1
|
Wang Y, Yang Y, Wen L, Li M. Risk factors and nomogram for the prediction of intracranial hemorrhage in very preterm infants. BMC Pediatr 2024; 24:793. [PMID: 39633312 PMCID: PMC11616105 DOI: 10.1186/s12887-024-05274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS This study aims to identify important risk factors for intracranial hemorrhage (ICH) in very preterm infants at our institution and develop a predictive nomogram for early detection of ICH. METHODS We retrospectively analyzed neonates with a gestational age (GA) under 32 weeks, admitted to the neonatal intensive care unit from March 2022 to July 2023. Infants were categorized into two groups based on ultrasound findings and assessed for thirteen variables including gender, GA, birth weight (BW), acidosis, among others. We used multivariate logistic regression analysis to build a prediction model and identify independent risk factors for ICH. We build a prediction model by assigning 241 cases to the training set and 103 to the validation set (ratio 7:3). RESULTS Among 344 very preterm infants, the incidence of ICH was 36.9% (89 cases) in training set. Significant differences were observed in gestational age, birth weight, antenatal corticosteroids, mechanical ventilation days, and acidosis between cases and controls. Logistic regression analysis identified gestational age (OR = 0.674), antenatal corticosteroids (OR = 0.257), acidosis (OR = 2.556), and mechanical ventilation mechanical ventilation days(OR = 0.257) as independent risk factors for ICH. The C-index of the training and validation sets was 0.814 (95% CI: 0.762-0.869) and 0.784 (95% CI: 0.693-0.875), respectively. According to decision curve analysis, our model outperformed the "None" and "All" baseline lines over a wide range of risk thresholds (0.12-0.92). CONCLUSION Acidosis and mechanical ventilation are independent risk factors for ICH in very preterm neonates, while higher gestational age and antenatal corticosteroid use are protective. The nomogram developed from these four factors demonstrates strong predictive accuracy and calibration, which can aid clinicians in identifying preterm infants at high risk for ICH and facilitate early diagnosis and management.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neonatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Yong Yang
- Department of Neonatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Lijun Wen
- Department of Neonatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China
| | - Minxu Li
- Department of Neonatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, 523000, China.
| |
Collapse
|
2
|
Shao L, Wang C, Xu G, Tu Z, Yu X, Weng C, Liu J, Jian Z. Utilizing reactive oxygen species-scavenging nanoparticles for targeting oxidative stress in the treatment of ischemic stroke: A review. Open Med (Wars) 2024; 19:20241041. [PMID: 39588390 PMCID: PMC11587925 DOI: 10.1515/med-2024-1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024] Open
Abstract
Ischemic stroke, which accounts for the majority of stroke cases, triggers a complex series of pathophysiological events, prominently characterized by acute oxidative stress due to excessive production of reactive oxygen species (ROS). Oxidative stress plays a crucial role in driving cell death and inflammation in ischemic stroke, making it a significant target for therapeutic intervention. Nanomedicine presents an innovative approach to directly mitigate oxidative damage. This review consolidates existing knowledge on the role of oxidative stress in ischemic stroke and assesses the potential of various ROS-scavenging nanoparticles (NPs) as therapeutic agents. We explore the properties and mechanisms of metal, metal-oxide, and carbon-based NPs, emphasizing their catalytic activity and biocompatibility in scavenging free radicals and facilitating the delivery of therapeutic agents across the blood-brain barrier. Additionally, we address the challenges such as cytotoxicity, immunogenicity, and biodistribution that need to be overcome to translate these nanotechnologies from bench to bedside. The future of NP-based therapies for ischemic stroke holds promise, with the potential to enhance outcomes through targeted modulation of oxidative stress.
Collapse
Affiliation(s)
- Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Can Wang
- Department of Neurosurgery, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People’s Hospital, Xiantao, 433000, Hubei, China
| | - Zewei Tu
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06510, CT, United States of America
| | - Xinyuan Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, NC, United States of America
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
3
|
Kong W, Lu C. Role of mitochondria in neonatal hypoxic-ischemic encephalopathy. Histol Histopathol 2024; 39:991-1000. [PMID: 38314617 DOI: 10.14670/hh-18-710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy, an important cause of death as well as long-term disability in survivors, is caused by oxygen and glucose deprivation, and limited blood flow. Following hypoxic-ischemic injury in the neonatal brain, three main biochemical damages (excitotoxicity, oxidative stress, and exacerbated inflammation) are triggered. Mitochondria are involved in all three cascades. Mitochondria are the nexus of metabolic pathways to offer most of the energy that our body needs. Hypoxic-ischemic injury affects the characteristics of mitochondria, including dynamics, permeability, and ATP production, which also feed back into the process of neonatal hypoxic-ischemic encephalopathy. Mitochondria can be a cellular hub in inflammation, which is another main response of the injured neonatal brain. Some treatments for neonatal hypoxic-ischemic encephalopathy affect the function of mitochondria or target mitochondria, including therapeutic hypothermia and erythropoietin. This review presents the main roles of mitochondria in neonatal hypoxic-ischemic encephalopathy and discusses some potential treatments directed at mitochondria, which may foster the development of new therapeutic strategies for this encephalopathy.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Cheng Lu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Bahire KL, Maļuhins R, Bello F, Upīte J, Makarovs A, Jansone B. Long-Term Region-Specific Mitochondrial Functionality Changes in Both Cerebral Hemispheres after fMCAo Model of Ischemic Stroke. Antioxidants (Basel) 2024; 13:416. [PMID: 38671864 PMCID: PMC11047464 DOI: 10.3390/antiox13040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebral ischemia/reperfusion (I/R) refers to a secondary brain injury that results in mitochondrial dysfunction of variable extent, leading to neuronal cell damage. The impact of this process has mainly been studied in the short term, from the early hours up to one week after blood flow reperfusion, and in the ischemic hemisphere only. The focus of this study was to assess the long-term impacts of I/R on mitochondrial functionality using high-resolution fluorespirometry to evaluate state-dependent activities in both ischemic (ipsilateral) and non-ischemic (contralateral) hemispheres of male mice 60, 90, 120, and 180 days after I/R caused by 60-min-long filament-induced middle cerebral artery occlusion (fMCAo). Our results indicate that in cortical tissues, succinate-supported oxygen flux (Complex I&II OXPHOS state) and H2O2 production (Complex II LEAK state) were significantly decreased in the fMCAo (stroke) group ipsilateral hemisphere compared to measurements in the contralateral hemisphere 60 and 90 days after stroke. In hippocampal tissues, during the Complex I&II ET state, mitochondrial respiration was generally lower in the ipsilateral compared to the contralateral hemisphere 90 days following stroke. An aging-dependent impact on mitochondria oxygen consumption following I/R injury was observed 180 days after surgery, wherein Complex I&II activities were lowest in both hemispheres. The obtained results highlight the importance of long-term studies in the field of ischemic stroke, particularly when evaluating mitochondrial bioenergetics in specific brain regions within and between separately affected cerebral hemispheres.
Collapse
Affiliation(s)
- Ksenija Lūcija Bahire
- Department of Pharmacology, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (R.M.); (F.B.); (J.U.); (A.M.)
| | | | | | | | | | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (R.M.); (F.B.); (J.U.); (A.M.)
| |
Collapse
|
5
|
Liu B, Yuan M, Yang M, Zhu H, Zhang W. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions. High Alt Med Biol 2024; 25:26-41. [PMID: 37815821 DOI: 10.1089/ham.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Liu, Bo, Minlan Yuan, Mei Yang, Hongru Zhu, and Wei Zhang. The effect of high-altitude hypoxia on neuropsychiatric functions. High Alt Med Biol. 25:26-41, 2024. Background: In recent years, there has been a growing popularity in engaging in activities at high altitudes, such as hiking and work. However, these high-altitude environments pose risks of hypoxia, which can lead to various acute or chronic cerebral diseases. These conditions include common neurological diseases such as acute mountain sickness (AMS), high-altitude cerebral edema, and altitude-related cerebrovascular diseases, as well as psychiatric disorders such as anxiety, depression, and psychosis. However, reviews of altitude-related neuropsychiatric conditions and their potential mechanisms are rare. Methods: We conducted searches on PubMed and Google Scholar, exploring existing literature encompassing preclinical and clinical studies. Our aim was to summarize the prevalent neuropsychiatric diseases induced by altitude hypoxia, the potential pathophysiological mechanisms, as well as the available pharmacological and nonpharmacological strategies for prevention and intervention. Results: The development of altitude-related cerebral diseases may arise from various pathogenic processes, including neurovascular alterations associated with hypoxia, cytotoxic responses, activation of reactive oxygen species, and dysregulation of the expression of hypoxia inducible factor-1 and nuclear factor erythroid 2-related factor 2. Furthermore, the interplay between hypoxia-induced neurological and psychiatric changes is believed to play a role in the progression of brain damage. Conclusions: While there is some evidence pointing to pathophysiological changes in hypoxia-induced brain damage, the precise mechanisms responsible for neuropsychiatric alterations remain elusive. Currently, the range of prevention and intervention strategies available is primarily focused on addressing AMS, with a preference for prevention rather than treatment.
Collapse
Affiliation(s)
- Bo Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- Zigong Mental Health Center, Zigong, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
7
|
Iwata H, Obara H, Nakajo T, Kaneko H, Okazawa Y, Mohd Zin NK, Bochimoto H, Ohashi M, Kawada Y, Ohara M, Yokoo H, Matsuno N. Beneficial Effects of Combined Use of Extracorporeal Membrane Oxygenation and Hypothermic Machine Perfusion in Porcine Donors after Cardiac Death for Liver Transplantation. J Clin Med 2023; 12:6031. [PMID: 37762971 PMCID: PMC10532259 DOI: 10.3390/jcm12186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Grafts from donors after cardiac death (DCD) have greatly contributed to expanding the donor organ pool. This study aimed to determine the benefits of subnormothermic extracorporeal membrane oxygenation (ECMO) and hypothermic machine perfusion (HMP) in a porcine model of DCD liver. Female domestic crossbred Large Yorkshire and Landrace pigs weighing approximately 20 kg were used. The abdominal aorta and inferior vena cava were cannulated and connected to an ECMO circuit for in situ perfusion of the abdominal organs at 22 °C for 60 min, 45 min after cardiac death. The pigs were divided into the cold storage (CS) group (n = 3), where liver grafts were preserved at 4 °C, and the HMP group (n = 3), where liver grafts were preserved by HMP at 8-10 °C. After 4 h of preservation, liver function was evaluated using an isolated liver reperfusion model for 2 h. Although the difference was insignificant, the liver effluent enzyme levels in the HMP group were lower than those in the CS group. Furthermore, morphological findings showed fewer injured hepatocytes in the HMP group than in the CS group. The combined use of in situ subnormothermic ECMO and HMP was beneficial for the functional improvement of DCD liver grafts.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
- Department of Hepato-Biliary-Pancreatic and Transplantation Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan;
| | - Hiromichi Obara
- Department of Mechanical System Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; (H.O.); (Y.O.)
| | - Tetsuya Nakajo
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Hiroki Kaneko
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Yuga Okazawa
- Department of Mechanical System Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; (H.O.); (Y.O.)
| | - Nur Khatijah Mohd Zin
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku 105-8471, Japan; (N.K.M.Z.); (H.B.)
| | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku 105-8471, Japan; (N.K.M.Z.); (H.B.)
| | - Makito Ohashi
- Department of Clinical Engineering, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku 157-8535, Japan; (M.O.); (Y.K.)
| | - Yoko Kawada
- Department of Clinical Engineering, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku 157-8535, Japan; (M.O.); (Y.K.)
| | - Mizuho Ohara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| | - Hideki Yokoo
- Department of Hepato-Biliary-Pancreatic and Transplantation Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan;
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan; (H.I.); (T.N.); (H.K.); (M.O.)
| |
Collapse
|
8
|
Basta G, Melandro F, Babboni S, Del Turco S, Ndreu R, Torri F, Martinelli C, Silvestrini B, Peris A, Lazzeri C, Guarracino F, Morganti R, Maremmani P, Bertini P, De Simone P, Ghinolfi D. An extensive evaluation of hepatic markers of damage and regeneration in controlled and uncontrolled donation after circulatory death. Liver Transpl 2023; 29:813-826. [PMID: 36879554 DOI: 10.1097/lvt.0000000000000122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Livers from donations after circulatory death (DCDs) are very sensitive to ischemia/reperfusion injury and thus need careful reconditioning, such as normothermic regional perfusion (NRP). So far, its impact on DCDs has not been thoroughly investigated. This pilot cohort study aimed to explore the NRP impact on liver function by evaluating dynamic changes of circulating markers and hepatic gene expression in 9 uncontrolled DCDs (uDCDs) and 10 controlled DCDs. At NRP start, controlled DCDs had lower plasma levels of inflammatory and liver damage markers, including α-glutathione s-transferase, sorbitol-dehydrogenase, malate dehydrogenase 1, liver-type arginase-1, and keratin-18, but higher levels of osteopontin, sFas, flavin mononucleotide, and succinate than uDCDs. During 4-hour NRP, some damage and inflammatory markers increased in both groups, while IL-6, HGF, and osteopontin increased only in uDCDs. At the NRP end, the tissue expression of early transcriptional regulators, apoptosis, and autophagy mediators was higher in uDCDs than in controlled DCDs. In conclusion, despite initial differences in liver damage biomarkers, the uDCD group was characterized by a major gene expression of regenerative and repair factors after the NRP procedure. Correlative analysis among circulating/tissue biomarkers and the tissue congestion/necrosis degree revealed new potential candidate biomarkers.
Collapse
Affiliation(s)
- Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | | | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - Chiara Lazzeri
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - Fabio Guarracino
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Riccardo Morganti
- Division of Medical Statistics, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo Maremmani
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Pietro Bertini
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| |
Collapse
|
9
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Chavda V, Lu B. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040895. [PMID: 37107270 PMCID: PMC10135819 DOI: 10.3390/antiox12040895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide. A main cause of brain damage by stroke is ischemia-reperfusion (IR) injury due to the increased production of reactive oxygen species (ROS) and energy failure caused by changes in mitochondrial metabolism. Ischemia causes a build-up of succinate in tissues and changes in the mitochondrial NADH: ubiquinone oxidoreductase (complex I) activity that promote reverse electron transfer (RET), in which a portion of the electrons derived from succinate are redirected from ubiquinol along complex I to reach the NADH dehydrogenase module of complex I, where matrix NAD+ is converted to NADH and excessive ROS is produced. RET has been shown to play a role in macrophage activation in response to bacterial infection, electron transport chain reorganization in response to changes in the energy supply, and carotid body adaptation to changes in the oxygen levels. In addition to stroke, deregulated RET and RET-generated ROS (RET-ROS) have been implicated in tissue damage during organ transplantation, whereas an RET-induced NAD+/NADH ratio decrease has been implicated in aging, age-related neurodegeneration, and cancer. In this review, we provide a historical account of the roles of ROS and oxidative damage in the pathogenesis of ischemic stroke, summarize the latest developments in our understanding of RET biology and RET-associated pathological conditions, and discuss new ways to target ischemic stroke, cancer, aging, and age-related neurodegenerative diseases by modulating RET.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Effect of metformin on intact mitochondria from liver and brain: Concept revisited. Eur J Pharmacol 2022; 931:175177. [DOI: 10.1016/j.ejphar.2022.175177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
12
|
Liver perfusion strategies: what is best and do ischemia times still matter? Curr Opin Organ Transplant 2022; 27:285-299. [PMID: 35438271 DOI: 10.1097/mot.0000000000000963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This review describes recent developments in the field of liver perfusion techniques. RECENT FINDINGS Dynamic preservation techniques are increasingly tested due to the urgent need to improve the overall poor donor utilization. With their exposure to warm ischemia, livers from donors after circulatory death (DCD) transmit additional risk for severe complications after transplantation. Although the superiority of dynamic approaches compared to static-cold-storage is widely accepted, the number of good quality studies remains limited. Most risk factors, particularly donor warm ischemia, and accepted thresholds are inconsistently reported, leading to difficulties to assess the impact of new preservation technologies. Normothermic regional perfusion (NRP) leads to good outcomes after DCD liver transplantation, with however short ischemia times. While randomized controlled trials (RCT) with NRP are lacking, results from the first RCTs with ex-situ perfusion were reported. Hypothermic oxygenated perfusion was shown to protect DCD liver recipients from ischemic cholangiopathy. In contrast, endischemic normothermic perfusion seems to not impact on the development of biliary complications, although this evidence is only available from retrospective studies. SUMMARY Dynamic perfusion strategies impact posttransplant outcomes and are increasingly commissioned in various countries along with more evidence from RCTs. Transparent reporting of risk and utilization with uniform definitions is required to compare the role of different preservation strategies in DCD livers with prolonged ischemia times.
Collapse
|
13
|
Burger N, James AM, Mulvey JF, Hoogewijs K, Ding S, Fearnley IM, Loureiro-López M, Norman AAI, Arndt S, Mottahedin A, Sauchanka O, Hartley RC, Krieg T, Murphy MP. ND3 Cys39 in complex I is exposed during mitochondrial respiration. Cell Chem Biol 2022; 29:636-649.e14. [PMID: 34739852 PMCID: PMC9076552 DOI: 10.1016/j.chembiol.2021.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Mammalian complex I can adopt catalytically active (A-) or deactive (D-) states. A defining feature of the reversible transition between these two defined states is thought to be exposure of the ND3 subunit Cys39 residue in the D-state and its occlusion in the A-state. As the catalytic A/D transition is important in health and disease, we set out to quantify it by measuring Cys39 exposure using isotopic labeling and mass spectrometry, in parallel with complex I NADH/CoQ oxidoreductase activity. To our surprise, we found significant Cys39 exposure during NADH/CoQ oxidoreductase activity. Furthermore, this activity was unaffected if Cys39 alkylation occurred during complex I-linked respiration. In contrast, alkylation of catalytically inactive complex I irreversibly blocked the reactivation of NADH/CoQ oxidoreductase activity by NADH. Thus, Cys39 of ND3 is exposed in complex I during mitochondrial respiration, with significant implications for our understanding of the A/D transition and the mechanism of complex I.
Collapse
Affiliation(s)
- Nils Burger
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Andrew M James
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kurt Hoogewijs
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; Medical Research Council-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Shujing Ding
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Marta Loureiro-López
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Sabine Arndt
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Amin Mottahedin
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
14
|
Shoaib M, Choudhary RC, Chillale RK, Kim N, Miyara SJ, Haque S, Yin T, Frankfurt M, Molmenti EP, Zanos S, Kim J, Becker LB. Metformin-mediated mitochondrial protection post-cardiac arrest improves EEG activity and confers neuroprotection and survival benefit. FASEB J 2022; 36:e22307. [PMID: 35394702 DOI: 10.1096/fj.202200121r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
Cardiac arrest (CA) produces global ischemia/reperfusion injury resulting in substantial multiorgan damage. There are limited efficacious therapies to save lives despite CA being such a lethal disease process. The small population of surviving patients suffer extensive brain damage that results in substantial morbidity. Mitochondrial dysfunction in most organs after CA has been implicated as a major source of injury. Metformin, a first-line treatment for diabetes, has shown promising results in the treatment for other diseases and is known to interact with the mitochondria. For the treatment of CA, prior studies have utilized metformin in a preconditioning manner such that animals are given metformin well before undergoing CA. As the timing of CA is quite difficult to predict, the present study, in a clinically relevant manner, sought to evaluate the therapeutic benefits of metformin administration immediately after resuscitation using a 10 min asphxyial-CA rat model. This is the first study to show that metformin treatment post-CA (a) improves 72 h survival and neurologic function, (b) protects mitochondrial function with a reduction in apoptotic brain injury without activating AMPK, and (c) potentiates earlier normalization of brain electrophysiologic activity. Overall, as an effective and safe drug, metformin has the potential to be an easily translatable intervention for improving survival and preventing brain damage after CA.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Emergency Medicine, Northwell Health, Manhasset, New York, USA
| | - Rupesh K Chillale
- Neural System Laboratory, University of Maryland, College Park, Maryland, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| | - Shabirul Haque
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Molecular Medicine and Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | | | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Junhwan Kim
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Emergency Medicine, Northwell Health, Manhasset, New York, USA.,Molecular Medicine and Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Lance B Becker
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Emergency Medicine, Northwell Health, Manhasset, New York, USA.,Molecular Medicine and Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
15
|
Kelmanson IV, Shokhina AG, Kotova DA, Pochechuev MS, Ivanova AD, Kostyuk AI, Panova AS, Borodinova AA, Solotenkov MA, Stepanov EA, Raevskii RI, Moshchenko AA, Pak VV, Ermakova YG, van Belle GJC, Tarabykin V, Balaban PM, Fedotov IV, Fedotov AB, Conrad M, Bogeski I, Katschinski DM, Doeppner TR, Bähr M, Zheltikov AM, Belousov VV, Bilan DS. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 2021; 48:102178. [PMID: 34773835 PMCID: PMC8600061 DOI: 10.1016/j.redox.2021.102178] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.
Collapse
Affiliation(s)
- Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Arina G Shokhina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Matvei S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Biological Department, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasia A Borodinova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maxim A Solotenkov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Evgeny A Stepanov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Roman I Raevskii
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Valeriy V Pak
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia G Ermakova
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Gijsbert J C van Belle
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Viktor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Ilya V Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Andrei B Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Marcus Conrad
- Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Ivan Bogeski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
16
|
Cheng H, Pamenter ME. Naked mole-rat brain mitochondria tolerate in vitro ischaemia. J Physiol 2021; 599:4671-4685. [PMID: 34472099 DOI: 10.1113/jp281942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Naked mole-rats (NMRs; Heterocephalus glaber) are among the most hypoxia-tolerant mammals. There is evidence that the NMR brain tolerates in vitro hypoxia and NMR brain mitochondria exhibit functional plasticity following in vivo hypoxia; however, if and how these organelles tolerate ischaemia and how ischaemic stress impacts mitochondrial energetics and redox regulation is entirely unknown. We hypothesized that mitochondria fundamentally contribute to in vitro ischaemia resistance in the NMR brain. To test this, we treated NMR and CD-1 mouse cortical brain sheets with an in vitro ischaemic mimic and evaluated mitochondrial respiration capacity and redox regulation following 15 or 30 min of ischaemia or ischaemia/reperfusion (I/R). We found that, relative to mice, the NMR brain largely retains mitochondrial function and redox balance post-ischaemia and I/R. Specifically: (i) ischaemia reduced complex I and II-linked respiration ∼50-70% in mice, vs. ∼20-40% in NMR brain, (ii) NMR but not mouse brain maintained relatively steady respiration control ratios and robust mitochondrial membrane integrity, (iii) electron leakage post-ischaemia was lesser in NMR than mouse brain and NMR brain retained higher coupling efficiency, and (iv) free radical generation during and following ischaemia and I/R was lower from NMR brains than mice. Taken together, our results indicate that NMR brain mitochondria are more tolerant of ischaemia and I/R than mice and retain respiratory capacity while avoiding redox derangements. Overall, these findings support the hypothesis that hypoxia-tolerant NMR brain is also ischaemia-tolerant and suggest that NMRs may be a natural model of ischaemia tolerance in which to investigate evolutionarily derived solutions to ischaemic pathology. KEY POINTS: Ischaemia is highly deleterious to the mammalian brain and this damage is largely mediated by mitochondrial dysfunction. Naked mole-rats are among the most hypoxia-tolerant mammals and their brain tolerates ischaemia ex vivo, but the impact of ischaemia on mitochondrial function is unknown. Naked mole-rat but not mouse brain mitochondria retain respiratory capacity and membrane integrity following ischaemia or ischaemia/reperfusion. Differences in free radical management and respiratory pathway control between species may mediate this tolerance. These results help us understand how natural models of hypoxia tolerance also tolerate ischaemia in the brain.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
How Machine Perfusion Ameliorates Hepatic Ischaemia Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22147523. [PMID: 34299142 PMCID: PMC8307386 DOI: 10.3390/ijms22147523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing disparity between the number of patients listed for transplantation and the number of suitable organs has led to the increasing use of extended criteria donors (ECDs). ECDs are at increased risk of developing ischaemia reperfusion injury and greater risk of post-transplant complications. Ischaemia reperfusion injury is a major complication of organ transplantation defined as the inflammatory changes seen following the disruption and restoration of blood flow to an organ—it is a multifactorial process with the potential to cause both local and systemic organ failure. The utilisation of machine perfusion under normothermic (37 degrees Celsius) and hypothermic (4–10 degrees Celsius) has proven to be a significant advancement in organ preservation and restoration. One of the key benefits is its ability to optimise suboptimal organs for successful transplantation. This review is focused on examining ischaemia reperfusion injury and how machine perfusion ameliorates the graft’s response to this.
Collapse
|
18
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Mitochondrial Reprogramming—What Is the Benefit of Hypothermic Oxygenated Perfusion in Liver Transplantation? TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although machine perfusion is a hot topic today, we are just at the beginning of understanding the underlying mechanisms of protection. Recently, the first randomized controlled trial reported a significant reduction of ischemic cholangiopathies after transplantation of livers donated after circulatory death, provided the grafts were treated with an endischemic hypothermic oxygenated perfusion (HOPE). This approach has been known for more than fifty years, and was initially mainly used to preserve kidneys before implantation. Today there is an increasing interest in this and other dynamic preservation technologies and various centers have tested different approaches in clinical trials and cohort studies. Based on this, there is a need for uniform perfusion settings (perfusion route and duration), and the development of general guidelines regarding the duration of cold storage in context of the overall donor risk is also required to better compare various trial results. This article will highlight how cold perfusion protects organs mechanistically, and target such technical challenges with the perfusion setting. Finally, the options for viability testing during hypothermic perfusion will be discussed.
Collapse
|
20
|
Jász DK, Szilágyi ÁL, Tuboly E, Baráth B, Márton AR, Varga P, Varga G, Érces D, Mohácsi Á, Szabó A, Bozó R, Gömöri K, Görbe A, Boros M, Hartmann P. Reduction in hypoxia-reoxygenation-induced myocardial mitochondrial damage with exogenous methane. J Cell Mol Med 2021; 25:5113-5123. [PMID: 33942485 PMCID: PMC8178286 DOI: 10.1111/jcmm.16498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Albeit previous experiments suggest potential anti‐inflammatory effect of exogenous methane (CH4) in various organs, the mechanism of its bioactivity is not entirely understood. We aimed to investigate the potential mitochondrial effects and the underlying mechanisms of CH4 in rat cardiomyocytes and mitochondria under simulated ischaemia/reperfusion (sI/R) conditions. Three‐day‐old cultured cardiomyocytes were treated with 2.2% CH4‐artificial air mixture during 2‐hour‐long reoxygenation following 4‐hour‐long anoxia (sI/R and sI/R + CH4, n = 6‐6), with normoxic groups serving as controls (SH and SH + CH4; n = 6‐6). Mitochondrial functions were investigated with high‐resolution respirometry, and mitochondrial membrane injury was detected by cytochrome c release and apoptotic characteristics by using TUNEL staining. CH4 admixture had no effect on complex II (CII)‐linked respiration under normoxia but significantly decreased the complex I (CI)‐linked oxygen consumption. Nevertheless, addition of CH4 in the sI/R + CH4 group significantly reduced the respiratory activity of CII in contrast to CI and the CH4 treatment diminished mitochondrial H2O2 production. Substrate‐induced changes to membrane potential were partially preserved by CH4, and additionally, cytochrome c release and apoptosis of cardiomyocytes were reduced in the CH4‐treated group. In conclusion, the addition of CH4 decreases mitochondrial ROS generation via blockade of electron transport at CI and reduces anoxia‐reoxygenation‐induced mitochondrial dysfunction and cardiomyocyte injury in vitro.
Collapse
Affiliation(s)
| | | | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Bálint Baráth
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | | | - Petra Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Árpád Mohácsi
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Anna Szabó
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Kamilla Gömöri
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Yang T, Li S. Efficacy of different treatment times of mild cerebral hypothermia on oxidative factors and neuroprotective effects in neonatal patients with moderate/severe hypoxic-ischemic encephalopathy. J Int Med Res 2021; 48:300060520943770. [PMID: 32938280 PMCID: PMC7503019 DOI: 10.1177/0300060520943770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate the efficacy of different treatment times of mild cerebral hypothermia for treating moderate/severe hypoxic–ischemic encephalopathy (HIE) in neonatal patients and its effects on oxidative factors. Methods This prospective, randomized, controlled study included 92 neonatal patients with moderate/severe HIE and 30 controls. The patients with HIE received routine treatment, 48 hours of hypothermia, or 72 hours of hypothermia. Results Superoxide dismutase (SOD) values were significantly lower and malondialdehyde (MDA) and neuron-specific enolase (NSE) values were higher in patients with HIE than in controls before the study. After 24, 48, and 72 hours of treatment, SOD values in all patients with HIE gradually increased and MDA and NSE values gradually decreased. At 3, 7, and 10 days, the Neonatal Behavioral Neurological Assessment scores were highest in the mild hypothermia for 72 hours group than in the other groups. The Mental and Psychomotor Development Indices scores of the Bayley Scales were significantly higher in the mild hypothermia for 72 hours group than in the other groups. Conclusion Hypothermia treatment of 72 hours is better than 48 hours for improving oxidative conditions, reducing NSE values, and improving neurological behavior and development for neonates with moderate/severe HIE.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Neonatology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shan Li
- Department of Neonatology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
22
|
Mitochondrial Dysfunction and Permeability Transition in Neonatal Brain and Lung Injuries. Cells 2021; 10:cells10030569. [PMID: 33807810 PMCID: PMC7999701 DOI: 10.3390/cells10030569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
This review discusses the potential mechanistic role of abnormally elevated mitochondrial proton leak and mitochondrial bioenergetic dysfunction in the pathogenesis of neonatal brain and lung injuries associated with premature birth. Providing supporting evidence, we hypothesized that mitochondrial dysfunction contributes to postnatal alveolar developmental arrest in bronchopulmonary dysplasia (BPD) and cerebral myelination failure in diffuse white matter injury (WMI). This review also analyzes data on mitochondrial dysfunction triggered by activation of mitochondrial permeability transition pore(s) (mPTP) during the evolution of perinatal hypoxic-ischemic encephalopathy. While the still cryptic molecular identity of mPTP continues to be a subject for extensive basic science research efforts, the translational significance of mitochondrial proton leak received less scientific attention, especially in diseases of the developing organs. This review is focused on the potential mechanistic relevance of mPTP and mitochondrial dysfunction to neonatal diseases driven by developmental failure of organ maturation or by acute ischemia-reperfusion insult during development.
Collapse
|
23
|
Mao M, Yang L, Jin Z, Li LX, Wang YR, Li TT, Zhao YJ, Ai J. Impact of intrauterine hypoxia on adolescent and adult cognitive function in rat offspring: sexual differences and the effects of spermidine intervention. Acta Pharmacol Sin 2021; 42:361-369. [PMID: 32694754 PMCID: PMC8027377 DOI: 10.1038/s41401-020-0437-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022] Open
Abstract
Intrauterine hypoxia (IUH) affects the growth and development of offspring. It remains unclear that how long the impact of IUH on cognitive function lasts and whether sexual differences exist. Spermidine (SPD) has shown to improve cognition, but its effect on the cognitive function of IUH offspring remains unknown. In the present study we investigated the influence of IUH on body weight and neurological, motor and cognitive function and the expression of APP, BACE1 and Tau5 proteins in brain tissues in 2- and 4-month-old IUH rat offspring, as well as the effects of SPD intervention on these parameters. IUH rat model was established by treating pregnant rats with intermittent hypoxia on gestational days 15-21, meanwhile pregnant rats were administered SPD (5 mg·kg-1·d-1;ip) for 7 days. Neurological deficits were assessed in the Longa scoring test; motor and cognitive functions were evaluated in coat hanger test and active avoidance test, respectively. We found that IUH decreased the body weight of rats in both sexes but merely impaired motor and cognitive function in female rats without changing neurological function in the rat offspring of either sex at 2 months of age. For 4-month-old offspring, IUH decreased body weight in males and impaired neurological function and increased cognitive function in both sexes. IUH did not affect APP, BACE1 or Tau5 protein expression in either the hippocampus or cortex of all offspring; however, it increased the cortical Tau5 level in 2-month-old female offspring. Surprisingly, SPD intervention prevented weight loss. SPD intervention reversed the motor and cognitive decline caused by IUH in 2-month-old female rat offspring. Taken together, IUH-induced cognitive decline in rat offspring is sex-dependent during puberty and can be recovered in adult rats. SPD intervention improves IUH-induced cognitive and neural function decline.
Collapse
Affiliation(s)
- Meng Mao
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China
| | - Lin Yang
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China
| | - Zhuo Jin
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China
| | - Ling-Xu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086, China
| | - Yan-Ru Wang
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China
| | - Ting-Ting Li
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China
| | - Ya-Jun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086, China.
| | - Jing Ai
- Department of Pharmacology, College of Pharmacy of Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, 150086, China.
| |
Collapse
|
24
|
Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, Schlegel A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021; 9:biomedicines9020161. [PMID: 33562406 PMCID: PMC7915925 DOI: 10.3390/biomedicines9020161] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the continuous increase of donor risk, with a majority of organs classified as marginal, quality assessment and prediction of liver function is of utmost importance. This is also caused by the notoriously lack of effective replacement of a failing liver by a device or intensive care treatment. While various parameters of liver function and injury are well-known from clinical practice, the majority of specific tests require prolonged diagnostic time and are more difficult to assess ex situ. In addition, viability assessment of procured organs needs time, because the development of the full picture of cellular injury and the initiation of repair processes depends on metabolic active tissue and reoxygenation with full blood over several hours or days. Measuring injury during cold storage preservation is therefore unlikely to predict the viability after transplantation. In contrast, dynamic organ preservation strategies offer a great opportunity to assess organs before implantation through analysis of recirculating perfusates, bile and perfused liver tissue. Accordingly, several parameters targeting hepatocyte or cholangiocyte function or metabolism have been recently suggested as potential viability tests before organ transplantation. We summarize here a current status of respective machine perfusion tests, and report their clinical relevance.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Matteo Mueller
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany;
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
- Correspondence:
| |
Collapse
|
25
|
Yin Z, Burger N, Kula-Alwar D, Aksentijević D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, Krieg T, Murphy MP, Hirst J. Structural basis for a complex I mutation that blocks pathological ROS production. Nat Commun 2021; 12:707. [PMID: 33514727 PMCID: PMC7846746 DOI: 10.1038/s41467-021-20942-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.
Collapse
Affiliation(s)
- Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biomedical Sciences, University of Padova via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amin Mottahedin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
26
|
Abstract
Sudden cardiac arrest is a leading cause of death worldwide. Although the methods of cardiopulmonary resuscitation have been improved, mortality is still unacceptably high, and many survivors suffer from lasting neurological deficits due to the post-cardiac arrest syndrome (PCAS). Pathophysiologically, generalized vascular endothelial dysfunction accompanied by platelet activation and systemic inflammation has been implicated in the pathogenesis of PCAS. Because endothelial-derived nitric oxide (NO) plays a central role in maintaining vascular homeostasis, the role of NO-dependent signaling has been a focus of the intense investigation. Recent preclinical studies showed that therapeutic interventions that increase vascular NO bioavailability may improve outcomes after cardiac arrest complicated with PCAS. In particular, NO inhalation therapy has been shown to improve neurological outcomes and survival in multiple species. Clinical studies examining the safety and efficacy of inhaled NO in patients sustaining PCAS are warranted.
Collapse
|
27
|
Thau-Zuchman O, Svendsen L, Dyall SC, Paredes-Esquivel U, Rhodes M, Priestley JV, Feichtinger RG, Kofler B, Lotstra S, Verkuyl JM, Hageman RJ, Broersen LM, van Wijk N, Silva JP, Tremoleda JL, Michael-Titus AT. A new ketogenic formulation improves functional outcome and reduces tissue loss following traumatic brain injury in adult mice. Theranostics 2021; 11:346-360. [PMID: 33391479 PMCID: PMC7681084 DOI: 10.7150/thno.48995] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Traumatic brain injury (TBI) leads to neurological impairment, with no satisfactory treatments available. Classical ketogenic diets (KD), which reduce reliance on carbohydrates and provide ketones as fuel, have neuroprotective potential, but their high fat content reduces compliance, and experimental evidence suggests they protect juvenile brain against TBI, but not adult brain, which would strongly limit their applicability in TBI. Methods: We designed a new-KD with a fat to carbohydrate plus protein ratio of 2:1, containing medium chain triglycerides (MCT), docosahexaenoic acid (DHA), low glycaemic index carbohydrates, fibres and the ketogenic amino acid leucine, and evaluated its neuroprotective potential in adult TBI. Adult male C57BL6 mice were injured by controlled cortical impact (CCI) and assessed for 70 days, during which they received a control diet or the new-KD. Results: The new-KD, that markedly increased plasma Beta-hydroxybutyrate (β-HB), significantly attenuated sensorimotor deficits and corrected spatial memory deficit. The lesion size, perilesional inflammation and oxidation were markedly reduced. Oligodendrocyte loss appeared to be significantly reduced. TBI activated the mTOR pathway and the new-KD enhanced this increase and increased histone acetylation and methylation. Conclusion: The behavioural improvement and tissue protection provide proof of principle that this new formulation has therapeutic potential in adult TBI.
Collapse
|
28
|
Deragon MA, McCaig WD, Patel PS, Haluska RJ, Hodges AL, Sosunov SA, Murphy MP, Ten VS, LaRocca TJ. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov 2020; 6:132. [PMID: 33298902 PMCID: PMC7693268 DOI: 10.1038/s41420-020-00370-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously identified a shift from TNF-α-induced apoptosis to necroptosis that occurs under hyperglycemic conditions. This shift involves the downregulation or silencing of caspases and concurrent upregulation of necroptotic proteins leading to activation of the necrosome. In addition, under hyperglycemic conditions in vivo, this shift in cell death mechanisms exacerbates neonatal hypoxia-ischemia (HI) brain injury. Here, we identify two major factors that drive the hyperglycemic shift to necroptosis: (1) reactive oxygen species (ROS) and (2) receptor-interacting protein kinase 1 (RIP1). ROS, including mitochondrial superoxide, led to the oxidation of RIP1, as well as formation and activation of the necrosome. Concurrently, ROS mediate a decrease in the levels and activation of executioner caspases-3, -6, and -7. Importantly, hyperglycemia and mitochondrial ROS result in the oxidation of RIP1 and loss of executioner caspases prior to death receptor engagement by TNF-α. Moreover, RIP1 partially controlled levels of mitochondrial ROS in the context of hyperglycemia. As a result of its regulation of ROS, RIP1 also regulated necrosome activation and caspase loss. Mitochondrial ROS exacerbated neonatal HI-brain injury in hyperglycemic mice, as a result of the shift from apoptosis to necroptosis.
Collapse
Affiliation(s)
- Matthew A Deragon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - William D McCaig
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Payal S Patel
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Robert J Haluska
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Alexa L Hodges
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Sergey A Sosunov
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK
| | - Vadim S Ten
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | - Timothy J LaRocca
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA.
| |
Collapse
|
29
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
30
|
Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020; 60:103014. [PMID: 32979838 PMCID: PMC7519249 DOI: 10.1016/j.ebiom.2020.103014] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial succinate accumulation has been suggested as key event for ischemia reperfusion injury in mice. No specific data are however available on behavior of liver mitochondria during ex situ machine perfusion in clinical transplant models. METHODS We investigated mitochondrial metabolism of isolated perfused rat livers before transplantation. Livers were exposed to warm and cold ischemia to simulate donation after circulatory death (DCD) and organ transport. Subsequently, livers were perfused with oxygenated Belzer-MPS for 1h, at hypothermic or normothermic conditions. Various experiments were performed with supplemented succinate and/or mitochondrial inhibitors. The perfusate, liver tissues, and isolated mitochondria were analyzed by mass-spectroscopy and fluorimetry. Additionally, rat DCD livers were transplanted after 1h hypothermic or normothermic oxygenated perfusion. In parallel, perfusate samples were analysed during HOPE-treatment of human DCD livers before transplantation. FINDINGS Succinate exposure during rat liver perfusion triggered a dose-dependent release of mitochondrial Flavin-Mononucleotide (FMN) and NADH in perfusates under normothermic conditions. In contrast, perfusate FMN was 3-8 fold lower under hypothermic conditions, suggesting less mitochondrial injury during cold re-oxygenation compared to normothermic conditions. HOPE-treatment induced a mitochondrial reprogramming with uploading of the nucleotide pool and effective succinate metabolism. This resulted in a clear superiority after liver transplantation compared to normothermic perfusion. Finally, the degree of mitochondrial injury during HOPE of human DCD livers, quantified by perfusate FMN and NADH, was predictive for liver function. INTERPRETATION Mitochondrial injury determines outcome of transplanted rodent and human livers. Hypothermic oxygenated perfusion improves mitochondrial function, and allows viability assessment of liver grafts before implantation. FUNDING detailed information can be found in Acknowledgments.
Collapse
|
31
|
Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxid Redox Signal 2020; 33:247-262. [PMID: 32295425 DOI: 10.1089/ars.2020.8093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Hypoxic-ischemic events due to intrapartum complications represent the second cause of neonatal mortality and initiate an acute brain disorder known as hypoxic-ischemic encephalopathy (HIE). In HIE, the brain undergoes primary and secondary energy failure phases separated by a latent phase in which partial neuronal recovery is observed. A hypoxic-ischemic event leads to oxygen restriction causing ATP depletion, neuronal oxidative stress, and cell death. Mitochondrial dysfunction and enhanced oxidant formation in brain cells are characteristic phenomena associated with energy failure. Recent Advances: Mitochondrial sources of oxidants in neurons include complex I of the mitochondrial respiratory chain, as a key contributor to O2•- production via succinate by a reverse electron transport mechanism. The reaction of O2•- with nitric oxide (•NO) yields peroxynitrite, a mitochondrial and cellular toxin. Quantitation of the redox state of cytochrome c oxidase, through broadband near-infrared spectroscopy, represents a promising monitoring approach to evaluate mitochondrial dysfunction in vivo in humans, in conjunction with the determination of cerebral oxygenation and their correlation with the severity of brain injury. Critical Issues: The energetic failure being a key phenomenon in HIE connected with the severity of the encephalopathy, measurement of mitochondrial dysfunction in vivo provides an approach to assess evolution, prognosis, and adequate therapies. Restoration of mitochondrial redox homeostasis constitutes a key therapeutic goal. Future Directions: While hypothermia is the only currently accepted therapy in clinical management to preserve mitochondrial function, other mitochondria-targeted and/or redox-based treatments are likely to synergize to ensure further efficacy.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.,Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Carolina Cimarra
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Blasina
- Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
Karangwa S, Panayotova G, Dutkowski P, Porte RJ, Guarrera JV, Schlegel A. Hypothermic machine perfusion in liver transplantation. Int J Surg 2020; 82S:44-51. [PMID: 32353556 DOI: 10.1016/j.ijsu.2020.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Dynamic preservation strategies are a promising option to improve graft quality before transplantation, and to extend preservation time for either logistic or treatment reasons. In contrast to normothermic oxygenated perfusion, which intends to mimic physiological conditions in the human body, with subsequent clinical application for up to 24 hrs, hypothermic perfusion is mainly used for a relatively short period with protection of mitochondria and subsequent reduction of oxidative injury upon implantation. The results from two randomized controlled trials, where recruitment has finished are expected this year. Both ex situ perfusion techniques are increasingly applied in clinical transplantation including recent reports on viability assessment, which could open the door for an increased liver utilization in the future.
Collapse
Affiliation(s)
- S Karangwa
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G Panayotova
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/ University Hospital, Newark, NJ, USA
| | - P Dutkowski
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - R J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J V Guarrera
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/ University Hospital, Newark, NJ, USA
| | - A Schlegel
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, United Kingdom.
| |
Collapse
|
33
|
Novel Real-time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann Surg 2020; 270:783-790. [PMID: 31592808 DOI: 10.1097/sla.0000000000003513] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to determine the predictive value of machine perfusate analysis on graft outcome. BACKGROUND Ex situ machine perfusion (MP) is gaining increasing interest to potentially repair injured organs and to assess organ function. In the field of liver transplantation, however, no studies exist on reliable prediction of graft function during MP. METHODS We have used hypothermic oxygenated perfusion (HOPE) for donation after circulatory death (DCD) or extended criteria donation after brain death (DBD) human liver grafts during the last 7 years. Our series includes 100 HOPE-treated liver-transplanted patients with an overall tumor-censored 5-year graft survival of 89%. We monitored 54 livers during HOPE in terms of fluorometric analysis of released mitochondrial flavin (flavin mononucleotide, FMN) in the machine perfusate. RESULTS Real-time optical measurement of mitochondrial FMN release in machine perfusates of livers disclosed a strong correlation with lactate clearance and coagulation factors at day 1 and 2 after transplantation. Receiver-operating characteristic curve analysis revealed an area under the curve (AUROC) of 0.79 [95% confidence interval (CI), 0.62-0.97] for severe allograft dysfunction and for early graft loss (AUROC 0.93, 95% CI, 0.84-1.0). CONCLUSIONS Assessment of flavin, a marker of mitochondrial complex I injury, in the perfusate provides a fast prediction of liver graft function and loss during ex situ MP before implantation. This finding may have high clinical relevance, as liver grafts from extended DBD or DCD donors carry considerable risks for recipients. On-line estimation of outcome before implantation would therefore substantially increase safe utilization of liver grafts.
Collapse
|
34
|
Wang JY, Li JQ, Xiao YM, Fu B, Qin ZH. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem 2020; 15:404-410. [PMID: 32020724 DOI: 10.1002/cmdc.201900695] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.
Collapse
Affiliation(s)
- Jiayao Y Wang
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Jiaqi Q Li
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Yumei M Xiao
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Bin Fu
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Zhaohai H Qin
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| |
Collapse
|
35
|
Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:1411-1423. [PMID: 31760927 DOI: 10.1134/s0006297919110154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/08/2024]
Abstract
Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.
Collapse
Affiliation(s)
- A Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University William Black Building, NY 10032, New York, USA.
| |
Collapse
|
36
|
Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142:61-72. [PMID: 30954546 PMCID: PMC6791125 DOI: 10.1016/j.freeradbiomed.2019.03.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Thirty years ago, there was an emerging appreciation for the significance of oxidative stress in newborn disease. This prompted a renewed interest in the impact of oxygen therapy for the newborn in the delivery room and beyond, especially in premature infants. Today, the complexity of oxidative stress both in normal regulation and pathology is better understood, especially as it relates to neonatal mitochondrial oxidative stress responses to hyperoxia. Mitochondria are recipients of oxidative damage and have a propensity for oxidative self-injury that has been implicated in the pathogenesis of neonatal lung diseases. Similarly, both intrauterine growth restriction (IUGR) and macrosomia are associated with mitochondrial dysfunction and oxidative stress. Additionally, reoxygenation with 100% O2 in a hypoxic-ischemic newborn lamb model increased the production of pro-inflammatory cytokines in the brain. Moreover, the interplay between inflammation and oxidative stress in the newborn is better understood because of animal studies. Transcriptomic analyses have found a number of genes to be differentially expressed in murine models of bronchopulmonary dysplasia (BPD). Epigenetic changes have also been detected both in animal models of BPD and premature infants exposed to oxygen. Antioxidant therapy to prevent newborn disease has not been very successful; however, new therapeutic principles, like melatonin, are under investigation.
Collapse
Affiliation(s)
- Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Mary E Robbins
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway
| | - Ola D Saugstad
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
37
|
Abstract
Machine perfusion is a hot topic in liver transplantation and several new perfusion concepts are currently developed. Prior to introduction into routine clinical practice, however, such perfusion approaches need to demonstrate their impact on liver function, post-transplant complications, utilization rates of high-risk organs, and cost benefits. Therefore, based on results of experimental and clinical studies, the community has to recognize the limitations of this technology. In this review, we summarize current perfusion concepts and differences between protective mechanisms of ex- and in-situ perfusion techniques. Next, we discuss which graft types may benefit most from perfusion techniques, and highlight the current understanding of liver viability testing. Finally, we present results from recent clinical trials involving machine liver perfusion, and analyze the value of different outcome parameters, currently used as endpoints for randomized controlled trials in the field.
Collapse
Affiliation(s)
- Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Xavier Muller
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Stepanova A, Sosunov S, Niatsetskaya Z, Konrad C, Starkov AA, Manfredi G, Wittig I, Ten V, Galkin A. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxid Redox Signal 2019; 31:608-622. [PMID: 31037949 PMCID: PMC6657304 DOI: 10.1089/ars.2018.7693] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 608-622.
Collapse
Affiliation(s)
- Anna Stepanova
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Sergey Sosunov
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Zoya Niatsetskaya
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Csaba Konrad
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Anatoly A Starkov
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Giovanni Manfredi
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Ilka Wittig
- 3Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt, Germany.,4German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Vadim Ten
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Alexander Galkin
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| |
Collapse
|
39
|
Kalisvaart M, Muiesan P, Schlegel A. The UK-DCD-Risk-Score - practical and new guidance for allocation of a specific organ to a recipient? Expert Rev Gastroenterol Hepatol 2019; 13:771-783. [PMID: 31173513 DOI: 10.1080/17474124.2019.1629286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Multiple factors contribute to the overall outcome in donation after circulatory death liver transplantation. The majority is however inconsistently reported with various acceptance criteria and thresholds, when to decline a specific graft. Recent improvement in outcome was based on an increased awareness of the cumulative risk, combining donor and recipient parameters, which encouraged the community to accept livers with an overall higher risk. Areas covered: This review pictures the large number of risk factors in this field with a special focus on parameters, which contribute to available prediction models. Next, features of the recently developed UK-DCD-Risk-Score, which led to a significantly impaired graft survival, above a suggested threshold of >10 score points, are discussed. The clinical impact of this new model on the background of other prediction tools with their subsequent limitations is highlighted in a next chapter. Finally, we provide suggestions, how to further improve outcomes in this challenging field of transplantation. Expert opinion: Despite the recent development of new prediction models, including the UK-DCD-Risk-Score, which provides a sufficient prediction of graft loss after DCD liver transplantation, the consideration of other confounders is essential to better understand the overall risk and metabolic liver status to improve the comparability of clinical studies. More uniform definitions and thresholds of individual risk factors are required.
Collapse
Affiliation(s)
- Marit Kalisvaart
- a Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust , Birmingham , UK.,b Department of Surgery & Transplantation, University Hospital of Zurich , Zurich , Switzerland
| | - Paolo Muiesan
- a Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust , Birmingham , UK
| | - Andrea Schlegel
- a Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust , Birmingham , UK.,c National Institute for Health Research Birmingham, Liver Biomedical Research Centre, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
40
|
Wood TR, Stubbs BJ, Juul SE. Exogenous Ketone Bodies as Promising Neuroprotective Agents for Developmental Brain Injury. Dev Neurosci 2019; 40:451-462. [PMID: 31085911 DOI: 10.1159/000499563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Ketone bodies are a promising area of neuroprotection research that may be ideally suited to the injured newborn. During normal development, the human infant is in significant ketosis for at least the first week of life. Ketone uptake and metabolism is upregulated in the both the fetus and neonate, with ketone bodies providing at least 10% of cerebral metabolic energy requirements, as well as being the preferred precursors for the synthesis of fatty acids and cholesterol. At the same time, ketone bodies have been shown to have multiple neuroprotective effects, including being anticonvulsant, decreasing oxidative stress and inflammation, and epigenetically upregulating the production of neurotrophic factors. While ketogenic diets and exogenous ketosis are largely being investigated in the setting of adult brain injury, the adaptation of the neonate to ketosis suggests that developmental brain injury may be the area most suited to the use of ketones for neuroprotection. Here, we describe the mechanisms by which ketone bodies exert their neuroprotective effects, and how these may translate to benefits within each of the phases of neonatal asphyxial brain injury.
Collapse
Affiliation(s)
- Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA, .,Institute for Human and Machine Cognition, Pensacola, Florida, USA,
| | - Brianna J Stubbs
- HVMN Inc., San Francisco, California, USA.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
41
|
Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111:503-516. [DOI: 10.1016/j.biopha.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023] Open
|
42
|
Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X, Ming L. Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:77. [PMID: 30760281 PMCID: PMC6375187 DOI: 10.1186/s13046-019-1090-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Background Metformin, a first-line drug for type 2 diabetes, could induce apoptosis in cancer cells. However, the concentration of glucose affects the effect of metformin, especially low glucose in the culture medium can enhance the cytotoxicity of metformin on cancer cells. Since mitochondria and endoplasmic reticulum is vital for maintaining cell homeostasis, we speculate that low glucose and metformin-induced cell apoptosis may be associated with mitochondria and endoplasmic reticulum. ASK1, as apoptosis signaling regulating kinase 1, is associated with cell apoptosis and mitochondrial damage. This study was designed to investigate the functional significance of ASK1, mitochondria and endoplasmic reticulum and underlying mechanism in low glucose and metformin-induced cell apoptosis. Methods An MTT assay was used to evaluate cell viability in SKOV3, OVCAR3 and HO8910 human ovarian cancer cells. Cell apoptosis was analyzed by flow cytometry. The expression of ASK1 was inhibited using a specific pharmacological inhibitor or ASK1-siRNA. Immunofluorescence was used to detect mitochondrial damage and ER stress. Nude mouse xenograft models were given metformin or/and NQDI-1, and ASK1 expression was detected using immunoblotting. In addition, subcellular fractionation of mitochondria was performed to assay the internal connection between ASK1 and mitochondria. Results The present study found that low glucose in culture medium enhanced the anticancer effect of metformin in human ovarian cancer cells. Utilization of a specific pharmacological inhibitor or ASK1-siRNA identified a potential role for ASK1 as an apoptotic protein in the regulation of low glucose and metformin-induced cell apoptosis via ASK1-mediated mitochondrial damage through the ASK1/Noxa pathway and via ER stress through the ROS/ASK1/JNK pathway. Moreover, ASK1 inhibition weakened the antitumor activity of metformin in vivo. Thus, mitochondrial damage and ER stress play a crucial role in low glucose–enhanced metformin cytotoxicity in human ovarian cancer cells. Conclusions These data suggested that low glucose and metformin induce cell apoptosis via ASK1-mediated mitochondrial damage and ER stress. These findings indicated that the effect of metformin in anticancer treatment may be related to cell culture conditions.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zijun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.,Henan Medical College, Zhengzhou, 450000, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|