medicine in the year 2021 was awarded to two scientists for the discovery of TRP and PIEZO ion channels. Improving our knowledge of technologies for their study is essential. In the present study, we reviewed the role of TRP channel types in the control of normal physiological functions as well as disease conditions. Also, we discussed the current and novel technologies that can be used to study these channels successfully. As such, Flux assays for detecting ionic flux through ion channels are among the core and widely used tools for screening drug compounds. Technologies based on these assays are available in fully automated high throughput set-ups and help detect changes in radiolabeled or non-radiolabeled ionic flux. Aurora's Ion Channel Reader (ICR), which works based on label-free technology of flux assay, offers sensitive, accurate, and reproducible measurements to perform drug ranking matching with patch-clamp (gold standard) data. The non-radiolabeled trace-based flux assay coupled with the ICR detects changes in various ion types, including potassium, calcium, sodium, and chloride channels, by using appropriate tracer ions. This technology is now considered one of the very successful approaches for analyzing ion channel activity in modern drug discovery. It could be a successful approach for studying various ion channels and transporters, including the different members of the TRP family of ion channels.
Collapse
Affiliation(s)
| | - Ekta Ahuja
- Aurora Biomed Inc., Vancouver, BC, Canada
| | | | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qian He
- Aurora Discovery Inc., Foshan, China
| | - Shan Gao
- Aurora Discovery Inc., Foshan, China
| | | | | | | | - Dong Liang
- Aurora Biomed Inc., Vancouver, BC, Canada
- Aurora Discovery Inc., Foshan, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Oxidative Stress-Induced TRPV2 Expression Increase Is Involved in Diabetic Cataracts and Apoptosis of Lens Epithelial Cells in a High-Glucose Environment. Cells 2022; 11:cells11071196. [PMID: 35406761 PMCID: PMC8998065 DOI: 10.3390/cells11071196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cataracts are a serious complication of diabetes. In long-term hyperglycemia, intracellular Ca2+ concentration ([Ca2+]i) and reactive oxygen species (ROS) are increased. The apoptosis of lens epithelial cells plays a key role in the development of cataract. We investigated a potential role for transient receptor potential vanilloid 2 (TRPV2) in the development of diabetic cataracts. Immunohistochemical and Western blotting analyses showed that TRPV2 expression levels were significantly increased in the lens epithelial cells of patients with diabetic cataracts as compared with senile cataract, as well as in both a human lens epithelial cell line (HLEpiC) and primary rat lens epithelial cells (RLEpiCs) cultured under high-glucose conditions. The [Ca2+]i increase evoked by a TRPV2 channel agonist was significantly enhanced in both HLEpiCs and RLEpiCs cultured in high-glucose media. This enhancement was blocked by the TRPV2 nonspecific inhibitor ruthenium red and by TRPV2-specific small interfering (si)RNA transfection. Culturing HLEpiCs or RLEpiCs for seven days in high glucose significantly increased apoptosis, which was inhibited by TRPV2-specific siRNA transfection. In addition, ROS inhibitor significantly suppressed the ROS-induced increase of TRPV2-mediated Ca2+ signal and apoptosis under high-glucose conditions. These findings suggest a mechanism underlying high-glucose–induced apoptosis of lens epithelial cells, and offer a potential target for developing new therapeutic options for diabetes-related cataracts.
Collapse
|
10
|
Misri S, Kaul K, Mishra S, Charan M, Verma AK, Barr MP, Ahirwar DK, Ganju RK. Cannabidiol Inhibits Tumorigenesis in Cisplatin-Resistant Non-Small Cell Lung Cancer via TRPV2. Cancers (Basel) 2022; 14:cancers14051181. [PMID: 35267489 PMCID: PMC8909073 DOI: 10.3390/cancers14051181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Drug resistance is the key factor contributing to the therapeutic failure of lung cancer and the deaths related to lung cancer. Our study demonstrated that small molecular weight non-psychotropic phytochemical, cannabidiol (CBD), inhibits growth and metastasis of drug-resistant non-small cell lung cancer cells (NSCLC) cells in-vitro and in-vivo. We further discovered that CBD mediates its anti-cancer effects in part via an ion channel receptor, TRPV2, present on lung adenocarcinoma. Moreover, we showed that CBD induces apoptosis of cisplatin-resistant cells by modulating oxidative stress pathways. Overall, these studies indicate that CBD could be used as a promising therapeutic strategy in TRPV2 expressing cisplatin-resistant NSCLC. Abstract Chemotherapy forms the backbone of current treatments for many patients with advanced non-small-cell lung cancer (NSCLC). However, the survival rate is low in these patients due to the development of drug resistance, including cisplatin resistance. In this study, we developed a novel strategy to combat the growth of cisplatin-resistant (CR) NSCLC cells. We have shown that treatment with the plant-derived, non-psychotropic small molecular weight molecule, cannabidiol (CBD), significantly induced apoptosis of CR NSCLC cells. In addition, CBD treatment significantly reduced tumor progression and metastasis in a mouse xenograft model and suppressed cancer stem cell properties. Further mechanistic studies demonstrated the ability of CBD to inhibit the growth of CR cell lines by reducing NRF-2 and enhancing the generation of reactive oxygen species (ROS). Moreover, we show that CBD acts through Transient Receptor Potential Vanilloid-2 (TRPV2) to induce apoptosis, where TRPV2 is expressed on human lung adenocarcinoma tumors. High expression of TRPV2 correlates with better overall survival of lung cancer patients. Our findings identify CBD as a novel therapeutic agent targeting TRPV2 to inhibit the growth and metastasis of this aggressive cisplatin-resistant phenotype in NSCLC.
Collapse
Affiliation(s)
- Swati Misri
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
| | - Kirti Kaul
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
| | - Manish Charan
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
| | - Ajeet Kumar Verma
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
| | - Martin P. Barr
- Thoracic Oncology Research Group, Trinity St. James’s Cancer Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland;
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Dinesh K. Ahirwar
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
- Correspondence: (D.K.A.); (R.K.G.)
| | - Ramesh K. Ganju
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (K.K.); (S.M.); (M.C.); (A.K.V.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (D.K.A.); (R.K.G.)
| |
Collapse
|
11
|
Suriano F, Manca C, Flamand N, Depommier C, Van Hul M, Delzenne NM, Silvestri C, Cani PD, Di Marzo V. Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159056. [PMID: 34606993 DOI: 10.1016/j.bbalip.2021.159056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. RESULTS The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. CONCLUSIONS The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Claudia Manca
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium.
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy.
| |
Collapse
|
12
|
Aconitine Induces TRPV2-Mediated Ca 2+ Influx through the p38 MAPK Signal and Promotes Cardiomyocyte Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9567056. [PMID: 34512785 PMCID: PMC8426055 DOI: 10.1155/2021/9567056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
Aconitine is the main effective component of traditional Chinese medicine Aconitum, which has been proved to have severe cardiovascular toxicity. The toxic effect of aconitine on cardiomyocytes is related to intracellular calcium overload, but the mechanism remains unclear. The aim of this study was to explore the mechanism of aconitine inducing intracellular Ca2+ overload and promoting H9c2 cardiomyocyte apoptosis through transient receptor potential cation channel subfamily V member 2 (TRPV2). After treated with different concentrations of aconitine, the level of cell apoptosis, intracellular Ca2+, and expression of p-p38 MAPK and TRPV2 of H9c2 cardiomyocytes were detected. The results showed that aconitine induced Ca2+ influx and H9c2 cardiomyocyte apoptosis in a dose-dependent manner and promoted p38 MAPK activation as well as TRPV2 expression and plasma membrane (PM) metastasis. siTRPV2, tranilast, and SB202190 reversed intracellular Ca2+ overload and H9c2 cardiomyocyte apoptosis induced by aconitine. These results suggested that aconitine promoted TRPV2 expression and PM metastasis through p38 MAPK signaling, thus inducing intracellular Ca2+ overload and cardiomyocyte apoptosis. Furthermore, TRPV2 is a potential molecular target for the treatment of aconitine poisoning.
Collapse
|
13
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
14
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Li S, Zhao Z, Yang H, Wang D, Sun W, Li S, Zhang Z, Fu W. Construction and Validation of a Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer. Cancer Control 2021; 28:10732748211027160. [PMID: 34155937 PMCID: PMC8226383 DOI: 10.1177/10732748211027160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Increasing evidence indicated that the tumor microenvironment (TME) plays a
critical role in tumor progression. This study aimed to identify and
evaluate mRNA signature involved in lymph node metastasis (LNM) in TME for
gastric cancer (GC). Methods: Gene expression and clinical data were downloaded from The Cancer Genome
Atlas (TCGA). The ESTIMATE algorithm was used to evaluate the TME of GC. The
heatmap and Venn plots were applied for visualizing and screening out
intersect differentially expressed genes (DEGs) involved in LNM in TME.
Functional enrichment analysis, gene set enrichment analysis (GSEA) and
protein-protein interaction (PPI) network were also conducted. Furthermore,
binary logistic regression analysis were employed to develop a 4-mRNAs
signature for the LNM prediction. ROC curves were applied to validate the
LNM predictive ability of the riskscore. Nomogram was constructed and
calibration curve was plotted to verify the predictive power of
nomogram. Results: A total of 88 LNM related DEGs were identified. Functional enrichment
analysis and GSEA implied that those genes were associated with some
biological processes, such as ion transportation, lipid metabolism and
thiolester hydrolase activity. After univariate and multivariate logistic
regression analysis, 4 mRNAs (RASSF2, MS4A2, ANKRD33B and ADH1B) were
eventually screened out to develop a predictive model. ROC curves manifested
the good performance of the 4-mRNAs signature. The proportion of patients
with LNM in high-risk group was significantly higher than that in low-risk
group. The C-index of nomogram from training and test cohorts were 0.865 and
0.765, and the nomogram was well calibrated. Conclusions: In general, we identified a 4-mRNAs signature that effectively predicted LNM
in GC patients. Moreover, the 4-mRNAs signature and nomogram provide a
guidance for the preoperative evaluation and postoperative treatment of GC
patients.
Collapse
Affiliation(s)
- Shilong Li
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Zongxian Zhao
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Huaxiang Yang
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Daohan Wang
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Weilin Sun
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shuliang Li
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Shandong, China
| | - Zhaoxiong Zhang
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Weihua Fu
- Department of General Surgery, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
16
|
Yu ZH, Ji YC, Li K, Liang T, Liu B, Chen HL, Ni L, Luo ZP, Yang HL. Stiffness of the extracellular matrix affects apoptosis of nucleus pulposus cells by regulating the cytoskeleton and activating the TRPV2 channel protein. Cell Signal 2021; 84:110005. [PMID: 33862152 DOI: 10.1016/j.cellsig.2021.110005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
It is known that nucleus pulposus cells (NPs) play an important role in intervertebral disc degeneration (IVDD), and a previous study indicated that the stiffness of NP tissue changes during the degeneration process. However, the mechanism underlying the cellular response to ECM stiffness is still unclear. To analyze the effects of extracellular matrix (ECM) with different degrees of stiffness on NPs, we prepared polyacrylamide (PA) gels with different elastic moduli, and cells grown under different stiffness conditions were obtained and analyzed. The results showed that the spreading morphology of NPs changed significantly under increased ECM elastic modulus conditions and that TRPV2 and the PI3K / AKT signaling pathway were activated by stiffer ECM. At the same time, mitochondria released cytochrome c (Cyt c) and activated caspase proteins to promote the apoptosis of NPs. After TRPV2 was specifically knocked out, the activation of the PI3K / AKT signaling pathway decreased, and the release of Cyt c and NP apoptosis were reduced. These results indicate that TRPV2 is closely linked to the detection of extracellular mechanical signals, and that conversion of mechanical and biological signals plays an important role in regulating the biological behavior of cells. This study offers a new perspective on the cellular and biochemical events underlying IVDD which could result in novel treatments.
Collapse
Affiliation(s)
- Zhao-Hui Yu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Chao Ji
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Kun Li
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Liang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bo Liu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hai-Lei Chen
- Department of Neurosurgery, Jiangsu Rudong County People's Hospital, Nantong City, Jiangsu Province, China
| | - Li Ni
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Zong-Ping Luo
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Hui-Lin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
17
|
TRPV2: A Cancer Biomarker and Potential Therapeutic Target. DISEASE MARKERS 2020; 2020:8892312. [PMID: 33376561 PMCID: PMC7746447 DOI: 10.1155/2020/8892312] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The Transient Receptor Potential Vanilloid type-2 (TRPV2) channel exhibits oncogenicity in different types of cancers. TRPV2 is implicated in signaling pathways that mediate cell survival, proliferation, and metastasis. In leukemia and bladder cancer, the oncogenic activity of TRPV2 was linked to alteration of its expression profile. In multiple myeloma patients, TRPV2 overexpression correlated with bone tissue damage and poor prognosis. In prostate cancer, TRPV2 overexpression was associated with the castration-resistant phenotype and metastasis. Loss or inactivation of TRPV2 promoted glioblastoma cell proliferation and increased resistance to CD95-induced apoptotic cell death. TRPV2 overexpression was associated with high relapse-free survival in triple-negative breast cancer, whereas the opposite was found in patients with esophageal squamous cell carcinoma or gastric cancer. Another link was found between TRPV2 expression and either drug-induced cytotoxicity or stemness of liver cancer. Overall, these findings validate TRPV2 as a prime candidate for cancer biomarker and future therapeutic target.
Collapse
|
18
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
19
|
The TRPV2 cation channels: from urothelial cancer invasiveness to glioblastoma multiforme interactome signature. J Transl Med 2020; 100:186-198. [PMID: 31653969 DOI: 10.1038/s41374-019-0333-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Changes in transient receptor potential (TRP) Ca2+ permeable channels are associated with development and progression of different types of cancer. Herein, we report data relative to the expression and function of TRP vanilloid 2 (TRPV2) channels in cancer. Overexpression of TRPV2 is observed in high-grade urothelial cancers and treatment with the TRPV2 agonist cannabidiol induces apoptosis. In prostate cancer, TRPV2 promotes migration and invasion, and TRPV2 overexpression characterizes the castration-resistant phenotype. In breast cancer cells, inhibition of TRPV2 by tranilast reduces the insulin-like growth factor-1 stimulated proliferation. TRPV2 overexpression in triple-negative breast cancer cells is associated with high recurrence-free survival. Increased TRPV2 overexpression is present in patients with esophageal squamous cell carcinoma associated with advanced disease, lymph node metastasis, and poor prognosis. Increased TRPV2 transcripts have been found both in benign hepatoma and in hepatocarcinomas, where TRPV2 expression is associated with portal vein invasion and reduction of cancer stem cell expression. TRPV2 expression and function has been also evaluated in gliomagenesis. This receptor negatively controls survival, proliferation, and resistance to CD95- or BCNU-induced apoptosis. In glioblastoma stem cells, TRPV2 activation promotes differentiation and inhibits the proliferation in vitro and in vivo. In glioblastoma, the TRPV2 is part of an interactome-based signature complex, which is negatively associated with survival, and it is expressed in high risk of recurrence and temozolomide-resistant patients. Finally, also in hematological malignancies, such as myeloma or acute myeloid leukemia, TRPV2 might represent a target for novel therapeutic approaches. Overall, these findings demonstrate that TRPV2 exhibits an oncogenic activity in different types of cancers, controlling survival, proliferation, migration, angiogenesis, and invasion signaling pathways. Thus, it prompts the pharmacological use of TRPV2 targeting in the control of cancer progression.
Collapse
|
20
|
Liu J, Tian S, Fu M, He Y, Yu H, Cao X, Cao Y, Xu H. Protective Effects of Anthocyanins from
Coreopsis tinctoria
against Oxidative Stress Induced by Hydrogen Peroxide in MIN6 Cells. Chem Biodivers 2020; 17:e1900587. [DOI: 10.1002/cbdv.201900587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianli Liu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Siqi Tian
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Mingyang Fu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yin He
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hui Yu
- Shenyang He Eye Hospital INC Shenyang 110034 P. R. China
| | - Xiangyu Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yiyang Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hanyuan Xu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| |
Collapse
|
21
|
Huang R, Wang F, Yang Y, Ma W, Lin Z, Cheng N, Long Y, Deng S, Li Z. Recurrent activations of transient receptor potential vanilloid-1 and vanilloid-4 promote cellular proliferation and migration in esophageal squamous cell carcinoma cells. FEBS Open Bio 2019; 9:206-225. [PMID: 30761248 PMCID: PMC6356177 DOI: 10.1002/2211-5463.12570] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Some members of the transient receptor potential vanilloid (TRPV) subfamily of cation channels are thermosensitive. Earlier studies have revealed the distribution and functions of these thermo‐TRPVs (TRPV1–4) in various organs, but their expression and function in the human esophagus are not fully understood. Here, we probed for the expression of the thermo‐TRPVs in one nontumor human esophageal squamous cell line and two esophageal squamous cell carcinoma (ESCC) cell lines. TRPV1, TRPV2, and TRPV4 proteins were found to be upregulated in ESCC cells, while TRPV3 was not detectable in any of these cell lines. Subsequently, channel function was evaluated via monitoring of Ca2+ transients by Ca2+ imaging and nonselective cation channel currents were recorded by whole‐cell patch clamp. We found that TRPV4 was activated by heat at 28 °C–35 °C, whereas TRPV1 and TRPV2 were activated by higher, noxious temperatures (44 °C and 53 °C, respectively). Furthermore, TRPV1 was activated by capsaicin (EC50 = 20.32 μm), and this effect was antagonized by AMG9810; TRPV2 was activated by a newly developed cannabinoid compound, O1821, and inhibited by tranilast. In addition, TRPV4 was activated by hypotonic solutions (220 m Osm), and this effect was abolished by ruthenium red. The effects of TRPV1 and TRPV4 on ESCC were also explored. Our data, for the first time, showed that the overactivation of TRPV1 and TRPV4 promoted the proliferation and/or migration of ESCC cells. In summary, TRPV1, TRPV2, and TRPV4 were functionally expressed in human esophageal squamous cells, and thermo‐TRPVs might play an important role in the development of ESCC.
Collapse
Affiliation(s)
- Rongqi Huang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China
| | - Fei Wang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuchen Yang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Na Cheng
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Yan Long
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Sihao Deng
- Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China.,GZMU-GIBH Joint School of Life Sciences Guangzhou Medical University China
| |
Collapse
|
22
|
Eubler K, Herrmann C, Tiefenbacher A, Köhn FM, Schwarzer JU, Kunz L, Mayerhofer A. Ca 2+ Signaling and IL-8 Secretion in Human Testicular Peritubular Cells Involve the Cation Channel TRPV2. Int J Mol Sci 2018; 19:ijms19092829. [PMID: 30235802 PMCID: PMC6165404 DOI: 10.3390/ijms19092829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Peritubular cells are part of the wall of seminiferous tubules in the human testis and their contractile abilities are important for sperm transport. In addition, they have immunological roles. A proteomic analysis of isolated human testicular peritubular cells (HTPCs) revealed expression of the transient receptor potential channel subfamily V member 2 (TRPV2). This cation channel is linked to mechano-sensation and to immunological processes and inflammation in other organs. We verified expression of TRPV2 in peritubular cells in human sections by immunohistochemistry. It was also found in other testicular cells, including Sertoli cells and interstitial cells. In cultured HTPCs, application of cannabidiol (CBD), a known TRPV2 agonist, acutely induced a transient increase in intracellular Ca2+ levels. These Ca2+ transients could be blocked both by ruthenium red, an unspecific Ca2+ channel blocker, and tranilast (TRA), an antagonist of TRPV2, and were also abolished when extracellular Ca2+ was removed. Taken together this indicates functional TRPV2 channels in peritubular cells. When applied for 24 to 48 h, CBD induced expression of proinflammatory factors. In particular, mRNA and secreted protein levels of the proinflammatory chemokine interleukin-8 (IL-8/CXCL8) were elevated. Via its known roles as a major mediator of the inflammatory response and as an angiogenic factor, this chemokine may play a role in testicular physiology and pathology.
Collapse
Affiliation(s)
- Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Astrid Tiefenbacher
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | | | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
23
|
Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer. Biomed Pharmacother 2018; 105:697-706. [PMID: 29906748 DOI: 10.1016/j.biopha.2018.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
The malignant phenotype of the cells resulting from human liver cancer is driven by liver cancer stem-like cells (LCSLCs). Transient Receptor Potential Vanilloid-type 2 channel (TRPV2) contributes to the progression of different tumor types, including liver cancer. In the current study, the TRPV2 expression levels give rise to the effect on stemness in liver cancer cell lines. TRPV2 knockdown in HepG2 cells enhanced spheroid and colony formation, and expression levels of CD133, CD44 and ALDH1 whereas the opposite effects were observed in TRPV2 enforced expression in SMMC-7721 cells. Furthermore, TRPV2 overexpression restored inhibition of spheroid and colony formation, and stem cell markers expression in HepG2 cells with TRPV2 silencing. The addition of the TRPV2 agonist probenecid and the TRPV2 antagonist tranilast suppressed and/or increased in vitro spheroid and colony formation, and stem cell marker expression of LCSLCs and/or liver cancer cell lines, respectively. Notably, probenecid and tranilast significantly inhibited or promoted tumor growth of HepG2 xenografts in the severe combined immunodeficiency (SCID) mouse model, respectively. TRPV2 expression at protein levels revealed converse correlation with those of CD133 and CD44 in human hepatocellular carcinoma (HCC) tissue. Collectively, the data demonstrate that TRPV2 exert effects on stemness of liver cancer and is a potential target in the treatment of human liver cancer patients.
Collapse
|
24
|
Xi J, Xie C, Zhang Y, Wang L, Xiao J, Duan X, Ren J, Xiao F, Wang S. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22563-73. [PMID: 27502735 DOI: 10.1021/acsami.6b05561] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of carbon based hollow-structured nanospheres (HNSs) materials has stimulated growing interest due to their controllable structure, high specific surface area, large void space, enhanced mass transport, and good biocompatibility. The incorporation of functional nanomaterials into their core and/or shell opens new horizons in designing functionalized HNSs for a wider spectrum of promising applications. In this work, we report a new type of functionalized HNSs based on Pd nanoparticles (NPs) decorated double shell structured N-doped graphene quantum dots (NGQDs)@N-doped carbon (NC) HNSs, with ultrafine Pd NPs and "nanozyme" NGQDs as dual signal-amplifying nanoprobes, and explore their promising application as a highly efficient electrocatalyst in electrochemical sensing of a newly emerging biomarker, i.e., hydrogen peroxide (H2O2), for cancer detection. Due to the synergistic effect of the robust and conductive HNS supports and catalytically active Pd NPs and NGQD in facilitating electron transfer, the NGQD@NC@Pd HNS hybrid material exhibits high electrocatalytic activity toward the direct reduction of H2O2 and can promote the electrochemical reduction reaction of H2O2 at a favorable potential of 0 V, which effectively restrains the redox of most electroactive species in physiological samples and eliminates interference signals. The resultant electrochemical H2O2 biosensor based hybrid HNSs materials demonstrates attractive performance, including low detection limit down to nanomole level, short response time within 2 s, as well as high sensitivity, reproducibility, selectivity, and stability, and have been used in real-time tracking of trace amounts of H2O2 secreted from different living cancer cells in a normal state and treated with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan, 430073, China
| | | | | | | | | | | | - Jinghua Ren
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, 430022, P. R. China
| | | | | |
Collapse
|
25
|
Elbaz M, Ahirwar D, Xiaoli Z, Zhou X, Lustberg M, Nasser MW, Shilo K, Ganju RK. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. Oncotarget 2016; 9:33459-33470. [PMID: 30323891 DOI: 10.18632/oncotarget.9663] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential vanilloid type-2 (TRPV2) is an ion channel that is triggered by agonists like cannabidiol (CBD). Triple negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Chemotherapy is still the first line for the treatment of TNBC patients; however, TNBC usually gains rapid resistance and unresponsiveness to chemotherapeutic drugs. In this study, we found that TRPV2 protein is highly up-regulated in TNBC tissues compared to normal breast tissues. We also observed that TNBC and estrogen receptor alpha negative (ERβ-) patients with higher TRPV2 expression have significantly higher recurrence free survival compared to patients with lower TRPV2 expression especially those who were treated with chemotherapy. In addition, we showed that TRPV2 overexpression or activation by CBD significantly increased doxorubicin (DOX) uptake and apoptosis in TNBC cells. The induction of DOX uptake was abrogated by TRPV2 blocking or downregulation. In vivo mouse model studies showed that the TNBC tumors derived from CBD+DOX treated mice have significantly reduced weight and increased apoptosis compared to those treated with CBD or DOX alone. Overall, our studies for the first time revealed that TRPV2 might be a good prognostic marker for TNBC and ERβ- breast cancer patient especially for those who are treated with chemotherapy. In addition, TRPV2 activation could be a novel therapeutic strategy to enhance the uptake and efficacy of chemotherapy in TNBC patients.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA.,Department of Pharmacology, Pharmacy School, Helwan University, Helwan, Egypt
| | - Dinesh Ahirwar
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Zhang Xiaoli
- Center for Biostatistics, Ohio State University (OSU), Columbus, OH, USA
| | - Xinyu Zhou
- Department of surgery, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, USA
| | - Maryam Lustberg
- Department of Internal Medicine, Ohio State University (OSU), Columbus, OH, USA
| | - Mohd W Nasser
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Konstantin Shilo
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|