1
|
Kostina A, Lewis-Israeli YR, Abdelhamid M, Gabalski MA, Kiselev A, Volmert BD, Lankerd H, Huang AR, Wasserman AH, Lydic T, Chan C, Park S, Olomu I, Aguirre A. ER stress and lipid imbalance drive diabetic embryonic cardiomyopathy in an organoid model of human heart development. Stem Cell Reports 2024; 19:317-330. [PMID: 38335962 PMCID: PMC10937107 DOI: 10.1016/j.stemcr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Congenital heart defects are the most prevalent human birth defects, and their incidence is exacerbated by maternal health conditions, such as diabetes during the first trimester (pregestational diabetes). Our understanding of the pathology of these disorders is hindered by a lack of human models and the inaccessibility of embryonic tissue. Using an advanced human heart organoid system, we simulated embryonic heart development under pregestational diabetes-like conditions. These organoids developed pathophysiological features observed in mouse and human studies before, including ROS-mediated stress and cardiomyocyte hypertrophy. scRNA-seq revealed cardiac cell-type-specific dysfunction affecting epicardial and cardiomyocyte populations and alterations in the endoplasmic reticulum and very-long-chain fatty acid lipid metabolism. Imaging and lipidomics confirmed these findings and showed that dyslipidemia was linked to fatty acid desaturase 2 mRNA decay dependent on IRE1-RIDD signaling. Targeting IRE1 or restoring lipid levels partially reversed the effects of pregestational diabetes, offering potential preventive and therapeutic strategies in humans.
Collapse
Affiliation(s)
- Aleksandra Kostina
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan R Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell A Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, MI, USA; Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Brett D Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Haley Lankerd
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda R Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, MI, USA
| | - Christina Chan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA; Division of Biomedical Devices, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, MI, USA; Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 PMCID: PMC10581560 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Hong J, Tong H, Wang X, Lv X, He L, Yang X, Wang Y, Xu K, Liang Q, Feng Q, Niu T, Niu X, Lu Y. Embryonic diapause due to high glucose is related to changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1135837. [PMID: 38170036 PMCID: PMC10759208 DOI: 10.3389/fendo.2023.1135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction The adverse effects of high glucose on embryos can be traced to the preimplantation stage. This study aimed to observe the effect of high glucose on early-stage embryos. Methods and results Seven-week-old ICR female mice were superovulated and mated, and the zygotes were collected. The zygotes were randomly cultured in 5 different glucose concentrations (control, 20mM, 40mM, 60mM and 80mM glucose). The cleavage rate, blastocyst rate and total cell number of blastocyst were used to assess the embryo quality. 40 mM glucose was selected to model high glucose levels in this study. 40mM glucose arrested early embryonic development, and the blastocyst rate and total cell number of the blastocyst decreased significantly as glucose concentration was increased. The reduction in the total cell number of blastocysts in the high glucose group was attributed to decreased proliferation and increased cell apoptosis, which is associated with the diminished expression of GLUTs (GLUT1, GLUT2, GLUT3). Furthermore, the metabolic characterization of blastocyst culture was observed in the high-glucose environment. Discussion The balance of glycolysis and oxidative phosphorylation at the blastocyst stage was disrupted. And embryo development arrest due to high glucose is associated with changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism.
Collapse
Affiliation(s)
- Jiewei Hong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Wang
- Party Committee Office, Shanxi Health Vocational College, Shanxi, China
| | - Xiaoyan Lv
- Library Collection and Editing Department, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan He
- Rehabilitation Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhi Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Wang
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Kaixia Xu
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Qianjin Feng
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Tingli Niu
- Medical Insurance Office, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xin Niu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Lu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Kostina A, Lewis-Israeli YR, Abdelhamid M, Gabalski MA, Volmert BD, Lankerd H, Huang AR, Wasserman AH, Lydic T, Chan C, Olomu I, Aguirre A. ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544081. [PMID: 37333095 PMCID: PMC10274758 DOI: 10.1101/2023.06.07.544081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Congenital heart defects constitute the most common birth defect in humans, affecting approximately 1% of all live births. The incidence of congenital heart defects is exacerbated by maternal conditions, such as diabetes during the first trimester. Our ability to mechanistically understand these disorders is severely limited by the lack of human models and the inaccessibility to human tissue at relevant stages. Here, we used an advanced human heart organoid model that recapitulates complex aspects of heart development during the first trimester to model the effects of pregestational diabetes in the human embryonic heart. We observed that heart organoids in diabetic conditions develop pathophysiological hallmarks like those previously reported in mouse and human studies, including ROS-mediated stress and cardiomyocyte hypertrophy, among others. Single cell RNA-seq revealed cardiac cell type specific-dysfunction affecting epicardial and cardiomyocyte populations, and suggested alterations in endoplasmic reticulum function and very long chain fatty acid lipid metabolism. Confocal imaging and LC-MS lipidomics confirmed our observations and showed that dyslipidemia was mediated by fatty acid desaturase 2 (FADS2) mRNA decay dependent on IRE1-RIDD signaling. We also found that the effects of pregestational diabetes could be reversed to a significant extent using drug interventions targeting either IRE1 or restoring healthy lipid levels within organoids, opening the door to new preventative and therapeutic strategies in humans.
Collapse
Affiliation(s)
- Aleksandra Kostina
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan R. Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell A. Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Brett D. Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Haley Lankerd
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda R. Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H. Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, MI, USA
| | - Christina Chan
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Li K, Shao X, Li H, Kuang X, Song X, Wang Y, Zhu S, Li D. Synergistic Effects of Folic Acid and n-3 Polyunsaturated Fatty Acid in Preventing Neural Tube Defects in Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11281-11289. [PMID: 36039894 DOI: 10.1021/acs.jafc.2c03806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study aimed to investigate whether a combination of folic acid (FA) and n-3 polyunsaturated fatty acids (PUFA) has a better preventive effect on maternal diabetes-induced neural tube defects (NTD) than FA alone. The experiment included five groups of pregnant mice: healthy control (HC), diabetes mellitus control (DMC), diabetes + n-3 PUFA (DMn-3), diabetes + FA (DMFA), and diabetes + FA + n-3 PUFA (DMFA + n-3). The incidence of NTD in DMFA + n-3 (1.04%) was significantly lower than that in DMFA (8.57%) and DMn-3 (7.82%). The incidence of NTD in DMFA and DMn-3 was significantly lower than that in DMC (19.41%). DMFA + n-3 had a lower apoptosis of neuroepithelial cells, a lower expression of P53 and Bax, and a higher expression of Pax3 and Bcl-2, compared with DMFA and DMn-3. Combination of FA and n-3 PUFA attenuated diabetes-induced hypermethylation of Pax3, overexpression and overactivity of Dnmt3b, abnormal expression of genes involved in one-carbon metabolism and elevation of homocysteine, and these improving effects were better than FA or n-3 PUFA alone. In conclusion, the combination of FA and n-3 PUFA has a synergistic effect on preventing maternal diabetes-induced NTD.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yan Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Suqin Zhu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|
7
|
Cheng F, Liu J, Guo Z, Li S, Chen J, Tu C, Fu F, Shen B, Zhang X, Lai G, Lan J. Angiotensin-(1-7) ameliorates high glucose-induced vascular endothelial injury through suppressing chloride channel 3. Bioengineered 2022; 13:4100-4111. [PMID: 35098884 PMCID: PMC8973701 DOI: 10.1080/21655979.2021.1997695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetes Mellitus (DM) is a significant risk factor for cardiovascular disease (CVD), which is leading cause of deaths in DM patients. However, there are limited effective medical therapies for diabetic CVD. Vascular endothelial injury caused by DM is a critical risk factor for diabetic CVD. Previous study has indicated that Angiotensin-(1-7) (Ang-(1-7)) may prevent diabetic CVD, whereas it is not clear that Ang-(1-7) whether attenuates diabetic CVD through suppressing vascular endothelial injury. In this study, we found that Ang-(1-7) alleviated high glucose (HG)-induced endothelial injury in bEnd3 cells. Moreover, Ang-(1-7) ameliorated HG-induced endothelial injury through downregulating chloride channel 3 (CIC-3) via Mas receptor. Furthermore, HG-induced CIC-3 enhanced reactive oxygen species (ROS) and cytokine production and reduced the level of nitric oxide (NO), while Ang-(1-7) preserved the impact of HG-induced CIC-3 on productions of ROS, cytokine and NO through inhibiting CIC-3 via Mas receptor. Summarily, the present study revealed that Ang-(1-7) alleviated HG-induced vascular endothelial injury through the inhibition of CIC-3, suggested that Ang-(1-7) may preserve diabetic CVD through suppressing HG-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Fei Cheng
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China.,Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jing Liu
- Second Ward of General Pediatrics, Dongguan Eighth People's Hospital, Dongguan Children's Hospital, Dongguan City, Guangdong Province 523321, China
| | - Zhuolin Guo
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Shicheng Li
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Jingfu Chen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Chang Tu
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Fengzhou Fu
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Bai Shen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Xiaojie Zhang
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Guohua Lai
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jun Lan
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| |
Collapse
|
8
|
Circular RNA circPHKA2 Relieves OGD-Induced Human Brain Microvascular Endothelial Cell Injuries through Competitively Binding miR-574-5p to Modulate SOD2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3823122. [PMID: 34790286 PMCID: PMC8592726 DOI: 10.1155/2021/3823122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 11/18/2022]
Abstract
Background Circular RNA phosphorylase kinase regulatory subunit alpha 2 (circPHKA2; hsa_circ_0090002) has a significantly, specifically different expression in acute ischemic stroke (AIS) patients' blood. Here, we intended to investigate the role and mechanism of circPHKA2 in oxygen-glucose deprivation- (OGD-) induced stoke model in human brain microvascular endothelial cells (HBMEC). Methods Expression of circPHKA2, microRNA- (miR-) 574-5p, and superoxide dismutase-2 (SOD2) was detected by quantitative PCR and western blotting. Cell injury was measured by detecting cell proliferation (EdU assay and CCK-8 assay), migration (transwell assay), neovascularization (tube formation assay), apoptosis (flow cytometry and western blotting), endoplasmic reticulum stress (western blotting), and oxidative stress (assay kits). Direct intermolecular interaction was determined by bioinformatics algorithms, dual-luciferase reporter assay, biotin-labelled miRNA capture, and argonaute 2 RNA immunoprecipitation. Results circPHKA2 was downregulated in AIS patients' blood in SOD2-correlated manner. Reexpressing circPHKA2 rescued EdU incorporation, cell viability and migration, tube formation, B cell lymphoma-2 (Bcl-2) expression, and SOD activity of OGD-induced HBMEC and alleviate apoptotic rate and levels of Bcl-2-associated protein (Bax), glucose-regulated protein 78 kD (GRP78), C/EBP-homologous protein (CHOP), caspase-12, reactive oxygen species (ROS), and malondialdehyde (MDA). Additionally, blocking SOD2 partially attenuated these roles of circPHKA2 overexpression. Molecularly, circPHKA2 upregulated SOD2 expression via interacting with miR-574-5p, and miR-574-5p could target SOD2. Similarly, allied to neurovascular protection of circPHKA2 was the downregulation of miR-574-5p. Conclusion circPHKA2 could protect HBMEC against OGD-induced cerebral stroke model via the miR-574-5p/SOD2 axis, suggesting circPHKA2 as a novel and promising candidate in ischemic brain injury.
Collapse
|
9
|
Li K, Shi Y, Zhu S, Shao X, Li H, Kuang X, Li S, Guo XF, Li D. N-3 polyunsaturated fatty acids effectively protect against neural tube defects in diabetic mice induced by streptozotocin. Food Funct 2021; 12:9188-9196. [PMID: 34606561 DOI: 10.1039/d1fo01606g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Folate cannot prevent all neural tube defects (NTD), indicating that other pathogeneses still exist except for the folate deficiency. Maternal diabetes mellitus during pregnancy can increase the risk of offspring NTD. Our previous study showed that polyunsaturated fatty acids (PUFA) were lower in the placenta of human NTD cases than in healthy controls, and the supplementation of fish oil (rich in long-chain (LC) n-3 PUFA, mainly C20:5n-3 and C22:6n-3) had a better prevention effect against sodium valproate induced NTD than corn oil (rich in C18:2n-6) and flaxseed oil (rich in C18:3n-3). The aim of the present study was to investigate whether PUFA could prevent diabetes-induced NTD in mice. Streptozotocin (STZ)-induced diabetic pregnant mice were fed with a normal diet (DMC), a diet containing a low dose of fish oil (DMLn-3), a diet containing a high dose of fish oil (DMHn-3) or a diet rich in corn oil (DMn-6). Healthy pregnant mice were fed with a normal diet (HC). Compared with the DMC group, the rate of NTD was significantly lower in the DMHn-3 group (4.44% vs. 12.50%), but not in the DMLn-3 (11.11%) or DMn-6 group (12.03%). The NTD rate in the DMHn-3 group was comparable with that in the HC group (1.33%) (p = 0.246), and lower than that in the DMn-6 group (p = 0.052). The NTD rate in DMLn-3 and DMn-6 groups was significantly higher than that in the HC group. No significant difference was observed in NTD rate between DMLn-3 and DMHn-3 groups, and between DMLn-3 and DMn-6 groups. Compared with the HC group, the DMC group had a significantly lower C22:6n-3 in both serum and embryos. Fish oil supplementation ameliorated neuroepithelial cell apoptosis, and the apoptotic rate was comparable between DMHn-3 and HC groups. Although the apoptotic rate was significantly lower in the DMn-6 group than the DMC group, it was still much higher than that in the HC group. The proteins P53 and Bax in embryos were higher, while the proteins Bcl-2 and Pax3 were lower in the DMC group than in the HC group. The disturbance of Pax3, P53 and Bax induced by diabetes was abolished in DMLn-3, DMHn-3 and DMn-6 groups. Importantly, Bcl-2 in embryos was restored to the normal level only in the DMHn-3 group but not in the DMLn-3 or DMn-6 group. In conclusion, LC n-3 PUFA enriched fish oil has a protective effect against NTD in diabetes induced by STZ through improving neuroepithelial cell apoptosis, and the mechanism may be by increasing the anti-apoptosis protein Bcl-2 independently of Pax3 and P53.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, China.
| | - Yan Shi
- Institute of Nutrition and Health, Qingdao University, China.
| | - Suqin Zhu
- Institute of Nutrition and Health, Qingdao University, China.
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China.
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China.
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China.
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, China.
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, Qingdao University, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China.
| |
Collapse
|
10
|
Facchinetti F, Cavalli P, Copp AJ, D’Anna R, Kandaraki E, Greene NDE, Unfer V. An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opin Drug Metab Toxicol 2020; 16:1187-1198. [PMID: 32966143 PMCID: PMC7614183 DOI: 10.1080/17425255.2020.1828344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Obstetric history and maternal body composition and lifestyle may be associated with serious complications both for the mother, such as gestational diabetes mellitus (GDM), and for the fetus, including congenital malformations such as neural tube defects (NTDs). AREAS COVERED In view of the recent knowledge, changes in nutritional and physical activity habits ameliorate glycemic control during pregnancy and in turn improve maternal and neonatal health outcomes. Recently, a series of small clinical and experimental studies indicated that supplemenation with inositols, a family of insulin sensitizers, was associated with beneficial impact for both GDM and NTDs. EXPERT OPINION Herein, we discuss the most significant scientific evidence supporting myo-inositol administration as a prophylaxis for the above-mentioned conditions.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Nicholas D. E. Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
11
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
12
|
Wu Y, Yuan Y, Wu C, Jiang T, Wang B, Xiong J, Zheng P, Li Y, Xu J, Xu K, Liu Y, Li X, Xiao J. The Reciprocal Causation of the ASK1-JNK1/2 Pathway and Endoplasmic Reticulum Stress in Diabetes-Induced Cognitive Decline. Front Cell Dev Biol 2020; 8:602. [PMID: 32766246 PMCID: PMC7379134 DOI: 10.3389/fcell.2020.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Diabetes significantly induces cognitive dysfunction. Neuronal apoptosis is the main cause of diabetes-induced cognitive decline (DICD). Apoptosis signal-regulating kinase 1 (ASK1) and endoplasmic reticulum (ER) stress are remarkably activated by diabetes. The role and relationship of ASK1-JNK1/2 signaling and ER stress in DICD have not yet been elucidated. In this study, we used db/db mice as the DICD animal model and confirmed that db/db mice displayed cognitive decline with inferior learning and memory function. Diabetes significantly induced morphological and structural changes, excessive neuronal apoptosis, Aβ1 - 42 large deposition, and synaptic dysfunction in the hippocampus. Mechanistic studies found that diabetes significantly triggered ASK1-JNK1/2 signaling activation and increased ER stress in the hippocampus. Moreover, diabetes enhanced the formation of the IRE1α-TRAF2-ASK1 complex, which promotes the crosstalk of ER stress and the ASK1-JNK1/2 pathway during DICD. Furthermore, 4-PBA treatment blocked high glucose (HG)-induced ASK1-JNK1/2 signaling activation, and excessive apoptosis in vitro. Inhibiting ASK1 via siRNA remarkably ameliorated the HG-induced increase in p-IRE1α and associated apoptosis in SH-SY5Y cells, suggesting that ASK1 is essential for the assembly and function of the proapoptotic kinase activity of the IRE1α signalosome. In summary, ER stress and ASK1-JNK1/2 signaling play causal roles in DICD development, which has crosstalk through the formation of the IRE1α-TRAF2-ASK1 complex.
Collapse
Affiliation(s)
- Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuan Yuan
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiate Xiangshang Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ting Jiang
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jun Xiong
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Peipei Zheng
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yiyang Li
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Xu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Yaqian Liu
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Ali EMT, Abdallah HI, El-Sayed SM. Histomorphological, VEGF and TGF-β immunoexpression changes in the diabetic rats' ovary and the potential amelioration following treatment with metformin and insulin. J Mol Histol 2020; 51:287-305. [PMID: 32399705 DOI: 10.1007/s10735-020-09880-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) affects the ovary by reducing the number and diameters of ovarian follicles and increasing atretic follicles. Follicular growth and diameters depend on VEGF production. Hyperglycemia causes ovarian stromal and follicular degeneration then fibrosis by activating TGF-β. Insulin and metformin promote development of ovarian follicles and reduce atretic follicles. Therefore, the present study investigates the ovarian VEGF and TGF-β immune-expression and its variations in diabetic, insulin and metformin-treated rats. Forty adult female albino rats were divided equally into four groups: control, diabetic (STZ-induced diabetes), diabetic metformin-treated group (100 mg/kg/day orally/eight weeks) and diabetic insulin-treated group (5 U insulin /day). Ovarian sections were stained with hematoxylin and eosin, Masson's trichrome, immunohistochemistry for VEGF and TGF-β. The diabetic group showed noticeable atrophic and degenerative changes in cortex and medulla as well as increased density and distribution of the collagenous fibers. The number and diameter of primary, secondary and tertiary follicles were decreased. However, the number of atretic follicles and corpus luteum was increased. Significant decrease in the surface area percentage of VEGF immuno-expression and significant increase in TGF-β immuno-expression surface area percentage were detected. By treating animals with metformin and insulin, there was restoration of the ovarian histological structure more or less as in control. DM negatively affects the histological and morphometric parameters of ovaries. Furthermore, insulin showed more beneficial effects than metformin in hindering these complications by modifying the expression of VEGF and TGF-β.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed M El-Sayed
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
15
|
Chen X, Shen WB, Yang P, Dong D, Sun W, Yang P. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress. Stem Cells Dev 2019; 27:745-755. [PMID: 29695191 DOI: 10.1089/scd.2017.0203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1+ and GFAP+ cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.
Collapse
Affiliation(s)
- Xi Chen
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Wei-Bin Shen
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Penghua Yang
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Daoyin Dong
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Winny Sun
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Peixin Yang
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
16
|
Mitochondrial-related gene associated to obesity can be modulated by in utero hyperglycemic environment. Reprod Toxicol 2019; 85:59-64. [PMID: 30738174 DOI: 10.1016/j.reprotox.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 11/22/2022]
Abstract
We investigated whether mitochondrial-related genes and proteins are modulated by hyperglycemia promoted by gestational diabetes (GDM), thereby increasing neonate obesity predisposition. 19 healthy pregnant women, 16 pregnant women with GDM and their respective neonates were enrolled. Additionally, 19 obese and 19 eutrophic adults were recruited as a reference population. Umbilical cord, peripheral blood and placental (villous and decidua) tissues were collected to evaluate SOD2, PPAR-α and PPARGC-1β and their respective protein expressions. Data from the reference population confirmed that the three genes and proteins were overexpressed in blood cells of obese compared to eutrophic subjects. Only SOD2 was found upregulated in placental villous (fetal side) tissue of GDM women. Therefore, our findings showed an interaction between the hyperglycemic environment and SOD2 modulation, but also indicated that none of the three genes is useful as potential biomarkers for obesity development.
Collapse
|
17
|
Yang P, Xu C, Reece EA, Chen X, Zhong J, Zhan M, Stumpo DJ, Blackshear PJ, Yang P. Tip60- and sirtuin 2-regulated MARCKS acetylation and phosphorylation are required for diabetic embryopathy. Nat Commun 2019; 10:282. [PMID: 30655546 PMCID: PMC6336777 DOI: 10.1038/s41467-018-08268-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Failure of neural tube closure results in severe birth defects and can be induced by high glucose levels resulting from maternal diabetes. MARCKS is required for neural tube closure, but the regulation and of its biological activity and function have remained elusive. Here, we show that high maternal glucose induced MARCKS acetylation at lysine 165 by the acetyltransferase Tip60, which is a prerequisite for its phosphorylation, whereas Sirtuin 2 (SIRT2) deacetylated MARCKS. Phosphorylated MARCKS dissociates from organelles, leading to mitochondrial abnormalities and endoplasmic reticulum stress. Phosphorylation dead MARCKS (PD-MARCKS) reversed maternal diabetes-induced cellular organelle stress, apoptosis and delayed neurogenesis in the neuroepithelium and ameliorated neural tube defects. Restoring SIRT2 expression in the developing neuroepithelium exerted identical effects as those of PD-MARCKS. Our studies reveal a new regulatory mechanism for MARCKS acetylation and phosphorylation that disrupts neurulation under diabetic conditions by diminishing the cellular organelle protective effect of MARCKS.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA. .,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.
| |
Collapse
|
18
|
Gao J, Xu Y, Zhang J, Shi J, Gong Q. Lithocarpus polystachyus Rehd. leaves aqueous extract protects against hydrogen peroxide‑induced SH-SY5Y cells injury through activation of Sirt3 signaling pathway. Int J Mol Med 2018; 42:3485-3494. [PMID: 30320335 DOI: 10.3892/ijmm.2018.3916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/17/2018] [Indexed: 11/06/2022] Open
Abstract
Lithocarpus polystachyus Rehd. (sweet tea; ST) leaves is a type of Chinese folkloric medicine from southern China. The purpose of the present study was to explore the neuroprotective effect of ST, and to explore its underlying mechanisms in hydrogen peroxide (H2O2)‑induced neuronal cell injury in cultured human neuroblastoma. H2O2 was used as oxidant inducer and human SH‑SY5Y neuroblastoma cells were treated with various concentrations of ST. Cell viability and cell death were detected using MTT and LDH assays, respectively. Additionally, the production of intracellular and mitochondrial reactive oxygen species (ROS) were determined by 2',7'‑dichlorodihydrofluorescein diacetate (DCFH‑DA) and MitoSOX Red, respectively. The production of malondialdehyde (MDA), reduced glutathione (GSH) level, glutathione peroxidase (GSH‑Px), superoxide dismutase (SOD) activities, and NAD+/NADH ratio were confirmed using relevant kits. The expression of adenosine monophosphate‑activated protein kinase (AMPK), peroxisome proliferator‑activated receptor coactivator (PGC)‑1α, Sirt3, isocitrate dehydrogenase (IDH)2, forkhead boxO3a (Foxo3a), and SOD2 were analyzed by western blot analysis. It was demonstrated that pre‑treatment with ST enhanced cell viability and repressed cell death, and it also reduced intracellular and mitochondrial ROS accumulation. Additionally, ST attenuated MDA production and enhanced GSH level, GSH‑Px and SOD activities. Furthermore, ST not only increased NAD+/NADH ratio, but also inhibited the decrease of AMPK, PGC‑1α, Sirt3, IDH2, Foxo3a, and SOD2. The present study revealed that ST exerts protective effects against oxidative stress‑induced SH‑SY5Y cells injury, and the underlying mechanisms are, at least partly, associated with its antioxidant capacity and function through mitochondrial Sirt3 signaling pathway.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yingshu Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianyong Zhang
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
19
|
Pan H, Ding Y, Yan N, Nie Y, Li M, Tong L. Trehalose prevents sciatic nerve damage to and apoptosis of Schwann cells of streptozotocin-induced diabetic C57BL/6J mice. Biomed Pharmacother 2018; 105:907-914. [DOI: 10.1016/j.biopha.2018.06.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
|
20
|
Bian P, Zhang J, Wang J, Yang J, Wang J, Liu H, Sun Y, Li M, Zhang XD. Enhanced catalysis of ultrasmall Au-MoS 2 clusters against reactive oxygen species for radiation protection. Sci Bull (Beijing) 2018; 63:925-934. [PMID: 36658974 DOI: 10.1016/j.scib.2018.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
Ionizing radiation produces excessive reactive oxygen species (ROS) which impose detrimental effects on biological systems. Thus, it is important to explore clinically safe and efficacious radioprotection agents to scavenge ROS and reduce the risks of radiotherapy. Recently, emerging catalytic nanomaterials such as sulfide nanomaterials have shown capability of clearing ROS in vivo by unique electron transfers between atoms, but their catalytic activities are yet suboptimal. As such, there is an unmet need to improve catalytic properties for stronger antioxidant activities and radiation protection. Herein, we prepared ultrasmall Au-MoS2 clusters (∼2.5 nm) and they showed enhanced catalytic properties via gold intercalation facilitating increased active sites and synergistic effects. Electrocatalysis results revealed that the catalytic activity of Au-MoS2 towards H2O2 was superior to ultrasmall MoS2 without Au. As a result, we found that improving the electrocatalytic property of Au-MoS2 can effectively enhance corresponding antioxidant activities and radioprotection effects in vivo. In addition, Au-MoS2 also showed significant radioprotection in vitro and dramatically reduced the excess of radiation-induced adverse ROS. It also rescued radiation-induced DNA damages and protected the bone marrow hematopoietic system from ionizing radiation.
Collapse
Affiliation(s)
- Peixian Bian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinxuan Zhang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meixian Li
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Chen X, Zhong J, Dong D, Liu G, Yang P. Endoplasmic Reticulum Stress-Induced CHOP Inhibits PGC-1α and Causes Mitochondrial Dysfunction in Diabetic Embryopathy. Toxicol Sci 2018; 158:275-285. [PMID: 28482072 DOI: 10.1093/toxsci/kfx096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the development of maternal diabetes-induced neural tube defects (NTDs). ER stress-induced C/EBP homologous protein (CHOP) plays an important role in the pro-apoptotic execution pathways. However, the molecular mechanism underlying ER stress- and CHOP-induced neuroepithelium cell apoptosis in diabetic embryopathy is still unclear. Deletion of the Chop gene significantly reduced maternal diabetes-induced NTDs. CHOP deficiency abrogated maternal diabetes-induced mitochondrial dysfunction and neuroepithelium cell apoptosis. Further analysis demonstrated that CHOP repressed the expression of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), an essential regulator for mitochondrial biogenesis and function. Both CHOP deficiency in vivo and knockdown in vitro restore high glucose-suppressed PGC-1α expression. In contrast, CHOP overexpression mimicked inhibition of PGC-1α by high glucose. In response to the ER stress inducer tunicamycin, PGC-1α expression was decreased, whereas the ER stress inhibitor 4-phenylbutyric acid blocked high glucose-suppressed PGC-1α expression. Moreover, maternal diabetes in vivo and high glucose in vitro promoted the interaction between CHOP and the PGC-1α transcriptional regulator CCAAT/enhancer binding protein-β (C/EBPβ), and reduced C/EBPβ binding to the PGC-1α promoter leading to markedly decrease in PGC-1α expression. Together, our findings support the hypothesis that maternal diabetes-induced ER stress increases CHOP expression which represses PGC-1α through suppressing the C/EBPβ transcriptional activity, subsequently induces mitochondrial dysfunction and ultimately results in NTDs.
Collapse
Affiliation(s)
- Xi Chen
- Center for Translational Research, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Gentao Liu
- Center for Translational Research, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Peixin Yang
- Center for Translational Research, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
22
|
Xue J, Gu H, Liu D, Ma W, Wei X, Zhao L, Liu Y, Zhang C, Yuan Z. Mitochondrial dysfunction is implicated in retinoic acid-induced spina bifida aperta in rat fetuses. Int J Dev Neurosci 2018; 68:39-44. [PMID: 29689339 DOI: 10.1016/j.ijdevneu.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/21/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023] Open
Abstract
Neural tube defects (NTDs) are the most common and severe congenital malformations, which result from failure of the neural tube to close during embryonic development. The etiology of NTDs is complex, caused by interactions between genetic defects and environmental factors, but the exact mechanisms of this disease are still not fully understood. We herein employ a Seahorse Bioscience microplate-based extracellular flux (XF) analyzer to determine mitochondrial function and quantify respiratory coupling to various bioenergetic functions using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in coupling between ATP turnover and proton leak are correlated with NTDs. Further, we determined that the ATP content and oxidative stress levels in posterior spinal cords of rat embryos with NTDs between E11 and E14 was lower than that of normal controls. The present study reveals that mitochondrial dysfunction is associated with all-trans retinoic acid (atRA)-induced NTDs in rat embryos. Oxidative stress results from decreased antioxidant enzyme activity. This study provides a novel viewpoint for exploring the embryonic pathogenesis of atRA-induced NTDs.
Collapse
Affiliation(s)
- Jia Xue
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Lianshuai Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Chaonan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
23
|
Asoglu MR, Gabbay-Benziv R, Turan OM, Turan S. Exposure of the developing heart to diabetic environment and early cardiac assessment: A review. Echocardiography 2018; 35:244-257. [DOI: 10.1111/echo.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mehmet R. Asoglu
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| | - Rinat Gabbay-Benziv
- Department of Obstetrics and Gynecology; Hillel Yaffe Medical Center; Hadera Israel
| | - Ozhan M. Turan
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| | - Sifa Turan
- ObstetricsGynecology & Reproductive Sciences; University of Maryland School of Medicine; Baltimore MD USA
| |
Collapse
|
24
|
Zhao Y, Dong D, Reece EA, Wang AR, Yang P. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy. Am J Obstet Gynecol 2018; 218:136.e1-136.e10. [PMID: 29100869 DOI: 10.1016/j.ajog.2017.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Daoyin Dong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Ashley R Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
25
|
Zhong J, Wang S, Shen WB, Kaushal S, Yang P. The current status and future of cardiac stem/progenitor cell therapy for congenital heart defects from diabetic pregnancy. Pediatr Res 2018; 83:275-282. [PMID: 29016556 PMCID: PMC5876137 DOI: 10.1038/pr.2017.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shengbing Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sunjay Kaushal
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, Zhong J, Yang P. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 2017; 8:15182. [PMID: 28474670 PMCID: PMC5424165 DOI: 10.1038/ncomms15182] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Christopher Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Wang
- Department of Obstetrics, Gynecology, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
27
|
He F, Peng Y, Yang Z, Ge Z, Tian Y, Ma T, Li H. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats. Int J Biol Sci 2017; 13:179-188. [PMID: 28255270 PMCID: PMC5332872 DOI: 10.7150/ijbs.17716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.
Collapse
Affiliation(s)
- Feixiang He
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China.; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yuchen Peng
- Battalion 4 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zilu Ge
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Yang P, Yang WW, Chen X, Kaushal S, Dong D, Shen WB. Maternal diabetes and high glucose in vitro trigger Sca1 + cardiac progenitor cell apoptosis through FoxO3a. Biochem Biophys Res Commun 2016; 482:575-581. [PMID: 27856257 DOI: 10.1016/j.bbrc.2016.11.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022]
Abstract
Recent controversies surrounding the authenticity of c-kit+ cardiac progenitor cells significantly push back the advance in regenerative therapies for cardiovascular diseases. There is an urgent need for research in characterizing alternative types of cardiac progenitor cells. Towards this goal, in the present study, we determined the effect of maternal diabetes on Sca1+ cardiac progenitor cells. Maternal diabetes induced caspase 3-dependent apoptosis in Sca1+ cardiac progenitor cells derived from embryonic day 17.5 (E17.5). Similarly, high glucose in vitro but not the glucose osmotic control mannitol triggered Sca1+ cardiac progenitor cell apoptosis in a dose- and time-dependent manner. Both maternal diabetes and high glucose in vitro activated the pro-apoptotic transcription factor, Forkhead O 3a (FoxO3a) via dephosphorylation at threonine 32 (Thr-32) residue. foxo3a gene deletion abolished maternal diabetes-induced Sca1+ cardiac progenitor cell apoptosis. The dominant negative FoxO3a mutant without the transactivation domain from the C terminus blocked high glucose-induced Sca1+ cardiac progenitor cell apoptosis, whereas the constitutively active FoxO3a mutant with the three phosphorylation sites, Thr-32, Ser-253, and Ser-315, being replaced by alanine residues mimicked the pro-apoptotic effect of high glucose. Thus, maternal diabetes and high glucose in vitro may limit the regenerative potential of Sca1+ cardiac progenitor cells by inducing apoptosis through FoxO3a activation. These findings will serve as the guide in optimizing the autologous therapy using Sca1+ cardiac progenitor cells in cardiac defect babies born exposed to maternal diabetes.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wendy W Yang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|