1
|
Stavrovskaya I, Morin BK, Madamba S, Alexander C, Romano A, Alam S, Pavlov L, Mitaishvili E, Peixoto PM. Mitochondrial ROS modulate presynaptic plasticity in the drosophila neuromuscular junction. Redox Biol 2025; 79:103474. [PMID: 39721493 PMCID: PMC11732232 DOI: 10.1016/j.redox.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The elevated emission of reactive oxygen species (ROS) from presynaptic mitochondria is well-documented in several inflammatory and neurodegenerative diseases. However, the potential role of mitochondrial ROS in presynaptic function and plasticity remains largely understudied beyond the context of disease. Here, we investigated this potential ROS role in presynaptic function and short-term plasticity by combining optogenetics, whole cell electrophysiological recordings, and live confocal imaging using a well-established protocol for induction and measurement of synaptic potentiation in Drosophila melanogaster neuromuscular junctions (NMJ). Optogenetic induction of ROS emission from presynaptic motorneuron mitochondria expressing mitokiller red (mK) resulted in synaptic potentiation, evidenced by an increase in the frequency of spontaneous mini excitatory junction potentials. Notably, this effect was not observed in flies co-expressing catalase, a cytosolic hydrogen peroxide (H2O2) scavenging enzyme. Moreover, the increase in electrical activity did not coincide with synaptic structural changes. The absence of Wnt1/Wg release from synaptic boutons suggested involvement of alternative or non-canonical signaling pathway(s). However, in existing boutons we observed an increase in the active zone (AZ) marker Brp/Erc1, which serves as docking site for the neurotransmitter vesicle release pool. We propose the involvement of putative redox switches in AZ components as the molecular target of mitochondrial H2O2. These findings establish a novel framework for understanding the signaling role of mROS in presynaptic structural and functional plasticity, providing insights into redox-based mechanisms of neuronal communication.
Collapse
Affiliation(s)
- Irina Stavrovskaya
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Stephen Madamba
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Alexis Romano
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Samia Alam
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Lucas Pavlov
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Erna Mitaishvili
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Pablo M Peixoto
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA.
| |
Collapse
|
2
|
Lavrichenko DS, Chelebieva ES, Kladchenko ES. The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111057. [PMID: 39662678 DOI: 10.1016/j.cbpb.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.
Collapse
Affiliation(s)
- Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| |
Collapse
|
3
|
Zhu Y, Yu J, Yang Q, Xie Y, Li X, Chen Z, Xiong Y, Fu W, He H, Yin S, Lan D, Li J, Xiong X. Mitochondria-targeted antioxidant MitoQ improves the quality of low temperature-preserved yak semen via alleviating oxidative stress. Anim Reprod Sci 2025; 273:107680. [PMID: 39709684 DOI: 10.1016/j.anireprosci.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant "MitoQ" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation. Semen samples were collected from six adult healthy Maiwa yaks and preserved at 4 ℃ in semen extender containing 0, 50, 100, 200, and 400 nM MitoQ, respectively. Firstly, the motility, membrane integrity, acrosome integrity, and abnormity index of yak spermatozoa were evaluated to determine the optimal MitoQ concentration. Next, the effect of MitoQ at the optimal concentration on spermatozoa antioxidant capacity, including reactive oxygen species (ROS) and malondialdehyde (MDA) contents, total antioxidant capacity (T-AOC), and superoxide dismutase content (SOD) levels, as well as mitochondrial membrane potential were analyzed. Up to 96 h of low-temperature storage, 200 nM MitoQ showed the most optimal effect on motility, membrane integrity, and acrosome integrity (P < 0.05) but not on sperm morphology (P > 0.05). Also, 200 nM MitoQ markedly reduced yak spermatozoa ROS and MDA contents for up to 48 h of low-temperature storage (P < 0.05). Finally, 200 nM MitoQ significantly improved T-AOC, SOD, and mitochondrial membrane potential for up to 24, 48, and 72 h of low-temperature storage, respectively (P < 0.05). In summary, semen extender supplementation with 200 nM MitoQ is beneficial for low-temperature yak semen preservation via improving the oxidative status.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jun Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xupeng Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhuo Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Larsen MA, Valley M, Karassina N, Wang H, Zhou W, Vidugiriene J. Bioluminescent Probes for the Detection of Superoxide and Nitric Oxide. ACS Chem Biol 2025; 20:56-61. [PMID: 39682022 DOI: 10.1021/acschembio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The regulation of reactive oxygen species (ROS) such as superoxide (SO) and nitric oxide (NO) is crucial in biology, influencing metabolism and signaling pathways. Imbalances in these species lead to oxidative stress and various diseases. Traditional methods for measuring SO and NO face challenges in terms of sensitivity and specificity, particularly in complex biological matrices. This report introduces bioluminescent probes that leverage the intrinsic sensitivity of bioluminescence for direct and selective detection of SO and NO. These probes release analogs of d-luciferin upon reaction with their target ROS. Following addition of luciferase, luminescence is generated proportional to the amount of accumulated luciferin, allowing for quantitation of SO or NO. Both probes exhibit high specificity, confirmed through cell-free assays and cell-based studies in macrophages, demonstrating their utility in measuring cellular SO and NO production. These assays offer a robust, high-throughput platform for studying ROS, providing direct insights into oxidative stress-related mechanisms.
Collapse
Affiliation(s)
- Matthew A Larsen
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Mike Valley
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Natasha Karassina
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Hui Wang
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Wenhui Zhou
- Promega Corporation, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Jolanta Vidugiriene
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| |
Collapse
|
6
|
Huang A, Xue H, Xie T, Xiang L, Chen Z, Ma A, Yan H, Yuan J. A review of the pathogenesis of mitochondria in breast cancer and progress of targeting mitochondria for breast cancer treatment. J Transl Med 2025; 23:70. [PMID: 39815317 PMCID: PMC11734335 DOI: 10.1186/s12967-025-06077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
With breast cancer being the most common tumor among women in the world today, it is also the leading cause of cancer-related deaths. Standard treatments include chemotherapy, surgery, endocrine therapy, and targeted therapy. However, the heterogeneity, drug resistance, and poor prognosis of breast cancer highlight an urgent need for further exploration of its underlying mechanisms. Mitochondria, highly dynamic intracellular organelles, play a pivotal role in maintaining cellular energy metabolism. Altered mitochondrial function plays a critical role in various diseases, and recent studies have elucidated its pathophysiological mechanisms in breast carcinogenesis. This review explores the role of mitochondrial dysfunction in breast cancer pathogenesis and assesses potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Haochen Xue
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Zhengzhuo Chen
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Aolong Ma
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China.
| |
Collapse
|
7
|
Seneff S, Kyriakopoulos AM. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 2025; 57:6. [PMID: 39789296 PMCID: PMC11717795 DOI: 10.1007/s00726-024-03440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity. This can be of crucial impact to either normal or cancer cells that have highly different mitochondrial redox status. Deuterium is an isotope of hydrogen with a neutron as well as a proton, making it about twice as heavy as hydrogen. We first explain the important role that the gut microbiome and the gut sulfomucin barrier play in deuterium management. We describe the synergistic effects of taurine in the gut to protect against the deleterious accumulation of deuterium in the mitochondria, which disrupts ATP synthesis by ATPase pumps. Moreover, taurine's derivatives, N-chlorotaurine (NCT) and N-bromotaurine (NBrT), produced through spontaneous reaction of taurine with hypochlorite and hypobromite, have fascinating regulatory roles to protect from oxidative stress and beyond. We describe how taurine could potentially alleviate deuterium stress, primarily through metabolic collaboration among various gut microflora to produce deuterium depleted nutrients and deuterium depleted water, and in this way protect against leaky gut barrier, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anthony M Kyriakopoulos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece
| |
Collapse
|
8
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Yan J, Feng Z, Xiao Y, Zhou M, Zhao X, Lin X, Shi W, Busch W, Li B. ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems. Proc Natl Acad Sci U S A 2025; 122:e2411579122. [PMID: 39793035 PMCID: PMC11725852 DOI: 10.1073/pnas.2411579122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems. Here, we found that in the absence of GSNOR, exposure to high Fe treatment results in DNA damage-dependent cell death specifically in vascular stem cells in root meristems within 48 h. Through a series of time-course transcriptomic analyses, we unveil that in the absence of GSNOR, mitochondrial dysfunction emerges as the most prominent response to high Fe treatment. Consistently, the application of mitochondrial respiratory inhibitors leads to stem cell death in root meristems, and pharmacological blockage of the voltage-dependent anion channel that is responsible for the release of mitochondrial-derived molecules into the cytosol or genetic changes that abolish the ANAC017- and ANAC013-mediated mitochondrial retrograde signaling effectively eliminate Fe-induced stem cell death in gsnor root meristems. We further identify the nuclear transcription factor ANAC044 as a mediator of this mitochondrial retrograde signaling. Disruption of ANAC044 completely abolishes the GSNOR-dependent, Fe-induced stem cell death in root meristems, while ectopic expression of ANAC044 causes severe root stem cell death. Collectively, our findings reveal a mechanism responsible for initiating Fe-induced stem cell death in the root meristem, which is the ANAC044-mediated GSNOR-regulated mitochondrial stress signaling pathway.
Collapse
Affiliation(s)
- Juanmei Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhihang Feng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Yihui Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaobo Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xianyong Lin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Baohai Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
10
|
Zang S, Zou S, Chen X, Pan B, Ning A, Qin J, Wei Y, Du K, Ye J, Liang Q, Fang Y, Qiongla, Cirenlamu, Song T, Zhou G. Abnormalities in mitochondrial energy metabolism induced by cryopreservation negatively affect goat sperm motility. Front Vet Sci 2025; 11:1514362. [PMID: 39834931 PMCID: PMC11743635 DOI: 10.3389/fvets.2024.1514362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility. The results revealed that goat sperm exhibited mitochondrial vacuolization, reduced matrix density, and significantly decreased levels of high-membrane potential mitochondria and adenosine triphosphate content, accompanied by a substantial increase in reactive oxygen species levels, ultimately leading to a significant decline in sperm viability. Further investigations unveiled that energy-related differential metabolites (capric acid, creatine, and D-glucosamine-6-phosphate) and differential metabolites with antioxidant effects (saikosaponin A, probucol, and cholesterol sulfate) were significantly downregulated. In addition, the activity of key rate-limiting enzymes involved in very long-chain fatty acid biosynthesis and β-oxidation-specifically acetyl-CoA carboxylase, fatty acid synthase, and carnitine palmitoyltransferase I related to capric acid metabolism-was considerably reduced. Furthermore, supplementation of differential metabolite capric acid (500 μM) significantly enhanced the motility of frozen-thawed goat sperm. These findings indicated that the mitochondrial ultrastructure of goat sperm is damaged and energy metabolism becomes abnormal after cryopreservation, potentially affecting sperm viability. The addition of different metabolites such as capric acid to the freezing extender can alleviate the decrease in sperm motility induced by cryopreservation.
Collapse
Affiliation(s)
- Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Zou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiangyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ao Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaozong Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kunlin Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiongla
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Cirenlamu
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Li S, Wang J, Andersen JV, Aldana BI, Zhang B, Prochownik EV, Rosenberg PA. Misprogramming of glucose metabolism impairs recovery of hippocampal slices from neuronal GLT-1 knockout mice and contributes to excitotoxic injury through mitochondrial superoxide production. J Neurochem 2025; 169:e16205. [PMID: 39193789 PMCID: PMC11659059 DOI: 10.1111/jnc.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.
Collapse
Affiliation(s)
- S Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J Wang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA
| | - P A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Ostrom EL, Stuppard R, Mattson-Hughes A, Marcinek DJ. Inducible and reversible SOD2 knockdown in mouse skeletal muscle drives impaired pyruvate oxidation and reduced metabolic flexibility. Free Radic Biol Med 2025; 226:237-250. [PMID: 39551449 DOI: 10.1016/j.freeradbiomed.2024.10.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Skeletal muscle mitochondrial dysfunction is a key characteristic of aging muscle and contributes to age related diseases such as sarcopenia, frailty, and type 2 diabetes. Mitochondrial oxidative stress has been implicated as a driving factor in these age-related diseases, however whether it is a cause, or a consequence of mitochondrial dysfunction remains to be determined. The development of flexible genetic models is an important tool to test the mechanistic role of mitochondrial oxidative stress on skeletal muscle metabolic dysfunction. We characterize a new model of inducible and reversible mitochondrial redox stress using a tetracycline controlled skeletal muscle specific short hairpin RNA targeted to superoxide dismutase 2 (iSOD2). METHODS iSOD2 KD and control (CON) animals were administered doxycycline for 3- or 12- weeks and followed for up to 24 weeks and mitochondrial respiration and muscle contraction were measured to define the time course of SOD2 KD and muscle functional changes and recovery. RESULTS Maximum knockdown of SOD2 protein occurred by 6 weeks and recovered by 24 weeks after DOX treatment. Mitochondrial aconitase activity and maximum mitochondrial respiration declined in KD muscle by 12 weeks and recovered by 24 weeks. There were no significant differences in antioxidant or mitochondrial biogenesis genes between groups. Twelve-week KD showed a small, but significant decrease in muscle fatigue resistance. The primary phenotype was reduced metabolic flexibility characterized by impaired pyruvate driven respiration when other substrates are present. The pyruvate dehydrogenase kinase inhibitor dichloroacetate partially restored pyruvate driven respiration, while the thiol reductant DTT did not. CONCLUSION We use a model of inducible and reversible skeletal muscle SOD2 knockdown to demonstrate that elevated matrix superoxide reversibly impairs mitochondrial substrate flexibility characterized by impaired pyruvate oxidation. Despite the bioenergetic effect, the limited change in gene expression suggests that the elevated redox stress in this model is confined to the mitochondrial matrix.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aurora Mattson-Hughes
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
14
|
Yu F, Xie S, Wang T, Huang Y, Zhang H, Peng D, Feng Y, Yang Y, Zhang Z, Zhu Y, Meng Z, Zhang R, Li X, Yin H, Xu J, Hu C. Pancreatic β cell interleukin-22 receptor subunit alpha 1 deficiency impairs β cell function in type 2 diabetes via cytochrome b5 reductase 3. Cell Rep 2024; 43:115057. [PMID: 39675006 DOI: 10.1016/j.celrep.2024.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Impaired β cell function is a hallmark of type 2 diabetes (T2D), but the underlying cellular signaling machineries that regulate β cell function remain unknown. Here, we identify that the interleukin-22 receptor subunit alpha 1 (IL-22RA1), known as a co-receptor for IL-22, is downregulated in human and mouse T2D β cells. Mice with β cell Il22ra1 knockout (Il22ra1βKO) exhibit defective insulin secretion and impaired glucose tolerance after being fed a high-fat diet (HFD) or an HFD/low dose of streptozotocin (STZ). Mechanistically, β cell IL-22RA1 deficiency inhibits cytochrome b5 reductase 3 (CYB5R3) expression via the IL-22RA1/signal transducer and activator of the transcription 3 (STAT3)/c-Jun axis, thereby impairing mitochondrial function and reducing β cell identity. Overexpression of CYB5R3 reinstates mitochondrial function, β cell identity, and insulin secretion in Il22ra1βKO mice. Moreover, the pharmacological activation of CYB5R3 with tetrahydroindenoindole restores insulin secretion in Il22ra1βKO mice, IL-22RA1-knockdown human islets, and Min6 cells. In conclusion, these findings suggest an important role of IL-22RA1 in preserving β cell function in T2D, which offers a potential therapeutic target for treating diabetes.
Collapse
Affiliation(s)
- Fan Yu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shuting Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tongyu Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yifan Feng
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Zheyu Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Jie Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
15
|
Szponar J, Ciechanski E, Ciechanska M, Dudka J, Mandziuk S. Evolution of Theories on Doxorubicin-Induced Late Cardiotoxicity-Role of Topoisomerase. Int J Mol Sci 2024; 25:13567. [PMID: 39769331 PMCID: PMC11678604 DOI: 10.3390/ijms252413567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy. The development of late cardiomyopathy is not yet fully understood. The most important question is how DOX reprograms the cardiomyocyte, after which DOX is excreted from the body, initially without symptoms. However, clinically overt cardiomyopathy develops over the following months and years. Since the 1980s, DOX-induced disorders in cardiomyocytes have been thought to be related to oxidative stress and dependent on the Fe/reactive oxygen species (ROS) mechanism. That line of evidence was supported by dexrazoxane (DEX) protection, the only Food and Drug Administration (FDA)-approved drug for preventing DOX-induced cardiomyopathy, which complexes iron. Thus, the hypothesis related to Fe/ROS provides a plausible explanation for the induction of the development of late cardiomyopathy via DOX. However, in subsequent studies, DEX was used to identify another important mechanism in DOX-induced cardiomyopathy that is related to topoisomerase 2β (Top2β). Does the Top2β hypothesis explain the mechanisms of the development of DOX-dependent late heart failure? Several of these mechanisms have been identified to date, proving the involvement of Top2β in the regulation of the redox balance, including oxidative stress. Thus, the development of late cardiomyopathy can be explained based on mechanisms related to Top2β. In this review, we highlight free radical theory, iron imbalance, calcium overload, and finally, a theory based on Top2β.
Collapse
Affiliation(s)
- Jaroslaw Szponar
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, Krasnicka 100, 20-718 Lublin, Poland;
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Erwin Ciechanski
- Department of Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Magda Ciechanska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Antoniego Gebali 6, 20-093 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Sławomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
16
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. The Roles of Oxidative Stress and Red Blood Cells in the Pathology of the Varicose Vein. Int J Mol Sci 2024; 25:13400. [PMID: 39769165 PMCID: PMC11678264 DOI: 10.3390/ijms252413400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review discusses sources of reactive oxygen species, enzymatic antioxidant systems, and low molecular weight antioxidants. We present the pathology of varicose veins (VVs), including factors such as hypoxia, inflammation, dysfunctional endothelial cells, risk factors in varicose veins, the role of RBCs in venous thrombus formation, the influence of reactive oxygen species (ROS) and RBCs on VV pathology, and the role of hemoglobin in the damage of particles and macromolecules in VVs. This review discusses the production of ROS, enzymatic and nonenzymatic antioxidants, the pathogenesis of varicose veins as a pathology based on hypoxia, inflammation, and oxidative stress, as well as the participation of red blood cells in the pathology of varicose veins.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| |
Collapse
|
17
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
18
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2024; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
19
|
Panov AV, Mayorov VI, Dikalov SI. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int J Mol Sci 2024; 25:12740. [PMID: 39684455 DOI: 10.3390/ijms252312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation. We conclude that ATP production during fatty acid β-oxidation has its upper limits and thus cannot support high energy demands alone. Meanwhile, β-oxidation creates conditions that significantly accelerate the cycle: glucose-aerobic glycolysis-lactate-gluconeogenesis-glucose. Therefore, glycolytic ATP production becomes an important energy source in high energy demand. In addition, lactate serves as a mitochondrial substrate after converting to pyruvate + H+ by the mitochondrial lactate dehydrogenase. All coupled metabolic pathways are irreversible, and the enzymes are organized into multienzyme structures.
Collapse
Affiliation(s)
- Alexander V Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | - Vladimir I Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | | |
Collapse
|
20
|
Dilek O, Telci D, Erkan-Candag H. Small-Molecule Probe for Imaging Oxidative Stress-Induced Carbonylation in Live Cells. Bio Protoc 2024; 14:e5112. [PMID: 39600976 PMCID: PMC11588574 DOI: 10.21769/bioprotoc.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Protein carbonylation has been known as the major form of irreversible protein modifications and is also widely used as an indicator of oxidative stress in the biological environment. In the presence of oxidative stress, biological systems tend to produce large amounts of carbonyl moieties; these carbonyl groups do not have particular UV-Vis and fluorescence spectroscopic characteristics that we can differentiate, observe, and detect. Thus, their detection and quantification can only be performed using specific chemical probes. Commercially available fluorescent probes to detect specific carbonylation in biological systems have been used, but their chemical portfolio is still very limited. This protocol outlines the methods and procedures employed to synthesize a probe, (E,Z)-2-(2-(2-hydroxybenzylidene)hydrazonyl)-5-nitrophenol (2Hzin5NP), and assess its impact on carbonylation in human cells. The synthesis involves several steps, including the preparation of its hydrazone compounds mimicking cell carbonyls, 2-Hydrazinyl 5-nitrophenol, (E,Z)-2-(2-ethylidenehydrazonyl)-5-nitrophenol, and the final product (E,Z)-2-(2-(2-hydroxybenzylidene)hydrazonyl)-5-nitrophenol. The evaluation of fluorescence quantum yield and subsequent cell culture experiments are detailed for the investigation of 2Hzin5NP effects on cell proliferation and carbonylation. Key features • This protocol builds upon probe development using click chemistry method by Dilek et al. [1], and its biolabeling application in renal cancer cell lines. • The non-fluorescent probe has a fast reaction with carbonyl moieties at neutral pH to form a stable fluorescent product leading to a spectroscopic alteration. • Microscopic and fluorometric analyses can distinguish the exogenous and endogenous ROS-induced carbonylation profile in human dermal fibroblasts along with renal cell carcinoma. • Carbonylation level that differs in response to exogenous and endogenous stress in healthy and cancer cells can be detected by the newly synthesized fluorescent probe.
Collapse
Affiliation(s)
- Ozlem Dilek
- Department of Chemistry and Biochemistry, Institute for Advanced Biomedical Research, George Mason University, Manassas, VA, USA
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hazel Erkan-Candag
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Department of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse, Graz, Austria
| |
Collapse
|
21
|
Wang X, Miao D, Ye S, Xian H, Ge W. Abnormal Expression of COX5B Gene and Disorder of Mitochondrial Function in Cryptorchid Rats. J Cell Mol Med 2024; 28:e70234. [PMID: 39586785 PMCID: PMC11588429 DOI: 10.1111/jcmm.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Cryptorchidism is one of the most common congenital malformations in the paediatric genitourinary tract. Data analysis of cryptorchidism-related datasets in the GEO database and gene sequencing results from our institution, along with bioinformatic analysis of the merged mitochondrial gene datasets, revealed that COX5B is differentially expressed in the testes of children with cryptorchidism. Its encoded protein has attracted our attention as a key component of the mitochondrial respiratory chain complex IV. This study aims to explore the COX5B gene expression changes and related mitochondrial issues in cryptorchid rats. For this purpose, we established a cryptorchid rat model by surgery and used molecular biology and biochemistry techniques to detect and analyse the expression level of the COX5B gene and mitochondrial function indexes. The results indicated a significant decrease in COX5B gene expression in the affected testis of cryptorchid rats. The knockdown of COX5B expression in TM3 cells could be observed as the aggravation of cellular senescence, which led to the reduction of proliferation, as well as accompanied by the obvious disorders of mitochondrial function, including the increase of ROS and the decrease of ATP, in which MMP was significantly reduced. This suggests that the COX5B gene may play an important role in cryptorchid testis-induced reproductive system damage and may be a new target for small molecule-targeted therapy.
Collapse
Affiliation(s)
- Xuehan Wang
- Department of Pediatric SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Pediatric SurgeryMedical School of Nantong UniversityNantongChina
| | - Dashuai Miao
- Donghai County People's Hospital—Jiangnan University Smart Healthcare Joint LaboratoryDonghai County People's HospitalLianyungangJiangsuChina
| | - Songyi Ye
- Department of Pediatric SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Pediatric SurgeryMedical School of Nantong UniversityNantongChina
| | - Hua Xian
- Department of Pediatric SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Pediatric SurgeryMedical School of Nantong UniversityNantongChina
| | - Wenliang Ge
- Department of Pediatric SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Pediatric SurgeryMedical School of Nantong UniversityNantongChina
| |
Collapse
|
22
|
Sen B, Benoit B, Brand MD. Hypoxia decreases mitochondrial ROS production in cells. Free Radic Biol Med 2024; 224:1-8. [PMID: 39147069 DOI: 10.1016/j.freeradbiomed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site IQ in complex I and site IIIQo in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide. A similar decrease in ROS production under acute hypoxia was found using the diacetyldichlorofluorescein assay. Using a HIF1α reporter cell line we confirmed earlier observations that suppression of superoxide production by site IIIQo decreases HIF1α expression, and found similar effects of suppressing site IQ or NOX. We conclude that increased mitochondrial ROS do not drive the response of HIF1α to acute hypoxia, but suggest that cytosolic H2O2 derived from site IQ, site IIIQo and NOX in cells is necessary to permit HIF1α stabilization by other signals.
Collapse
Affiliation(s)
- Bijoya Sen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Bérengère Benoit
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
23
|
Yeves AM, Coto JG, Pereyra EV, Medina AJ, Arbelaez LFG, Cavalli FA, Ennis IL. Apelin/APJ signaling in IGF-1-induced acute mitochondrial and antioxidant effects in spontaneously hypertensive rat myocardium. J Physiol Biochem 2024; 80:949-959. [PMID: 39453580 DOI: 10.1007/s13105-024-01055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
IGF-1 and apelin are released in response to exercise training with beneficial effects. Previously we demonstrated that a swimming routine is effective to convert pathological into physiological cardiac hypertrophy, and that IGF-1 improves contractility and the redox state, in spontaneously hypertensive rats (SHR). Now, we hypothesize that the apelinergic pathway is involved in the cardioprotective effects of IGF-1 in the SHR. We assessed the redox state and mitochondrial effects of IGF-1 or apelin in the presence/absence of AG1024 or ML221 [pharmacological antagonists of IGF1 (IGF1R) and apelin (APJ) receptors, respectively] in SHR isolated cardiomyocytes or perfused hearts. Acute IGF-1 (10 nmol/L) significantly: -reduced H2O2 production (IGF-1:62 ± 6; control:100 ± 8.1, %), -increased the activity of superoxide dismutase (IGF-1:193 ± 17, control: 100 ± 13,%), -prevented H2O2-induced ΔΨm loss (TMREF10min/F0 min: IGF-1:0.93 ± 0.017, control: 0.72 ± 0.029), -reduced mitochondrial permeability transition pore (mPTP) opening estimated by the calcium retention capacity (nmol/mg protein, IGF-1:251 ± 34, control:112 ± 5), and -increased P-AMPK (IGF-1:129 ± 0.9, control: 100 ± 2%) and P-AKT (IGF-1:143 ± 17 control:100 ± 6, %). These effects were suppressed not only by the antagonism of IGF1R but also of APJ. Moreover, IGF-1 significantly increased APJ (IGF-1:198 ± 29 control:100 ± 15,%) and apelin mRNAs (IGF-1:251 ± 48, control:100 ± 6,%). On the other hand, an equipotent dose of exogenous apelin (50 nmol/L) emulated IGF-1 effects being cancelled by the antagonism of APJ however not by AG1024. IGF-1/IGF1R stimulates the apelinergic pathway, improving the redox balance and mitochondria status in the pathologically hypertrophied myocardium of the SHR.
Collapse
Affiliation(s)
- Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina.
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| | - Andrés J Medina
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| | - Luisa F González Arbelaez
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| | - Fiorella A Cavalli
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani" - Facultad de Ciencias Médicas, UNLP - CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
24
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
25
|
Kahlon U, Ricca FD, Pillai SJ, Olivetta M, Tharp KM, Jao LE, Dudin O, McDonald K, Aydogan MG. A mitochondrial redox switch licenses the onset of morphogenesis in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620733. [PMID: 39553983 PMCID: PMC11565760 DOI: 10.1101/2024.10.28.620733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryos undergo pre-gastrulation cleavage cycles to generate a critical cell mass before transitioning to morphogenesis. The molecular underpinnings of this transition have traditionally centered on zygotic chromatin remodeling and genome activation1,2, as their repression can prevent downstream processes of differentiation and organogenesis. Despite precedents that oxygen depletion can similarly suspend development in early embryos3-6, hinting at a pivotal role for oxygen metabolism in this transition, whether there is a bona fide chemical switch that licenses the onset of morphogenesis remains unknown. Here we discover that a mitochondrial oxidant acts as a metabolic switch to license the onset of animal morphogenesis. Concomitant with the instatement of mitochondrial membrane potential, we found a burst-like accumulation of mitochondrial superoxide (O2 -) during fly blastoderm formation. In vivo chemistry experiments revealed that an electron leak from site IIIQo at ETC Complex III is responsible for O2 - production. Importantly, depleting mitochondrial O2 - fully mimics anoxic conditions and, like anoxia, induces suspended animation prior to morphogenesis, but not after. Specifically, H2O2, and not ONOO-, NO, or HO•, can single-handedly account for this mtROS-based response. We demonstrate that depleting mitochondrial O2 - similarly prevents the onset of morphogenetic events in vertebrate embryos and ichthyosporea, close relatives of animals. We postulate that such redox-based metabolic licensing of morphogenesis is an ancient trait of holozoans that couples the availability of oxygen to development, conserved from early-diverging animal relatives to vertebrates.
Collapse
Affiliation(s)
- Updip Kahlon
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Touro College of Osteopathic Medicine, Touro University, USA
- These authors have contributed equally
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Dev. & Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- These authors have contributed equally
| | - Saraswathi J Pillai
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- These authors have contributed equally
| | - Marine Olivetta
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kevin M Tharp
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA
| | - Omaya Dudin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kent McDonald
- Electron Microscope Lab, University of California, Berkeley, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Nutrition and Obesity Research Center, University of California, San Francisco, USA
| |
Collapse
|
26
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
27
|
Nájera-Martínez M, Lara-Vega I, Avilez-Alvarado J, Pagadala NS, Dzul-Caamal R, Domínguez-López ML, Tuszynski J, Vega-López A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024; 12:2399. [PMID: 39457711 PMCID: PMC11505202 DOI: 10.3390/biomedicines12102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Disinfection by-products used to obtain drinking water, including halomethanes (HMs) such as CH2Cl2, CHCl3, and BrCHCl2, induce cytotoxicity and hyperproliferation in human lung fibroblasts (MRC-5). Enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) modulate these damages through their biotransformation processes, potentially generating toxic metabolites. However, the role of the oxidative stress response in cellular hyperproliferation, modulated by nuclear factor-kappa B (NF-κB), remains unclear. Methods: In this study, MRC-5 cells were treated with these compounds to evaluate reactive oxygen species (ROS) production, lipid peroxidation, phospho-NF-κB/p65 (Ser536) levels, and the activities of SOD, CAT, and GPx. Additionally, the interactions between HMs and ROS with the IκBα/NF-κB/p65 complex were analyzed using molecular docking. Results: Correlation analysis among biomarkers revealed positive relationships between pro-oxidant damage and antioxidant responses, particularly in cells treated with CH2Cl2 and BrCHCl2. Conversely, negative relationships were observed between ROS levels and NF-κB/p65 levels in cells treated with CH2Cl2 and CHCl3. The estimated relative free energy of binding using thermodynamic integration with the p65 subunit of NF-κB was -3.3 kcal/mol for BrCHCl2, -3.5 kcal/mol for both CHCl3 and O2•, and -3.6 kcal/mol for H2O2. Conclusions: Chloride and bromide atoms were found in close contact with IPT domain residues, particularly in the RHD region involved in DNA binding. Ser281 is located within this domain, facilitating the phosphorylation of this protein. Similarly, both ROS interacted with the IPT domain in the RHD region, with H2O2 forming a side-chain oxygen interaction with Leu280 adjacent to the phosphorylation site of p65. However, the negative correlation between ROS and phospho-NF-κB/p65 suggests that steric hindrance by ROS on the C-terminal domain of NF-κB/p65 may play a role in the antioxidant response.
Collapse
Affiliation(s)
- Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Israel Lara-Vega
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| | - Jhonatan Avilez-Alvarado
- Laboratorio de Visión Artificial, Unidad Culhuacán, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Santa Ana 1000, San Francisco Culhuacán CTM V, Mexico City 04440, Mexico;
| | | | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, Campeche 24070, Mexico;
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Jack Tuszynski
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City 07738, Mexico; (M.N.-M.); (I.L.-V.)
| |
Collapse
|
28
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
29
|
Brothwell MJ, Cao (曹国燊) G, Maschek JA, Poss AM, Peterlin AD, Wang (汪立平) L, Baker TB, Shahtout JL, Siripoksup P, Pearce QJ, Johnson JM, Finger FM, Prola A, Pellizzari SA, Hale GL, Manuel AM, Watanabe (渡邉真也) S, Miranda ER, Affolter KE, Tippetts TS, Nikolova LS, Choi (崔蘭煕) RH, Decker ST, Patil M, Catrow JL, Holland WL, Nowinski SM, Lark DS, Fisher-Wellman KH, Mimche PN, Evason KJ, Cox JE, Summers SA, Gerhart-Hines Z, Funai (船井勝彦) K. Cardiolipin deficiency disrupts CoQ redox state and induces steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617517. [PMID: 39416056 PMCID: PMC11482932 DOI: 10.1101/2024.10.10.617517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disorder marked by lipid accumulation, leading to steatohepatitis (MASH). A key feature of the transition to MASH involves oxidative stress resulting from defects in mitochondrial oxidative phosphorylation (OXPHOS). Here, we show that pathological alterations in the lipid composition of the inner mitochondrial membrane (IMM) directly instigate electron transfer inefficiency to promote oxidative stress. Specifically, cardiolipin (CL) was downregulated across four mouse models of MASLD. Hepatocyte-specific CL synthase knockout (CLS-LKO) led to spontaneous MASH with elevated mitochondrial electron leak. Loss of CL interfered with the ability of coenzyme Q (CoQ) to transfer electrons, promoting leak primarily at sites IIF and IIIQ0. Data from human liver biopsies revealed a highly robust correlation between mitochondrial CL and CoQ, co-downregulated with MASH. Thus, reduction in mitochondrial CL promotes oxidative stress and contributes to pathogenesis of MASH.
Collapse
Affiliation(s)
- Marisa J. Brothwell
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Guoshen Cao (曹国燊)
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Annelise M. Poss
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Liping Wang (汪立平)
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Talia B. Baker
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Division of Transplantation and Advanced Hepatobiliary Surgery, Department of Surgery; University of Utah; Salt Lake City, UT; USA
| | - Justin L. Shahtout
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
| | - Piyarat Siripoksup
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
| | - Quentinn J. Pearce
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Jordan M. Johnson
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Fabian M. Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen; DK
- Center for Adipocyte Signaling (ADIPOSIGN); University of Southern Denmark; Odense; DK
| | - Alexandre Prola
- Laboratory of Fundamental and Applied Bioenergetics; University of Grenoble Alpes, Inserm U1055; Grenoble; FR
| | - Sarah A. Pellizzari
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - Gillian L. Hale
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - Allison M. Manuel
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Shinya Watanabe (渡邉真也)
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Edwin R. Miranda
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Kajsa E. Affolter
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Laboratory of Fundamental and Applied Bioenergetics; University of Grenoble Alpes, Inserm U1055; Grenoble; FR
| | - Trevor S. Tippetts
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Linda S. Nikolova
- Electron Microscopy Core Facility; University of Utah; Salt Lake City, UT; USA
| | - Ran Hee Choi (崔蘭煕)
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Stephen T. Decker
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Mallikarjun Patil
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - J. Leon Catrow
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - William L. Holland
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Sara M. Nowinski
- Department of Metabolism and Nutritional Programming; Van Andel Institute; Grand Rapids, MI; USA
| | - Daniel S. Lark
- College of Health and Human Sciences; Colorado State University; Fort Collins, CO; USA
- Columbine Health Systems Center for Healthy Aging; Colorado State University; Fort Collins, CO; USA
| | - Kelsey H. Fisher-Wellman
- Department of Cancer Biology, Wake Forest University School of Medicine; Atrium Health Wake Forest Baptist Comprehensive Cancer Center; Winston-Salem, NC; USA
| | - Patrice N. Mimche
- Departments of Dermatology and Medicine; Division of Gastroenterology and Hepatology, Indiana University School of Medicine; Indianapolis, IN; USA
| | - Kimberley J. Evason
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - James E. Cox
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Scott A. Summers
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen; DK
- Center for Adipocyte Signaling (ADIPOSIGN); University of Southern Denmark; Odense; DK
| | - Katsuhiko Funai (船井勝彦)
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| |
Collapse
|
30
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
31
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
32
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y, Jiang M. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol 2024; 7:1229. [PMID: 39354016 PMCID: PMC11445474 DOI: 10.1038/s42003-024-06888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Oocytes play a crucial role in transmitting maternal mitochondrial DNA (mtDNA), essential for the continuation of species. However, the effects of mitochondrial reactive oxygen species (ROS) on mammalian oocyte maturation and mtDNA maintenance remain unclear. We investigated this by conditionally knocking out the Sod2 gene in primordial follicles, elevating mitochondrial matrix ROS levels from early oocyte stages. Our data indicates that reproductive aging in Sod2 conditional knockout females begins at 6 months, with oxidative stress impairing oocyte quality, particularly affecting OXPHOS complex II and mtDNA-encoded mRNA levels. Despite unchanged mtDNA mutation load, mtDNA copy numbers exhibited significant variations. Strikingly, reducing mtDNA copy numbers by reducing mtSSB protein, crucial for mtDNA replication, accelerated reproductive aging onset to three months, underscoring the critical role of mtDNA copy number maintenance under oxidative stress conditions. This research provides new insights into the relationship among mitochondrial ROS, mtDNA, and reproductive aging, offering potential strategies for delaying aging-related fertility decline.
Collapse
Affiliation(s)
- Shiyun Long
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yunchao Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jing Guo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| | - Yanmei Dou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Scialò F, Cernera G, Polise L, Castaldo G, Amato F, Villella VR. Effect of CFTR Modulators on Oxidative Stress and Autophagy in Non-CFTR-Expressing Cells. Int J Mol Sci 2024; 25:10360. [PMID: 39408688 PMCID: PMC11476568 DOI: 10.3390/ijms251910360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The triple combination therapy for cystic fibrosis (CF), including elexacaftor, tezacaftor and ivacaftor (ETI or Trikafta), has been shown to improve lung function and reduce pulmonary exacerbations, thereby enhancing the quality of life for most CF patients. Recent findings suggest that both the individual components and ETI may have potential off-target effects, highlighting the need to understand how these modulators impact cellular physiology, particularly in cells that do not express CF transmembrane conductance regulator (CFTR). We used HEK293 cells, as a cell model not expressing the CFTR protein, to evaluate the effect of ETI and each of its components on autophagic machinery and on the Rab5/7 components of the Rab pathway. We firstly demonstrate that the single modulators Teza and Iva, and the combinations ET and ETI, increased ROS production in the absence of their target while decreasing it in cells expressing the CFTR ∆F508del. This increase in cellular stress was followed by an increase in the total level of polyubiquitinated proteins as well as the p62 level and LC3II/LC3I ratio. Furthermore, we found that ETI had the opposite effect on Rabs by increasing Rab5 levels while decreasing Rab7. Interestingly, these changes were abolished by the expression of mutated CFTR. Overall, our data suggest that in the absence of their target, both the individual modulators and ETI increased ROS production and halted both autophagic flux and plasma membrane protein recycling.
Collapse
Affiliation(s)
- Filippo Scialò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Lorenza Polise
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | | |
Collapse
|
36
|
Ostrom EL, Stuppard R, Mattson-Hughes A, Marcinek DJ. Inducible and reversible SOD2 knockdown in mouse skeletal muscle drives impaired pyruvate oxidation and reduced metabolic flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614547. [PMID: 39386714 PMCID: PMC11463494 DOI: 10.1101/2024.09.23.614547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Introduction Skeletal muscle mitochondrial dysfunction is a key characteristic of aging muscle and contributes to age related diseases such as sarcopenia, frailty, and type 2 diabetes. Mitochondrial oxidative distress has been implicated as a driving factor in these age-related diseases, however whether it is a cause, or a consequence of mitochondrial dysfunction remains to be determined. The development of more flexible genetic models is an important tool to test the mechanistic role of mitochondrial oxidative stress on skeletal muscle metabolic dysfunction. We characterize a new model of inducible and reversible mitochondrial redox stress using a tetracycline controlled skeletal muscle specific short hairpin RNA targeted to superoxide dismutase 2 (iSOD2). Methods iSOD2 KD and control (CON) animals were administered doxycycline for 3- or 12- weeks and followed for up to 24 weeks and mitochondrial respiration and muscle contraction were measured to define the time course of SOD2 KD and muscle functional changes and recovery. Results Maximum knockdown of SOD2 protein occurred by 6 weeks and recovered by 24 weeks after DOX treatment. Mitochondrial aconitase activity and maximum mitochondrial respiration declined in KD muscle by 12 weeks and recovered by 24 weeks. There were minimal changes in gene expression between KD and CON muscle. Twelve-week KD showed a small, but significant decrease in muscle fatigue resistance. The primary phenotype was reduced metabolic flexibility characterized by impaired pyruvate driven respiration when other substrates are present. The pyruvate dehydrogenase kinase inhibitor dichloroacetate partially restored pyruvate driven respiration, while the thiol reductant DTT did not. Conclusion We use a model of inducible and reversible skeletal muscle SOD2 knockdown to demonstrate that elevated matrix superoxide reversibly impairs mitochondrial substrate flexibility characterized by impaired pyruvate oxidation. Despite the bioenergetic effect, the limited change in gene expression suggests that the elevated redox stress in this model is confined to the mitochondrial matrix.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aurora Mattson-Hughes
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
37
|
Fong ZW, Tang RMY, Cheah IKM, Leow DMK, Chen L, Halliwell B. Ergothioneine and mitochondria: An important protective mechanism? Biochem Biophys Res Commun 2024; 726:150269. [PMID: 38909533 DOI: 10.1016/j.bbrc.2024.150269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.
Collapse
Affiliation(s)
- Zachary Weijie Fong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Richard Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Damien Meng Kiat Leow
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Lucrecia Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
38
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
39
|
Kumar J, Kowluru RA. Mitochondrial DNA transcription and mitochondrial genome-encoded long noncoding RNA in diabetic retinopathy. Mitochondrion 2024; 78:101925. [PMID: 38944370 PMCID: PMC11390302 DOI: 10.1016/j.mito.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In diabetic retinopathy, mitochondrial DNA (mtDNA) is damaged and mtDNA-encoded genes and long noncoding RNA cytochrome B (LncCytB) are downregulated. LncRNAs lack an open reading frame, but they can regulate gene expression by associating with DNA/RNA/protein. Double stranded mtDNA has promoters on both heavy (HSP) and light (LSP) strands with binding sites for mitochondrial transcription factor A (TFAM) between them. The aim was to investigate the role of LncCytB in mtDNA transcription in diabetic retinopathy. Using human retinal endothelial cells incubated in high glucose, the effect of regulation of LncCytB on TFAM binding at mtDNA promoters was investigated by Chromatin immunoprecipitation, and binding of LncCytB at TFAM by RNA immunoprecipitation and RNA fluorescence in situ hybridization. High glucose decreased TFAM binding at both HSP and LSP, and binding of LncCytB at TFAM. While LncCytB overexpression ameliorated decrease in TFAM binding and transcription of genes encoded by both H- and L- strands, LncCytB-siRNA further downregulated them. Maintenance of mitochondrial homeostasis by overexpressing mitochondrial superoxide dismutase or Sirtuin-1 protected diabetes-induced decrease in TFAM binding at mtDNA and LncCytB binding at TFAM, and mtDNA transcription. Similar results were obtained from mouse retinal microvessels from streptozotocin-induced diabetic mice. Thus, LncCytB facilitates recruitment of TFAM at HSP and LSP, and its downregulation in diabetes compromises the binding, resulting in the downregulation of polypeptides encoded by mtDNA. Regulation of LncCytB, in addition to protecting mitochondrial genomic stability, should also help in maintaining the transcription of mtDNA encoded genes and electron transport chain integrity in diabetic retinopathy.
Collapse
Affiliation(s)
- Jay Kumar
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
Jabůrek M, Klöppel E, Průchová P, Mozheitova O, Tauber J, Engstová H, Ježek P. Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion. Redox Biol 2024; 75:103283. [PMID: 39067330 PMCID: PMC11332078 DOI: 10.1016/j.redox.2024.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
We asked whether acute redox signaling from mitochondria exists concomitantly to fatty acid- (FA-) stimulated insulin secretion (FASIS) at low glucose by pancreatic β-cells. We show that FA β-oxidation produces superoxide/H2O2, providing: i) mitochondria-to-plasma-membrane redox signaling, closing KATP-channels synergically with elevated ATP (substituting NADPH-oxidase-4-mediated H2O2-signaling upon glucose-stimulated insulin secretion); ii) activation of redox-sensitive phospholipase iPLA2γ/PNPLA8, cleaving mitochondrial FAs, enabling metabotropic GPR40 receptors to amplify insulin secretion (IS). At fasting glucose, palmitic acid stimulated IS in wt mice; palmitic, stearic, lauric, oleic, linoleic, and hexanoic acids also in perifused pancreatic islets (PIs), with suppressed 1st phases in iPLA2γ/PNPLA8-knockout mice/PIs. Extracellular/cytosolic H2O2-monitoring indicated knockout-independent redox signals, blocked by mitochondrial antioxidant SkQ1, etomoxir, CPT1 silencing, and catalase overexpression, all inhibiting FASIS, keeping ATP-sensitive K+-channels open, and diminishing cytosolic [Ca2+]-oscillations. FASIS in mice was a postprandially delayed physiological event. Redox signals of FA β-oxidation are thus documented, reaching the plasma membrane, essentially co-stimulating IS.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Eduardo Klöppel
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Pavla Průchová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Oleksandra Mozheitova
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
41
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
43
|
He K, Chen R, Xu S, Ding Y, Wu Z, Bao M, He B, Li S. Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1422752. [PMID: 39211449 PMCID: PMC11357934 DOI: 10.3389/fendo.2024.1422752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetes and its complications significantly affect individuals' quality of life. The etiology of diabetes mellitus and its associated complications is complex and not yet fully understood. There is an increasing emphasis on investigating the effects of endocrine disruptors on diabetes, as these substances can impact cellular processes, energy production, and utilization, ultimately leading to disturbances in energy homeostasis. Mitochondria play a crucial role in cellular energy generation, and any impairment in these organelles can increase susceptibility to diabetes. This review examines the most recent epidemiological and pathogenic evidence concerning the link between endocrine disruptors and diabetes, including its complications. The analysis suggests that endocrine disruptor-induced mitochondrial dysfunction-characterized by disruptions in the mitochondrial electron transport chain, dysregulation of calcium ions (Ca2+), overproduction of reactive oxygen species (ROS), and initiation of signaling pathways related to mitochondrial apoptosis-may be key mechanisms connecting endocrine disruptors to the development of diabetes and its complications.
Collapse
Affiliation(s)
- Kunhui He
- The 1 Affiliate Hospital of Changsha Medical University, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
45
|
Tetteh PA, Kalvani Z, Stevens D, Sappal R, Kamunde C. Interactions of binary mixtures of metals on rainbow trout (Oncorhynchus mykiss) heart mitochondrial H 2O 2 homeodynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106986. [PMID: 38851027 DOI: 10.1016/j.aquatox.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.
Collapse
Affiliation(s)
- Pius Abraham Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Ravinder Sappal
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| |
Collapse
|
46
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Piotin A, Oulehri W, Charles AL, Tacquard C, Collange O, Mertes PM, Geny B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants (Basel) 2024; 13:920. [PMID: 39199166 PMCID: PMC11352116 DOI: 10.3390/antiox13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We performed a systematic review, assessing the role and the complex cellular interplay of mitochondria and oxidative stress during anaphylaxis, mast cell metabolism and degranulation. After presenting the main characteristics of anaphylaxis, the oxidant/antioxidant balance and mitochondrial functions, we focused this review on the involvement of mitochondria and oxidative stress in anaphylaxis. Then, we discussed the role of oxidative stress and mitochondria following mast cell stimulation by allergens, leading to degranulation, in order to further elucidate mechanistic pathways. Finally, we considered potential therapeutic interventions implementing these findings for the treatment of anaphylaxis. Experimental studies evaluated mainly cardiomyocyte metabolism during AS. Cardiac dysfunction was associated with left ventricle mitochondrial impairment and lipid peroxidation. Studies evaluating in vitro mast cell degranulation, following Immunoglobulin E (IgE) or non-IgE stimulation, revealed that mitochondrial respiratory complex integrity and membrane potential are crucial for mast cell degranulation. Antigen stimulation raises reactive oxygen species (ROS) production from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria, leading to mast cell degranulation. Moreover, mast cell activation involved mitochondrial morphological changes and mitochondrial translocation to the cell surface near exocytosis sites. Interestingly, antioxidant administration reduced degranulation by lowering ROS levels. Altogether, these results highlight the crucial role of oxidative stress and mitochondria during anaphylaxis and mast cell degranulation. New therapeutics against anaphylaxis should probably target oxidative stress and mitochondria, in order to decrease anaphylaxis-induced systemic and major organ deleterious effects.
Collapse
Affiliation(s)
- Anays Piotin
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, 67000 Strasbourg, France
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Walid Oulehri
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
- Établissement Français du Sang (EFS) Grand Est, French National Institute of Health and Medical Research), (INSERM) BPPS UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, 67000 Strasbourg, France
| | - Olivier Collange
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Paul-Michel Mertes
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Bernard Geny
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| |
Collapse
|
48
|
Silveira JDA, Marcuzzo MB, da Rosa JS, Kist NS, Hoffmann CIH, Carvalho AS, Ribeiro RT, Quincozes-Santos A, Netto CA, Wajner M, Leipnitz G. 3-Hydroxy-3-Methylglutaric Acid Disrupts Brain Bioenergetics, Redox Homeostasis, and Mitochondrial Dynamics and Affects Neurodevelopment in Neonatal Wistar Rats. Biomedicines 2024; 12:1563. [PMID: 39062136 PMCID: PMC11274636 DOI: 10.3390/biomedicines12071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
3-Hydroxy-3-methylglutaric acidemia (HMGA) is a neurometabolic inherited disorder characterized by the predominant accumulation of 3-hydroxy-3-methylglutaric acid (HMG) in the brain and biological fluids of patients. Symptoms often appear in the first year of life and include mainly neurological manifestations. The neuropathophysiology is not fully elucidated, so we investigated the effects of intracerebroventricular administration of HMG on redox and bioenergetic homeostasis in the cerebral cortex and striatum of neonatal rats. Neurodevelopment parameters were also evaluated. HMG decreased the activity of glutathione reductase (GR) and increased catalase (CAT) in the cerebral cortex. In the striatum, HMG reduced the activities of superoxide dismutase, glutathione peroxidase, CAT, GR, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. Regarding bioenergetics, HMG decreased the activities of succinate dehydrogenase and respiratory chain complexes II-III and IV in the cortex. HMG also decreased the activities of citrate synthase and succinate dehydrogenase, as well as complex IV in the striatum. HMG further increased DRP1 levels in the cortex, indicating mitochondrial fission. Finally, we found that the HMG-injected animals showed impaired performance in all sensorimotor tests examined. Our findings provide evidence that HMG causes oxidative stress, bioenergetic dysfunction, and neurodevelopmental changes in neonatal rats, which may explain the neuropathophysiology of HMGA.
Collapse
Affiliation(s)
- Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Jaqueline Santana da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Nathalia Simon Kist
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Chrístofer Ian Hernandez Hoffmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Andrey Soares Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil; (J.d.A.S.); (M.B.M.); (J.S.d.R.); (N.S.K.); (C.I.H.H.); (A.S.C.); (R.T.R.); (A.Q.-S.); (C.A.N.); (M.W.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
49
|
Zan Q, Zhao K, Li R, Yang Y, Yang X, Li W, Zhang G, Dong C, Shuang S, Fan L. Mitochondria-Targetable Near-Infrared Fluorescent Probe for Visualization of Hydrogen Peroxide in Lung Injury, Liver Injury, and Tumor Models. Anal Chem 2024; 96:10488-10495. [PMID: 38901019 DOI: 10.1021/acs.analchem.3c05479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogen peroxide (H2O2) overexpressed in mitochondria has been regarded as a key biomarker in the pathological processes of various diseases. However, there is currently a lack of suitable mitochondria-targetable near-infrared (NIR) probes for the visualization of H2O2 in multiple diseases, such as PM2.5 exposure-induced lung injury, hepatic ischemia-reperfusion injury (HIRI), nonalcoholic fatty liver (NAFL), hepatic fibrosis (HF), and malignant tumor tissues containing clinical cancer patient samples. Herein, we conceived a novel NIR fluorescent probe (HCy-H2O2) by introducing pentafluorobenzenesulfonyl as a H2O2 sensing unit into the NIR hemicyanine platform. HCy-H2O2 exhibits good sensitivity and selectivity toward H2O2, accompanied by a remarkable "turn-on" fluorescence signal at 720 nm. Meanwhile, HCy-H2O2 has stable mitochondria-targetable ability and permits monitoring of the up-generated H2O2 level during mitophagy. Furthermore, using HCy-H2O2, we have successfully observed an overproduced mitochondrial H2O2 in ambient PM2.5 exposure-induced lung injury, HIRI, NAFL, and HF models through NIR fluorescence imaging. Significantly, the visualization of H2O2 has been achieved in both tumor-bear mice as well as surgical specimens of cancer patients, making HCy-H2O2 a promising tool for cancer diagnosis and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Zan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Kunyi Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Ruijin Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Wenzhong Li
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Gangli Zhang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Li Fan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
50
|
Featherston T, Paumann-Page M, Hampton MB. Melanoma redox biology and the emergence of drug resistance. Adv Cancer Res 2024; 162:145-171. [PMID: 39069368 DOI: 10.1016/bs.acr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Melanoma is the deadliest form of skin cancer, with the loss of approximately 60,000 lives world-wide each year. Despite the development of targeted therapeutics, including compounds that have selectivity for mutant oncoproteins expressed only in cancer cells, many patients are either unresponsive to initial therapy or their tumors acquire resistance. This results in five-year survival rates of below 25%. New strategies that either kill drug-resistant melanoma cells or prevent their emergence would be extremely valuable. Melanoma, like other cancers, has long been described as being under increased oxidative stress, resulting in an increased reliance on antioxidant defense systems. Changes in redox homeostasis are most apparent during metastasis and during the metabolic reprogramming associated with the development of treatment resistance. This review discusses oxidative stress in melanoma, with a particular focus on targeting antioxidant pathways to limit the emergence of drug resistant cells.
Collapse
Affiliation(s)
- Therese Featherston
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martina Paumann-Page
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|