1
|
Mancuso C. The Heme Oxygenase/Biliverdin Reductase System and Its Genetic Variants in Physiology and Diseases. Antioxidants (Basel) 2025; 14:187. [PMID: 40002374 PMCID: PMC11852105 DOI: 10.3390/antiox14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, constitutive and committed to the physiologic turnover of heme and in the intracellular oxygen sensing. Many studies have identified genetic variants of the HO/BVR system and suggested their connection in free radical-induced diseases. The most common genetic variants include (GT)n dinucleotide length polymorphisms and single nucleotide polymorphisms. Gain-of-function mutations in the HO-1 and HO-2 genes foster the ventilator response to hypoxia and reduce the risk of coronary heart disease and age-related macular degeneration but increase the risk of neonatal jaundice, sickle cell disease, and Parkinson's disease. Conversely, loss-of-function mutations in the HO-1 gene increase the risk of type 2 diabetes mellitus, chronic obstructive pulmonary disease, and some types of cancers. Regarding BVR, the reported loss-of-function mutations increase the risk of green jaundice. Unfortunately, the physiological role of the HO/BVR system does not allow for the hypothesis gene silencing/induction strategies, but knowledge of these mutations can certainly facilitate a medical approach that enables early diagnoses and tailored treatments.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 1, 00168 Rome, Italy;
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Du B, Mu K, Sun M, Yu Z, Li L, Hou L, Wang Q, Sun J, Chen J, Zhang X, Zhang W. Biliary atresia and cholestasis plasma non-targeted metabolomics unravels perturbed metabolic pathways and unveils a diagnostic model for biliary atresia. Sci Rep 2024; 14:15796. [PMID: 38982277 PMCID: PMC11233669 DOI: 10.1038/s41598-024-66893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
The clinical diagnosis of biliary atresia (BA) poses challenges, particularly in distinguishing it from cholestasis (CS). Moreover, the prognosis for BA is unfavorable and there is a dearth of effective non-invasive diagnostic models for detection. Therefore, the aim of this study is to elucidate the metabolic disparities among children with BA, CS, and normal controls (NC) without any hepatic abnormalities through comprehensive metabolomics analysis. Additionally, our objective is to develop an advanced diagnostic model that enables identification of BA. The plasma samples from 90 children with BA, 48 children with CS, and 47 NC without any liver abnormalities children were subjected to metabolomics analysis, revealing significant differences in metabolite profiles among the 3 groups, particularly between BA and CS. A total of 238 differential metabolites were identified in the positive mode, while 89 differential metabolites were detected in the negative mode. Enrichment analysis revealed 10 distinct metabolic pathways that differed, such as lysine degradation, bile acid biosynthesis. A total of 18 biomarkers were identified through biomarker analysis, and in combination with the exploration of 3 additional biomarkers (LysoPC(18:2(9Z,12Z)), PC (22:5(7Z,10Z,13Z,16Z,19Z)/14:0), and Biliverdin-IX-α), a diagnostic model for BA was constructed using logistic regression analysis. The resulting ROC area under the curve was determined to be 0.968. This study presents an innovative and pioneering approach that utilizes metabolomics analysis to develop a diagnostic model for BA, thereby reducing the need for unnecessary invasive examinations and contributing to advancements in diagnosis and prognosis for patients with BA.
Collapse
Affiliation(s)
- Bang Du
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kai Mu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Meng Sun
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Jushan Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Jinhua Chen
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
3
|
Mei J, Han Y, Zhuang S, Yang Z, Yi Y, Ying G. Production of biliverdin by biotransformation of exogenous heme using recombinant Pichia pastoris cells. BIORESOUR BIOPROCESS 2024; 11:19. [PMID: 38647967 PMCID: PMC10992137 DOI: 10.1186/s40643-024-00736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024] Open
Abstract
Biliverdin, a bile pigment hydrolyzed from heme by heme oxygenase (HO), serves multiple functions in the human body, including antioxidant, anti-inflammatory, and immune response inhibitory activities. Biliverdin has great potential as a clinical drug; however, no economic and efficient production method is available currently. Therefore, the production of biliverdin by the biotransformation of exogenous heme using recombinant HO-expressing yeast cells was studied in this research. First, the heme oxygenase-1 gene (HO1) encoding the inducible plastidic isozyme from Arabidopsis thaliana, with the plastid transport peptide sequence removed, was recombined into Pichia pastoris GS115 cells. This resulted in the construction of a recombinant P. pastoris GS115-HO1 strain that expressed active HO1 in the cytoplasm. After that, the concentration of the inducer methanol, the induction culture time, the pH of the medium, and the concentration of sorbitol supplied in the medium were optimized, resulting in a significant improvement in the yield of HO1. Subsequently, the whole cells of GS115-HO1 were employed as catalysts to convert heme chloride (hemin) into biliverdin. The results showed that the yield of biliverdin was 132 mg/L when hemin was added to the culture of GS115-HO1 and incubated for 4 h at 30 °C. The findings of this study have laid a good foundation for future applications of this method for the economical production of biliverdin.
Collapse
Affiliation(s)
- Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Yanchao Han
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Shihang Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Zhikai Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
5
|
Butler MW, Cullen ZE, Garti CM, Howard DE, Corpus BA, McNish BA, Hines JK. Physiologically Relevant Levels of Biliverdin Do Not Significantly Oppose Oxidative Damage in Plasma In Vitro. Physiol Biochem Zool 2023; 96:294-303. [PMID: 37418605 DOI: 10.1086/725402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
AbstractAntioxidants have important physiological roles in limiting the amount of oxidative damage that an organism experiences. One putative antioxidant is biliverdin, a pigment that is most commonly associated with the blue or green colors of avian eggshells. However, despite claims that biliverdin functions as an antioxidant, neither the typical physiological concentrations of biliverdin in most species nor the ability of biliverdin to oppose oxidative damage at these concentrations has been examined. Therefore, we quantified biliverdin in the plasma of six bird species and found that they circulated levels of biliverdin between 0.02 and 0.5 μM. We then used a pool of plasma from northern bobwhite quail (Colinus virginianus) and spiked it with one of seven different concentrations of biliverdin, creating plasma-based solutions ranging from 0.09 to 231 μM biliverdin. We then compared each solution's ability to oppose oxidative damage in response to hydrogen peroxide relative to a control addition of water. We found that hydrogen peroxide consistently induced moderate amounts of oxidative damage (quantified as reactive oxygen metabolites) but that no concentration of biliverdin ameliorated this damage. However, biliverdin and hydrogen peroxide interacted, as the amount of biliverdin in hydrogen peroxide-treated samples was reduced to approximately zero, unless the initial concentration was over 100 μM biliverdin. These preliminary findings based on in vitro work indicate that while biliverdin may have important links to metabolism and immune function, at physiologically relevant concentrations it does not detectably oppose hydrogen peroxide-induced oxidative damage in plasma.
Collapse
|
6
|
Liu Y, Li J, Kang W, Liu S, Liu J, Shi M, Wang Y, Liu X, Chen X, Huang K. Aflatoxin B1 induces liver injury by disturbing gut microbiota-bile acid-FXR axis in mice. Food Chem Toxicol 2023; 176:113751. [PMID: 37030333 DOI: 10.1016/j.fct.2023.113751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of major pollutant in food and feed worldwide. The purpose of this study is to investigate the mechanism of AFB1-induced liver injury. Our results showed that AFB1 caused hepatic bile duct proliferation, oxidative stress, inflammation and liver injury in mice. AFB1 exposure induced gut microbiota dysbiosis and reduced fecal bile salt hydrolase (BSH) activity. AFB1 exposure promoted hepatic bile acid (BA) synthesis and changed intestinal BA metabolism, especially increased intestinal conjugated bile acids levels. AFB1 exposure inhibited intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) signaling. Furthermore, the mice received fecal microbiota transplantation from AFB1-treated mice induced liver injury, reduced intestinal FXR signaling and increased hepatic BA synthesis. Finally, the intestine-restricted FXR agonist treatment decreased hepatic BA synthesis, ROS level, inflammation and liver injury in AFB1-treated mice. This study suggests that modifying the gut microbiota, altering intestinal BA metabolism and/or activating intestinal FXR/FGF-15 signaling may be of value for the treatment of AFB1-induced liver disease.
Collapse
|
7
|
Sun Z, Chen W, Huang D, Jiang C, Lu L. A mitochondria targeted cascade reaction nanosystem for improved therapeutic effect by overcoming cellular resistance. Biomater Sci 2022; 10:5947-5955. [PMID: 36043518 DOI: 10.1039/d2bm00956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitigating cellular resistance, which could enhance the sensitivity of tumor cells to treatment, is a promising approach for obtaining better therapeutic outcomes. However, the present designs of materials generally disregard this point, or only focus on a single specific resistance. Herein, a strategy based on a series of cascade reactions aiming to suppress multiple cellular resistances is designed by integrating photothermal and chemotherapy into a mitochondria targeted nanosystem (AuBPs@TD). The intelligent nanosystem is fabricated by modifying gold nanobipyramids (AuBPs) with triphenylphosphonium (TPP) functionalized dichloroacetic acid (DCA). TPP serves as a "navigation system" and facilitates the location of AuBPs@TD in the mitochondria. Moreover, the released DCA promoted by the photothermal effect of AuBPs, as the mitochondrial kinase inhibitor, could inhibit glycolysis, and lead to a repressed expression of heat shock protein 90, which is the main resistance protein in cancer cells against photothermal therapy (PTT). Thus, the photothermal antitumor effect can be significantly improved. For the other cascade passage, the hyperthermal atmosphere depresses the expression of P-glycoprotein, a protein associated with drug resistance, and consequently prevents DCA molecules from being expelled in return. Furthermore, the retained DCA molecules elevate the concentration of intracellular hydrogen peroxide, and due to the peroxidase-like activity of AuBPs, increased intracellular reactive oxygen species could be obtained to accelerate apoptosis. As a result, these cascade reactions lead to significant inhibition of cellular resistance and greatly improve the therapeutic performance. This work paves a new way for suppressing cellular resistance to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Dianshuai Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed Pharmacother 2022; 151:113133. [PMID: 35594710 DOI: 10.1016/j.biopha.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Plumbagin, a natural bicyclic naphthoquinone, has diverse pharmacological properties and biological benefits against a number of disorders, including liver disease. Though plumbagin's hepatoprotective potential attracts attention, currently no experimental evidence exists on its effectiveness against cholestatic liver injury. The present study investigated its hepatoprotection in the rat model of extrahepatic cholestasis using Bile Duct Ligation (BDL). We found that daily plumbagin supplementation protected the liver from cholestatic damage. Hepatoprotective actions of plumbagin were accompanied by reduction of Transforming Growth Factor β1 (TGF-β1)/Smad, High Mobility Group Box-1 (HMGB1)/Toll-Like Receptor-4 (TLR4), Hypoxia-Inducible Factor-1α (HIF-1α), Aryl Hydrocarbon Receptor (AhR), Heat Shock Protein 90 (HSP90), caveolin-1, NF-κB/AP-1, Dynamin Related Protein-1 (Drp1), malondialdehyde level, Interleukin-1β (IL-1β), p62/SQSTM1, and caspase 3 as well as increase of Farnesoid X Receptor (FXR), bile acid efflux transporters, glutathione, LC3-II, Beclin1, and nuclear NF-E2-Related Factor-2 (Nrf2) and Transcription Factor EB (TFEB). The activation of nuclear Nrf2 caused by plumbagin correlated well with the improvement in bile acid retention, liver histology, serum biochemical, ductular reaction, mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis, involving interplay of multiple intracellular signaling pathways. Plumbagin is likely a candidate drug to protect the liver from cholestatic damages. Despite the promising findings from this study, translational implication of plumbagin on cholestatic liver injury warrants further investigation.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan.
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan.
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
9
|
Dong Q, Chen J, Jiang YP, Zhu ZP, Zheng YF, Zhang JM, Zhang Z, Chen WQ, Sun SY, Pang L, Yan X, Liao W, Fu CM. Integrating Network Analysis and Metabolomics to Reveal Mechanism of Huaganjian Decoction in Treatment of Cholestatic Hepatic Injury. Front Pharmacol 2022; 12:773957. [PMID: 35126117 PMCID: PMC8807561 DOI: 10.3389/fphar.2021.773957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/14/2022] Open
Abstract
Huaganjian decoction (HGJD) was first recorded in the classic "Jing Yue Quan Shu" during the Ming dynasty, and it has been extensively applied in clinical practice to treat liver diseases for over 300 years in China. However, its bioactive constituents and relevant pharmacological mechanism are still unclear. In this study, a strategy integrating network analysis and metabolomics was applied to reveal mechanism of HGJD in treating cholestatic hepatic injury (CHI). Firstly, we observed the therapeutic effect of HGJD against CHI with an alpha-naphthylisothiocyanate (ANIT) induced CHI rat model. Then, we utilized UPLC-Q-Exactive MS/MS method to analyze the serum migrant compounds of HGJD in CHI rats. Based on these compounds, network analysis was conducted to screen for potential active components, and key signaling pathways interrelated to therapeutic effect of HGJD. Meanwhile, serum metabolomics was utilized to investigate the underlying metabolic mechanism of HGJD against CHI. Finally, the predicted key pathway was verified by western blot and biochemical analysis using rat liver tissue from in vivo efficacy experiment. Our results showed that HGJD significantly alleviated ANIT induced CHI. Totally, 31 compounds originated from HGJD have been identified in the serum sample. PI3K/Akt/Nrf2 signaling pathway related to GSH synthesis was demonstrated as one of the major pathways interrelated to therapeutic effect of HGJD against CHI. This research supplied a helpful strategy to determine the potential bioactive compounds and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qin Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ping Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Feng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Ming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Qing Chen
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shi-Yi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao-Mei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Bortolussi G, Shi X, ten Bloemendaal L, Banerjee B, De Waart DR, Baj G, Chen W, Oude Elferink RP, Beuers U, Paulusma CC, Stocker R, Muro AF, Bosma PJ. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1-/- Mice: Impact on Redox Status and Metabolism. Antioxidants (Basel) 2021; 10:antiox10122029. [PMID: 34943131 PMCID: PMC8698966 DOI: 10.3390/antiox10122029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of Bvra deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production. We also investigated the disposal of biliverdin during fetal development. In Ugt1−/− mice, Bvra deficiency appeared sufficient to prevent lethality and to normalize bilirubin level in adults. Although biliverdin accumulated in Bvra-deficient fetuses, both Bvra−/− and Bvra−/−Ugt1−/− pups were healthy and reached adulthood having normal liver, brain, and spleen histology, albeit with increased iron levels in the latter. During aging, both Bvra−/− and Bvra−/−Ugt1−/− mice presented normal levels of relevant hematological and metabolic parameters. Interestingly, the oxidative status in erythrocytes from 9-months-old Bvra−/− and Bvra−/−Ugt1−/− mice was significantly reduced. In addition, triglycerides levels in these 9-months-old Bvra−/− mice were significantly higher than WT controls, while Bvra−/−Ugt1−/− tested normal. The normal parameters observed in Bvra−/−Ugt1−/− mice fed chow diet indicate that Bvra inhibition to treat unconjugated hyperbilirubinemia seems safe and effective.
Collapse
Affiliation(s)
- Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Xiaoxia Shi
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Key Laboratory of Protein Modification and Disease, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lysbeth ten Bloemendaal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Bhaswati Banerjee
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Dirk R. De Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Gabriele Baj
- Light Microscopy Imaging Center, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Weiyu Chen
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Ronald P. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Roland Stocker
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| |
Collapse
|
11
|
Abstract
Significance: As the central metabolic organ, the liver is exposed to a variety of potentially cytotoxic, proinflammatory, profibrotic, and carcinogenic stimuli. To protect the organism from these deleterious effects, the liver has evolved a number of defense systems, which include antioxidant substrates and enzymes, anti-inflammatory tools, enzymatic biotransformation systems, and metabolic pathways. Recent Advances: One of the pivotal systems that evolved during phylogenesis was the heme catabolic pathway. Comprising the important enzymes heme oxygenase and biliverdin reductase, this complex pathway has a number of key functions including enzymatic activities, but also cell signaling, and DNA transcription. It further generates two important bile pigments, biliverdin and bilirubin, as well as the gaseous molecule carbon monoxide. These heme degradation products have potent antioxidant, immunosuppressive, and cytoprotective effects. Recent data suggest that the pathway participates in the regulation of metabolic and hormonal processes implicated in the pathogenesis of hepatic and other diseases. Critical Issues: This review discusses the impact of the heme catabolic pathway on major liver diseases, with particular focus on the involvement of cellular targeting and signaling in the pathogenesis of these conditions. Future Directions: To utilize the biological consequences of the heme catabolic pathway, several unique therapeutic strategies have been developed. Research indicates that pharmaceutical, nutraceutical, and lifestyle modifications positively affect the pathway, delivering potentially long-term clinical benefits. However, further well-designed studies are needed to confirm the clinical benefits of these approaches. Antioxid. Redox Signal. 35, 734-752.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, and Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Escada-Rebelo S, Mora FG, Sousa AP, Almeida-Santos T, Paiva A, Ramalho-Santos J. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa. Asian J Androl 2021; 22:465-471. [PMID: 31939350 PMCID: PMC7523605 DOI: 10.4103/aja.aja_132_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is a by-product of mitochondrial activity and is necessary for the acquisition of the capacitated state, a requirement for functional spermatozoa. However, an increase in oxidative stress, due to an abnormal production of ROS, has been shown to be related to loss of sperm function, highlighting the importance of an accurate detection of sperm ROS, given the specific nature of this cell. In this work, we tested a variety of commercially available fluorescent probes to detect ROS and reactive nitrogen species (RNS) in human sperm, to define their specificity. Using both flow cytometry (FC) and fluorescence microscopy (FM), we confirmed that MitoSOX™ Red and dihydroethidium (DHE) detect superoxide anion (as determined using antimycin A as a positive control), while DAF-2A detects reactive nitrogen species (namely, nitric oxide). For the first time, we also report that RedoxSensor™ Red CC-1, CellROX® Orange Reagent, and MitoPY1 seem to be mostly sensitive to hydrogen peroxide, but not superoxide. Furthermore, mean fluorescence intensity (and not percentage of labeled cells) is the main parameter that can be reproducibly monitored using this type of methodology.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra 3030-789, Portugal
| | - Francisca G Mora
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana P Sousa
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - Teresa Almeida-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3000-370, Portugal
| | - Artur Paiva
- Clinical Pathology Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
13
|
Iruzubieta P, Goikoetxea-Usandizaga N, Barbier-Torres L, Serrano-Maciá M, Fernández-Ramos D, Fernández-Tussy P, Gutiérrez-de-Juan V, Lachiondo-Ortega S, Simon J, Bravo M, Lopitz-Otsoa F, Robles M, Ferre-Aracil C, Varela-Rey M, Elguezabal N, Calleja JL, Lu SC, Milkiewicz M, Milkiewicz P, Anguita J, Monte MJ, Marin JJ, López-Hoyos M, Delgado TC, Rincón M, Crespo J, Martínez-Chantar ML. Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. JHEP Rep 2021; 3:100276. [PMID: 33997750 PMCID: PMC8099785 DOI: 10.1016/j.jhepr.2021.100276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND & AIMS Mitochondria are the major organelles for the formation of reactive oxygen species (ROS) in the cell, and mitochondrial dysfunction has been described as a key factor in the pathogenesis of cholestatic liver disease. The methylation-controlled J-protein (MCJ) is a mitochondrial protein that interacts with and represses the function of complex I of the electron transport chain. The relevance of MCJ in the pathology of cholestasis has not yet been explored. METHODS We studied the relationship between MCJ and cholestasis-induced liver injury in liver biopsies from patients with chronic cholestatic liver diseases, and in livers and primary hepatocytes obtained from WT and MCJ-KO mice. Bile duct ligation (BDL) was used as an animal model of cholestasis, and primary hepatocytes were treated with toxic doses of bile acids. We evaluated the effect of MCJ silencing for the treatment of cholestasis-induced liver injury. RESULTS Elevated levels of MCJ were detected in the liver tissue of patients with chronic cholestatic liver disease when compared with normal liver tissue. Likewise, in mouse models, the hepatic levels of MCJ were increased. After BDL, MCJ-KO animals showed significantly decreased inflammation and apoptosis. In an in vitro model of bile-acid induced toxicity, we observed that the loss of MCJ protected mouse primary hepatocytes from bile acid-induced mitochondrial ROS overproduction and ATP depletion, enabling higher cell viability. Finally, the in vivo inhibition of the MCJ expression, following BDL, showed reduced liver injury and a mitigation of the main cholestatic characteristics. CONCLUSIONS We demonstrated that MCJ is involved in the progression of cholestatic liver injury, and our results identified MCJ as a potential therapeutic target to mitigate the liver injury caused by cholestasis. LAY SUMMARY In this study, we examine the effect of mitochondrial respiratory chain inhibition by MCJ on bile acid-induced liver toxicity. The loss of MCJ protects hepatocytes against apoptosis, mitochondrial ROS overproduction, and ATP depletion as a result of bile acid toxicity. Our results identify MCJ as a potential therapeutic target to mitigate liver injury in cholestatic liver diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMA-M2, antimitochondrial M2 antibody
- ANA, antinuclear antibodies
- APRI, AST to platelet ratio index
- AST, aspartate aminotransferase
- Abs, antibodies
- BA, bile acid
- BAX, BCL2 associated X
- BCL-2, B-cell lymphoma 2
- BCL-Xl, B-cell lymphoma-extra large
- BDL, bile duct ligation
- Bile duct ligation
- CLD, cholestatic liver disease
- Ccl2, C-C motif chemokine ligand 2
- Ccr2, C-C motif chemokine receptor 2
- Ccr5, C-C motif chemokine receptor 5
- Cholestasis
- Cxcl1, C-X-C motif chemokine ligand 1
- Cyp7α1, cholesterol 7 alpha-hydroxylase
- DCA, deoxycholic acid
- ETC, electron transport chain
- Ezh2, enhancer of zeste homolog 2
- Fxr, farnesoid X receptor
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GCDCA, glycochenodeoxycholic acid
- HSC, hepatic stellate cells
- Hif-1α, hypoxia-inducible factor 1-alpha
- JNK, c-Jun N-terminal kinase
- KO, knockout
- LSM, liver stiffness
- MAPK, mitogen-activated protein kinase
- MCJ
- MCJ, methylation-controlled J
- MLKL, mixed-lineage kinase domain-like pseudokinase
- MMP, mitochondrial membrane potential
- MPO, myeloperoxidase
- MPT, mitochondrial permeability transition
- Mitochondria
- Nrf1, nuclear respiratory factor 1
- PARP, poly (ADP-ribose) polymerase
- PBC, primary biliary cholangitis
- PSC, primary sclerosing cholangitis
- Pgc1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- Pgc1β, peroxisome proliferator-activated receptor gamma coactivator 1-beta
- ROS
- ROS, reactive oxygen species
- RT, room temperature
- SDH2, succinate dehydrogenase
- TNF, tumour necrosis factor
- Tfam, transcription factor A mitochondrial
- Trail, TNF-related apoptosis-inducing ligand
- UDCA, ursodeoxycholic acid
- Ucp2, uncoupling protein 2
- VCTE, vibration-controlled transient elastography
- WT, wild-type
- mRNA, messenger ribonucleic acid
- p-JNK, phosphor-JNK
- p-MLKL, phosphor-MLKL
- shRNA, small hairpin RNA
- siRNA, small interfering RNA
- tBIL, total bilirubin
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de-Juan
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Jorge Simon
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Miren Bravo
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Mercedes Robles
- Liver Unit, Vírgen de Victoria University Hospital, Gastroenterology Service and Department of Medicine, University of Málaga, Malaga, Spain
| | - Carlos Ferre-Aracil
- Liver Unit, Puerta de Hierro University Hospital, IDIPHISA, CIBERehd, Madrid, Spain
| | - Marta Varela-Rey
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Natalia Elguezabal
- Departmento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - José Luis Calleja
- Liver Unit, Puerta de Hierro University Hospital, IDIPHISA, CIBERehd, Madrid, Spain
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - María J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - José J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Marcos López-Hoyos
- Immunology Department, University Hospital Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Teresa C. Delgado
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Mercedes Rincón
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - María Luz Martínez-Chantar
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
14
|
Wang D, Zhou L, Zhou H, Hou G. Effects of Guava ( Psidium guajava L.) Leaf Extract on the Metabolomics of Serum and Feces in Weaned Piglets Challenged by Escherichia coli. Front Vet Sci 2021; 8:656179. [PMID: 34109234 PMCID: PMC8183609 DOI: 10.3389/fvets.2021.656179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg−1 diet GE), S100 (100 mg kg−1 diet GE), and S200 (200 mg kg−1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50–200 mg kg−1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p < 0.05) and Na+/H+ exchanger 3 (NHE3) (p < 0.05). Moreover, dietary supplementation with GE (50–200 mg kg−1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p < 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg−1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p < 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
15
|
Yao Q, Chen R, Ganapathy V, Kou L. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 2020; 328:407-424. [DOI: 10.1016/j.jconrel.2020.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
16
|
Ceccarelli V, Barchetta I, Cimini FA, Bertoccini L, Chiappetta C, Capoccia D, Carletti R, Di Cristofano C, Silecchia G, Fontana M, Leonetti F, Lenzi A, Baroni MG, Barone E, Cavallo MG. Reduced Biliverdin Reductase-A Expression in Visceral Adipose Tissue is Associated with Adipocyte Dysfunction and NAFLD in Human Obesity. Int J Mol Sci 2020; 21:ijms21239091. [PMID: 33260451 PMCID: PMC7730815 DOI: 10.3390/ijms21239091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes’ size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02–1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76–1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity.
Collapse
Affiliation(s)
- Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Danila Capoccia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Raffaella Carletti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 Coppito, Italy;
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
17
|
Sarcopenia Induced by Chronic Liver Disease in Mice Requires the Expression of the Bile Acids Membrane Receptor TGR5. Int J Mol Sci 2020; 21:ijms21217922. [PMID: 33113850 PMCID: PMC7662491 DOI: 10.3390/ijms21217922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is a condition of muscle dysfunction, commonly associated with chronic liver disease (CLD), characterized by a decline in muscle strength, the activation of the ubiquitin-proteasome system (UPS), and oxidative stress. We recently described a murine model of CLD-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which presents an increase in plasma bile acids (BA). BA induced skeletal muscle atrophy through a mechanism dependent on the Takeda G protein-coupled receptor 5 (TGR5) receptor. In the present study, we evaluated the role of TGR5 signaling in the development of sarcopenia using a model of DDC-induced CLD in C57BL6 wild-type (WT) mice and mice deficient in TGR5 expression (TGR5−/− mice). The results indicate that the decline in muscle function and contractibility induced by the DDC diet is dependent on TGR5 expression. TGR5 dependence was also observed for the decrease in fiber diameter and sarcomeric proteins, as well as for the fast-to-slow shift in muscle fiber type. UPS overactivation, indicated by increased atrogin-1/MAFbx (atrogin-1) and muscle RING-finger protein-1 (MuRF-1) protein levels and oxidative stress, was abolished in tibialis anterior muscles from TGR5−/− mice. Our results collectively suggest that all sarcopenia features induced by the DDC-supplemented diet in mice are dependent on TGR5 receptor expression.
Collapse
|
18
|
Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel) 2020; 9:925. [PMID: 32992565 PMCID: PMC7600946 DOI: 10.3390/antiox9100925] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes prevalence is increasing worldwide, especially through the increase of type 2 diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause of end-stage renal disease. Various factors affect the development and progression of diabetic nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation, protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy have been found. This review summarises current evidence of oxidative stress biomarkers in patients with diabetic nephropathy. Although some of them are promising, they cannot replace currently used clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| |
Collapse
|
19
|
Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E900. [PMID: 32971784 PMCID: PMC7555389 DOI: 10.3390/antiox9090900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| |
Collapse
|
20
|
miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression. Aging (Albany NY) 2020; 12:12869-12895. [PMID: 32602850 PMCID: PMC7377845 DOI: 10.18632/aging.103343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Differences in microRNA (miRNA) expression after intracerebral hemorrhage (ICH) have been reported in human and animal models, and miRNAs are being investigated as a new treatment for inflammation and oxidative stress after ICH. In this study, we found that microRNA-183-5p expression was decreased in the mouse brain after ICH. To investigate the effect of miRNA-183-5p on injury and repair of brain tissue after ICH, saline, miRNA-183-5p agomir, or miRNA-183-5p antagomir were injected into the lateral ventricles of 8-week-old mice with collagenase-induced ICH. Three days after ICH, mice treated with exogenous miRNA-183-5p showed less brain edema, neurobehavioral defects, inflammation, oxidative stress, and ferrous deposition than control mice. In addition, by alternately treating mice with a heme oxygenase-1 (HO-1) inducer, a HO-1 inhibitor, a nuclear factor erythroid 2-related factor (Nrf2) activator, and Nrf2 knockout, we demonstrated an indirect, HO-1-dependent regulatory relationship between miRNA-183-5p and Nrf2. Our results indicate that miRNA-183-5p and HO-1 are promising therapeutic targets for controlling inflammation and oxidative damage after hemorrhagic stroke.
Collapse
|
21
|
Li L, Chen W, Ma L, Liu ZB, Lu X, Gao XX, Liu Y, Wang H, Zhao M, Li XL, Cong L, Xu DX, Chen YH. Continuous association of total bile acid levels with the risk of small for gestational age infants. Sci Rep 2020; 10:9257. [PMID: 32518361 PMCID: PMC7283485 DOI: 10.1038/s41598-020-66138-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
The association between maternal serum total bile acid (TBA) levels and small-for-gestational-age (SGA) infants is unclear. We investigated the association between various degrees of serum TBA levels and the risk of SGA infants in a Chinese population. The current study performed a cohort study among 11811 mothers with singleton pregnancy. Subjects were divided into seven categories according to maternal serum TBA levels. Interestingly, birth sizes were reduced, whereas the rate of SGA infants was increased across increasing categories of serum TBA. Compared to category 1, adjusted ORs (95%CI) for SGA infants were 0.99 (0.82-1.21) in category 2, 1.22 (0.97-1.53) in category 3, 1.99 (1.53-2.58) in category 4, 2.91 (2.16-3.93) in category 5, 4.29 (3.33-5.54) in category 6, and 9.01 (5.99-13.53) in category 7, respectively. Furthermore, adjusted ORs (95%CI) for SGA infants for each 1-SD increase in serum TBA levels were 1.36 (1.29-1.43) among all subjects, 2.40 (1.82-3.45) among subjects without cholestasis, and 1.13 (1.06-1.22) among subjects with cholestasis, respectively. These results suggest that gestational cholestasis increases the risk of SGA infants. Additionally, our results indicate strong, continuous associations of serum TBA levels below those diagnostic of cholestasis with a decreased birth sizes and an increased risk of SGA infants.
Collapse
Affiliation(s)
- Li Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, HeFei, 230022, China
| | - Wei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Li Ma
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhi Bing Liu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xing Xing Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Xiao Lan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, HeFei, 230022, China
| | - Lin Cong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, HeFei, 230022, China
| | - De Xiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Yuan Hua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Implantation and Placental Development Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
22
|
Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP, Simon F, Cabrera D, Arrese M, Karpen S, Cabello-Verrugio C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 2020; 236:260-272. [PMID: 32506638 DOI: 10.1002/jcp.29839] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is characterized by the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. An increase in the expression of two muscle-specific E3 ligases, atrogin-1 and MuRF-1, and oxidative stress are involved in muscle atrophy. Patients with chronic liver diseases (CLD) develop muscle wasting. Several bile acids increase in plasma during cholestatic CLD, among them, cholic acid (CA) and deoxycholic acid (DCA). The receptor for bile acids, TGR5, is expressed in healthy skeletal muscles. TGR5 is involved in the regulation of muscle differentiation and metabolic changes. In this paper, we evaluated the participation of DCA and CA in the generation of an atrophic condition in myotubes and isolated fibers from the muscle extracted from wild-type (WT) and TGR5-deficient (TGR5-/- ) male mice. The results show that DCA and CA induce a decrease in diameter, and myosin heavy chain (MHC) protein levels, two typical atrophic features in C2 C12 myotubes. We also observed similar results when INT-777 agonists activated the TGR5 receptor. To evaluate the participation of TGR5 in muscle atrophy induced by DCA and CA, we used a culture of muscle fiber isolated from WT and TGR5-/- mice. Our results show that DCA and CA decrease the fiber diameter and MHC protein levels, and there is an increase in atrogin-1, MuRF-1, and oxidative stress in WT fibers. The absence of TGR5 in fibers abolished all these effects induced by DCA and CA. Thus, we demonstrated that CS and deoxycholic acid induce skeletal muscle atrophy through TGR5 receptor.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Gonzalez
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Meza
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile.,Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina-Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Médicas, Universidad Bernardo OHiggins, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina-Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago, Chile
| | - Saul Karpen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility suand Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
23
|
Obeticholic Acid Protects against Gestational Cholestasis-Induced Fetal Intrauterine Growth Restriction in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7419249. [PMID: 31827696 PMCID: PMC6885290 DOI: 10.1155/2019/7419249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Gestational cholestasis is a common disease and is associated with adverse pregnancy outcomes. However, there are still no effective treatments. We investigated the effects of obeticholic acid (OCA) on fetal intrauterine growth restriction (IUGR) during 17α-ethynylestradiol- (E2-) induced gestational cholestasis in mice. All pregnant mice except controls were subcutaneously injected with E2 (0.625 mg/kg) daily from gestational day (GD) 13 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD12 to GD17. As expected, OCA activated placental, maternal, and fetal hepatic FXR signaling. Additionally, exposure with E2 during late pregnancy induced cholestasis, whereas OCA alleviated E2-induced cholestasis. Gestational cholestasis caused reduction of fetal weight and crown-rump length and elevated the incidence of IUGR. OCA decreased the incidence of IUGR during cholestasis. Interestingly, OCA attenuated reduction of blood sinusoid area in placental labyrinth layer and inhibited downregulation of placental sodium-coupled neutral amino acid transporter- (SNAT-) 2 during cholestasis. Additional experiment found that OCA attenuated glutathione depletion and lipid peroxidation in placenta and fetal liver and placental protein nitration during cholestasis. Moreover, OCA inhibited the upregulation of placental NADPH oxidase-4 and antioxidant genes during cholestasis. OCA activated antioxidant Nrf2 signaling during cholestasis. Overall, we demonstrated that OCA treatment protected against gestational cholestasis-induced placental dysfunction and IUGR through suppressing placental oxidative stress and maintaining bile acid homeostasis.
Collapse
|
24
|
Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34:975-991. [PMID: 30105414 DOI: 10.1007/s00467-018-4005-4] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/03/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS), defined as disturbances in the pro-/antioxidant balance, is harmful to cells due to the excessive generation of highly reactive oxygen (ROS) and nitrogen (RNS) species. When the balance is not disturbed, OS has a role in physiological adaptations and signal transduction. However, an excessive amount of ROS and RNS results in the oxidation of biological molecules such as lipids, proteins, and DNA. Oxidative stress has been reported in kidney disease, due to both antioxidant depletions as well as increased ROS production. The kidney is a highly metabolic organ, rich in oxidation reactions in mitochondria, which makes it vulnerable to damage caused by OS, and several studies have shown that OS can accelerate kidney disease progression. Also, in patients at advanced stages of chronic kidney disease (CKD), increased OS is associated with complications such as hypertension, atherosclerosis, inflammation, and anemia. In this review, we aim to describe OS and its influence on CKD progression and its complications. We also discuss the potential role of various antioxidants and pharmacological agents, which may represent potential therapeutic targets to reduce OS in both pediatric and adult CKD patients.
Collapse
Affiliation(s)
- Kristien Daenen
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium.
- Department of Nephrology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD Group, KU Leuven - University of Leuven, 3000, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital (ULg CHU), Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Science, University of Liège, Liège, Belgium
| | - Bert Bammens
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| |
Collapse
|
25
|
Yao Q, Jiang X, Kou L, Samuriwo AT, Xu HL, Zhao YZ. Pharmacological actions and therapeutic potentials of bilirubin in islet transplantation for the treatment of diabetes. Pharmacol Res 2019; 145:104256. [PMID: 31054312 DOI: 10.1016/j.phrs.2019.104256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
Islet transplantation is the experimental strategy to treat type 1 diabetes by transplanting isolated islets from a donor pancreas into the recipient. While significant progress has been made in the islet transplantation field, islet loss before and after transplantation is still the major obstacle that currently precludes its widespread application. Islet must survive from possible cellular damages during the isolation procedure, storage time, islet injection process and post-transplantation immune rejection, only then the survived islets could produce insulin, actively regulating the blood glucose level. Therefore, islet protection needs to be addressed, especially regarding oxidative stress and immune response induced islet cell damages in diabetic patients. Many clinical data have shown that mildly elevated bilirubin levels in the body negatively correlate to the occurrence of an array of diseases that are related to increased oxidative stress, especially diabetes, and its complications. Recent studies confirmed that bilirubin helps receivers to suppress immune reaction and enable prolonged tolerance to islet transplantation. In this paper, we will review the pharmacological mechanism of bilirubin to modulate oxidative cellular damage and chronic inflammatory reaction in both diabetes and islet transplantation process. Also, we will present the clinical evidence of a strong correlation in bilirubin and diabetes. More importantly, we will summarize undergoing therapeutic applications of bilirubin in islet transplantation and discuss formulation approaches designed to overcome bilirubin delivery issues for future use.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xue Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Adelaide T Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
26
|
Al-Abdulla R, Lozano E, Macias RIR, Monte MJ, Briz O, O'Rourke CJ, Serrano MA, Banales JM, Avila MA, Martinez-Chantar ML, Geier A, Andersen JB, Marin JJG. Epigenetic events involved in organic cation transporter 1-dependent impaired response of hepatocellular carcinoma to sorafenib. Br J Pharmacol 2019; 176:787-800. [PMID: 30592786 DOI: 10.1111/bph.14563] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The expression of the human organic cation transporter-1 (hOCT1, gene SLC22A1) is reduced in hepatocellular carcinoma (HCC). The molecular bases of this reduction and its relationship with the poor response of HCC to sorafenib were investigated. EXPERIMENTAL APPROACH HCC transcriptomes from 366 samples available at TCGA were analysed. Alternative splicing was determined by RT-PCR. The role of miRNAs in SLC22A1 downregulation was investigated. Expression of Oct1 was measured in rodent HCC models (spontaneously generated in Fxr-/- mice and chemically-induced in rats). hOCT1 was overexpressed in human hepatoma cells (HuH7 and HepG2). Sorafenib and regorafenib uptake was determined by HPLC-MS/MS. KEY RESULTS hOCT1 overexpression enhanced sorafenib, but not regorafenib, quinine-inhibitable uptake by hepatoma cells. In rodent HCC, Oct1 was downregulated, which was accompanied by impaired sorafenib uptake. In mice with s.c.-implanted HCC, sorafenib inhibited the growth of hOCT1 overexpressing tumours. In human HCC, hOCT1 expression was inversely correlated with SLC22A1 promoter methylation, whereas demethylation with decitabine enhanced hOCT1 expression in hepatoma cells. Increased proportion of aberrant hOCT1 mRNA variants was found in HCC samples. In silico analysis identified six miRNAs as candidates to target hOCT1 mRNA. When overexpressed in HepG2 cells a significant hOCT1 mRNA decay was induced by hsa-miR-330 and hsa-miR-1468. Analysis of 39 paired tumour/adjacent samples from TCGA revealed that hsa-mir-330 was consistently upregulated in HCC. CONCLUSION AND IMPLICATIONS Impaired hOCT1 expression/function in HCC, in part due to epigenetic modifications, plays an important role in the poor pharmacological response of this cancer to sorafenib.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria A Serrano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Jesus M Banales
- Department of Hepatology and Gastroenterology. Biodonostia Biomedical Research Institute, San Sebastian University Hospital. Basque Country University, San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Matias A Avila
- Hepatology Programme, Centre for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria L Martinez-Chantar
- Department of Metabolomics, CIC bioGUNE, Derio, Vizcaya, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
27
|
Weaver L, Hamoud AR, Stec DE, Hinds TD. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G668-G676. [PMID: 29494209 PMCID: PMC6032063 DOI: 10.1152/ajpgi.00026.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.
Collapse
Affiliation(s)
- Lauren Weaver
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Abdul-rizaq Hamoud
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - David E. Stec
- 2Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
28
|
Immune challenges decrease biliverdin concentration in the spleen of northern Bobwhite quail, Colinus virginianus. J Comp Physiol B 2018; 188:505-515. [DOI: 10.1007/s00360-018-1146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
29
|
Zheng L, Yin L, Xu L, Qi Y, Li H, Xu Y, Han X, Liu K, Peng J. Protective effect of dioscin against thioacetamide-induced acute liver injury via FXR/AMPK signaling pathway in vivo. Biomed Pharmacother 2018; 97:481-488. [DOI: 10.1016/j.biopha.2017.10.153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
|
30
|
Patricia Moreno-Londoño A, Bello-Alvarez C, Pedraza-Chaverri J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol 2017; 109:143-154. [DOI: 10.1016/j.fct.2017.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
|
31
|
Tian WF, Weng P, Sheng Q, Chen JL, Zhang P, Zhang JR, Du B, Wu MC, Pang QF, Chu JJ. Biliverdin Protects the Isolated Rat Lungs from Ischemia-reperfusion Injury via Antioxidative, Anti-inflammatory and Anti-apoptotic Effects. Chin Med J (Engl) 2017; 130:859-865. [PMID: 28345551 PMCID: PMC5381321 DOI: 10.4103/0366-6999.202735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Biliverdin (BV) has a protective role against ischemia-reperfusion injury (IRI). However, the protective role and potential mechanisms of BV on lung IRI (LIRI) remain to be elucidated. Thus, we aimed to investigate the protective role and potential mechanisms of BV on LIRI. Methods: Lungs were isolated from Sprague-Dawley rats to establish an ex vivo LIRI model. After an initial 15 min stabilization period, the isolated lungs were subjected to ischemia for 60 min, followed by 90 min of reperfusion with or without BV treatment. Results: Lungs in the I/R group exhibited significant decrease in tidal volume (1.44 ± 0.23 ml/min in I/R group vs. 2.41 ± 0.31 ml/min in sham group; P < 0.001), lung compliance (0.27 ± 0.06 ml/cmH2O in I/R group vs. 0.44 ± 0.09 ml/cmH2O in sham group; P < 0.001; 1 cmH2O=0.098 kPa), and oxygen partial pressure (PaO2) levels (64.12 ± 12 mmHg in I/R group vs. 114 ± 8.0 mmHg in sham group; P < 0.001; 1 mmHg = 0.133 kPa). In contrast, these parameters in the BV group (2.27 ± 0.37 ml/min of tidal volume, 0.41 ± 0.10 ml/cmH2O of compliance, and 98.7 ± 9.7 mmHg of PaO2) were significantly higher compared with the I/R group (P = 0.004, P < 0.001, and P < 0.001, respectively). Compared to the I/R group, the contents of superoxide dismutase were significantly higher (47.07 ± 7.91 U/mg protein vs. 33.84 ± 10.15 U/mg protein; P = 0.005) while the wet/dry weight ratio (P < 0.01), methane dicarboxylic aldehyde (1.92 ± 0.25 nmol/mg protein vs. 2.67 ± 0.46 nmol/mg protein; P < 0.001), and adenosine triphosphate contents (297.05 ± 47.45 nmol/mg protein vs. 208.09 ± 29.11 nmol/mg protein; P = 0.005) were markedly lower in BV-treated lungs. Histological analysis revealed that BV alleviated LIRI. Furthermore, the expression of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-β) was downregulated and the expression of cyclooxygenase-2, inducible nitric oxide synthase, and Jun N-terminal kinase was significantly reduced in BV group (all P < 0.01 compared to I/R group). Finally, the apoptosis index in the BV group was significantly decreased (P < 0.01 compared to I/R group). Conclusion: BV protects lung IRI through its antioxidative, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Wen-Fang Tian
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Weng
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiong Sheng
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Liang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Zhang
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ji-Ru Zhang
- Department of Anesthesia, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bin Du
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min-Chen Wu
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Jun Chu
- Department of Anesthesia, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
32
|
Marin JJG, Lozano E, Perez MJ. Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α. Free Radic Biol Med 2016; 101:71-84. [PMID: 27687210 DOI: 10.1016/j.freeradbiomed.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 01/04/2023]
Abstract
Alterations in mitochondrial DNA (mtDNA) and autophagy activation are common events in tumors. Here we have investigated the effect of mitochondrial genome depletion on chemical hypoxia-induced autophagy in liver tumor cells. Human SK-Hep-1 wild-type and mtDNA-depleted (Rho) cells were exposed to the hypoxia mimetic agents CoCl2 and deferoxamine (DFO). Up-regulation of HIF-1α, but not HIF-2α was observed. The expression of several HIF-1α target genes was also found. In human SK-Hep-1 and mouse Hepa 1-6 liver tumor cells, but not in the counterpart Rho derived lines, chemical hypoxia increased the abundance of autophagosomes and autolysosomes. In wild-type and Rho cells, chemical hypoxia induced down-regulation of HIF-1α-dependent autophagy inhibitors Bcl-2 and mTOR, whereas activation of AMPK/ULK1-mediated pro-autophagy pathway occurred only in wild-type cells. Chemical (compound C) and genetic (shRNA) inhibition of AMPK activation resulted in reduced autophagy. ATP levels were similar in both cell types, whereas constitutive and chemical hypoxia-induced reactive oxygen species (ROS) generation was lower in Rho cells. In wild-type cells, the antioxidant N-acetylcysteine blocked CoCl2- and DFO-induced AMPK and autophagy activation, but not endoplasmic reticulum stress induced by CoCl2. Enhanced Bax-α/Bcl-2 ratio and cell death was induced by hypoxia mimetic agents more markedly in wild-type than in Rho cells. Upon blocking autophagy activation with 3-methyladenine, DFO-induced cell death was partially prevented whereas that induced by CoCl2 was increased, but only in wild-type cells. These results suggest that mitochondrial dysfunction associated with the lack of mtDNA impairs the signaling pathways mediated by ROS, controlling autophagy activation in liver tumor cells, which may contributes to cancer development.
Collapse
Affiliation(s)
- Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting, IBSAL, CIBERehd. University of Salamanca, 37007 Salamanca, Spain
| | - Elisa Lozano
- Laboratory of Experimental Hepatology and Drug Targeting, IBSAL, CIBERehd. University of Salamanca, 37007 Salamanca, Spain
| | - Maria J Perez
- Laboratory of Experimental Hepatology and Drug Targeting, IBSAL, CIBERehd. University of Salamanca, 37007 Salamanca, Spain; University Hospital of Salamanca, IECSCYL-IBSAL, 37007 Salamanca, Spain.
| |
Collapse
|