1
|
Chen L, Liu R, He X, Fang J, Zhou L, Qi Z, Tao M, Yuan H, Zhou Y. Synergistically effects of n-3 PUFA and B vitamins prevent diabetic cognitive dysfunction through promoting TET2-mediated active DNA demethylation. Clin Nutr 2025; 45:111-123. [PMID: 39798222 DOI: 10.1016/j.clnu.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment. However, the precise effect and underlying mechanism of this combination on DCD remain unclear. In case-control study, we compared fatty acid composition of erythrocyte membrane and serum homocysteine levels between diabetic individuals with and without DCD. We found that insufficient levels of n-3 PUFA, along with elevated serum homocysteine, significantly increase the risk of developing DCD. Treatment with a combination of fish oil, folate, and vitamin B12 improved cognitive impairment and aberrant neuronal morphology in streptozotocin-induced DCD mice. Folic acid and vitamin B12 enhanced the efficiency of exogenous docosahexaenoic acid (DHA) transportation to the brain by preventing the accumulation of homocysteine and S-adenosylhomocysteine, thereby inhibiting neuronal apoptosis in diabetic brains. Furthermore, folic acid and vitamin B12 supplementation can provide sufficient 5-methylcytosine for diabetic brains by promoting DNA methylation, while increased DHA levels maintain TET-mediated active DNA demethylation in diabetic brains through enhancing TET2 function. Overall, our study provides novel insights into molecular mechanisms underlying the synergistic preventive effects of the combined supplementation with fish oil, folic acid and vitamin B12 on DCD, suggests that combining n-3 PUFA and B vitamins could be a promising strategy for preventing DCD among individuals with diabetes.
Collapse
Affiliation(s)
- Lei Chen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Run Liu
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Xin He
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Jiacheng Fang
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Liyin Zhou
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Zhongshi Qi
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Mingzhu Tao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
| | - Yu Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Chen L, Li Y, Zhang X, Du X, Zhang Y, Li X, Zhong Z, Zhou C, Liu X, Wang J, Wang Q. Fucoidan prevents diabetic cognitive dysfunction via promoting TET2-mediated active DNA demethylation in high-fat diet induced diabetic mice. Int J Biol Macromol 2024; 278:134186. [PMID: 39173790 DOI: 10.1016/j.ijbiomac.2024.134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Diabetic cognitive dysfunction (DCD) refers to cognitive impairment in individuals with diabetes, which is one of the most important comorbidities and complications. Preliminary evidence suggests that consuming sufficient dietary fiber could have benefits for both diabetes and cognitive function. However, the effect and underlying mechanism of dietary fiber on DCD remain unclear. We conducted a cross-sectional analysis using data from NHANES involving 2072 diabetics and indicated a significant positive dose-response relationship between the dietary fiber intake and cognitive performance in diabetics. Furthermore, we observed disrupted cognitive function and neuronal morphology in high-fat diet induced DCD mice, both of which were effectively restored by fucoidan supplementation through alleviating DNA epigenetic metabolic disorders. Moreover, fucoidan supplementation enhanced the levels of short-chain fatty acids (SCFAs) in the cecum of diabetic mice. These SCFAs enhanced TET2 protein stability by activating phosphorylated AMPK and improved TETs activity by reducing the ratio of (succinic acid + fumaric acid)/ α-ketoglutaric acid, subsequently enhancing TET2 function. The positive correlation between dietary fiber intake and cognitive function in diabetics was supported by human and animal studies alike. Importantly, fucoidan can prevent the occurrence of DCD by promoting TET2-mediated active DNA demethylation in the cerebral cortex of diabetic mice.
Collapse
Affiliation(s)
- Lei Chen
- School of Health and life Sciences, University of Health and Rehabilitation Sciences, China
| | - Yan Li
- School of Public health, Qingdao University, Qingdao, China
| | - Xueqian Zhang
- School of Public health, Qingdao University, Qingdao, China
| | - Xiuping Du
- People's Hospital of Gaomi, Weifang, China
| | - Yangting Zhang
- School of Public health, Qingdao University, Qingdao, China
| | - Xiaona Li
- School of Public health, Qingdao University, Qingdao, China
| | - Zhaoyi Zhong
- Hedong District Center for Disease Control and Prevention, Tianjin, China
| | - Chengfeng Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, China
| | - Xiaohong Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, China
| | - Jun Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China.
| | - Qiuzhen Wang
- School of Public health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Glasstetter LM, Oderinde TS, Mirchandani M, Rajagopalan KS, Barsom SH, Thaler R, Siddiqi S, Zhu XY, Tang H, Jordan KL, Saadiq IM, van Wijnen AJ, Eirin A, Lerman LO. Obesity and dyslipidemia are associated with partially reversible modifications to DNA hydroxymethylation of apoptosis- and senescence-related genes in swine adipose-derived mesenchymal stem/stromal cells. Stem Cell Res Ther 2023; 14:143. [PMID: 37231414 PMCID: PMC10214739 DOI: 10.1186/s13287-023-03372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Obesity dysregulates key biological processes underlying the functional homeostasis, fate decisions, and reparative potential of mesenchymal stem/stromal cells (MSCs). Mechanisms directing obesity-induced phenotypic alterations in MSCs remain unclear, but emerging drivers include dynamic modification of epigenetic marks, like 5-hydroxymethylcytosine (5hmC). We hypothesized that obesity and cardiovascular risk factors induce functionally relevant, locus-specific changes in 5hmC of swine adipose-derived MSCs and evaluated their reversibility using an epigenetic modulator, vitamin-C. METHODS Female domestic pigs were fed a 16-week Lean or Obese diet (n = 6 each). MSCs were harvested from subcutaneous adipose tissue, and 5hmC profiles were examined through hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq) followed by an integrative (hMeDIP and mRNA sequencing) gene set enrichment analysis. For clinical context, we compared 5hmC profiles of adipose tissue-derived human MSCs harvested from patients with obesity and healthy controls. RESULTS hMeDIP-seq revealed 467 hyper- (fold change ≥ 1.4; p-value ≤ 0.05) and 591 hypo- (fold change ≤ 0.7; p-value ≤ 0.05) hydroxymethylated loci in swine Obese- versus Lean-MSCs. Integrative hMeDIP-seq/mRNA-seq analysis identified overlapping dysregulated gene sets and discrete differentially hydroxymethylated loci with functions related to apoptosis, cell proliferation, and senescence. These 5hmC changes were associated with increased senescence in cultured MSCs (p16/CDKN2A immunoreactivity, senescence-associated β-galactosidase [SA-β-Gal] staining), were partly reversed in swine Obese-MSCs treated with vitamin-C, and shared common pathways with 5hmC changes in human Obese-MSCs. CONCLUSIONS Obesity and dyslipidemia are associated with dysregulated DNA hydroxymethylation of apoptosis- and senescence-related genes in swine and human MSCs, potentially affecting cell vitality and regenerative functions. Vitamin-C may mediate reprogramming of this altered epigenomic landscape, providing a potential strategy to improve the success of autologous MSC transplantation in obese patients.
Collapse
Affiliation(s)
- Logan M Glasstetter
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tomiwa S Oderinde
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mohit Mirchandani
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Samer H Barsom
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Rajagopalan KS, Kazeminia S, Glasstetter LM, Farahani RA, Zhu XY, Tang H, Jordan KL, Chade AR, Lerman A, Lerman LO, Eirin A. Metabolic Syndrome Induces Epigenetic Alterations in Mitochondria-Related Genes in Swine Mesenchymal Stem Cells. Cells 2023; 12:1274. [PMID: 37174674 PMCID: PMC10177475 DOI: 10.3390/cells12091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Autologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs. Pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat, and DNA hydroxymethylation (5 hmC) profiles of mitochondria-related genes (MitoCarta-2.0) were analyzed by hydroxymethylated DNA immunoprecipitation and next-generation sequencing (hMeDIP-seq) in Lean- and MetS-MSCs untreated or treated with the epigenetic modulator vitamin (Vit)-C (n = 3 each). Functional analysis of genes with differential 5 hmC regions was performed using DAVID6.8. Mitochondrial structure (electron microscopy), oxidative stress, and membrane potential were assessed. hMeDIP-seq identified 172 peaks (associated with 103 mitochondrial genes) with higher and 416 peaks (associated with 165 mitochondrial genes) with lower 5 hmC levels in MetS-MSCs versus Lean-MSCs (≥2-fold, p < 0.05). Genes with higher 5 hmC levels in MetS + MSCs were primarily implicated in fatty acid metabolism, whereas those with lower 5 hmC levels were associated with electron transport chain activity. Vit-C increased 5 hmC levels in mitochondrial antioxidant genes, improved mitochondrial structure and membrane potential, and decreased oxidative stress. MetS alters 5 hmC levels of mitochondria-related genes in swine MSCs. Vit-C modulated 5 hmC levels in these genes and preserved mitochondrial structure and function in MetS-MSCs. These observations may contribute to development of strategies to overcome the deleterious effects of MetS on MSCs.
Collapse
Affiliation(s)
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rahele A. Farahani
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Alejandro R. Chade
- Department of Medical Pharmacology and Physiology and Department of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Hu XQ, Song R, Dasgupta C, Blood AB, Zhang L. TET2 confers a mechanistic link of microRNA-210 and mtROS in hypoxia-suppressed spontaneous transient outward currents in uterine arteries of pregnant sheep. J Physiol 2023; 601:1501-1514. [PMID: 36856073 PMCID: PMC10106393 DOI: 10.1113/jp284336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
6
|
Chen L, He X, Wang H, Fang J, Zhang Z, Zhu X, Qi Z, Guo Y, Liu R, Li D. Dendrobium officinale polysaccharide prevents neuronal apoptosis via TET2-dependent DNA demethylation in high-fat diet-induced diabetic mice. Int J Biol Macromol 2023; 233:123288. [PMID: 36657536 DOI: 10.1016/j.ijbiomac.2023.123288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Dendrobium officinale polysaccharide (DP) has the potential function to prevent diabetes-induced neuronal apoptosis, whereas the mechanism is not completely clear. Ten eleven translocation dioxygenase 2 (TET2) is one of the most important therapeutic target for repairing neuronal damage in diabetic mice. The aim of the present study was to investigate whether DP could prevent neuronal apoptosis by regulating TET2 in the brain of HFD-induced diabetic mice. C57BL/6J mice were randomly divided into four groups (n = 12), control group (CON), high-fat diet group (HFD, negative control), metformin group (MET, positive control), and DP group (DP). Compared with HFD group, the neuronal apoptosis of brain was significantly lower in the DP group. The levels of TET2 protein, 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were significantly lower in the HFD group than in both the DP and CON groups in the cerebral cortex of mice. The ratio of p-AMPK/AMPK and α-KG/(fumaric acid + succinic acid) were significantly lower in the HFD group than in the other groups. The present study suggests that DP has a preventive effect on diabetes-induced neuronal apoptosis by regulating TET2 function through improving phosphorylate AMPK and mitochondrial function, thus remodeling DNA epigenetics profile of mice brain.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | | | - Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Zhizhao Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Ma Q, Gao J, Fan Q, Yang T, Zhao Z, Zhang S, Hu R, Cui L, Liang B, Xie X, Liu J, Long J. Thinned young apple polyphenols may prevent neuronal apoptosis by up-regulating 5-hydroxymethylcytosine in the cerebral cortex of high-fat diet-induced diabetic mice. Food Funct 2023; 14:3279-3289. [PMID: 36929718 DOI: 10.1039/d2fo03281c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Apple polyphenols exert neuroprotective effects by improving the mitochondrial tricarboxylic acid (TCA) cycle function, but the details of their mechanisms are still not fully understood. TCA cycle metabolites regulate the level of 5-hydroxymethylcytosine (5hmC) by affecting the ten-eleven translocation (TET) enzyme activity. Therefore, we hypothesized that thinned young apple polyphenols (TYAPs) inhibit neuronal apoptosis by up-regulating the level of 5hmC in the cerebral cortex of high-fat diet-induced diabetic mice. C57BL/6J mice were randomly divided into 5 groups (n = 10 each group): the control (CON) group, the high-fat diet (HFD, negative control) group, the lovastatin (LOV, positive drug control) group, the resveratrol (RES, positive polyphenol control) group and the TYAP group during an eight-week intervention. The presented results verified that in the HFD group, the level of 5hmC and the expression of TET2 in the cerebral cortex were significantly lower, and the ratio of (succinic acid + fumaric acid)/α-ketoglutarate and the neuronal apoptosis rate were significantly higher than those in the CON group. However, TYAP intervention effectively restored the level of 5hmC through up-regulating the expression and activity of TET2, so as to improve diabetes symptoms and prevent diabetes-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Qingqing Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Qiang Fan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Tao Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiuying Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| |
Collapse
|
8
|
Mei Z, Hong Y, Yang H, Cai S, Hu Y, Chen Q, Yuan Z, Liu X. Ferulic acid alleviates high fat diet-induced cognitive impairment by inhibiting oxidative stress and apoptosis. Eur J Pharmacol 2023; 946:175642. [PMID: 36871664 DOI: 10.1016/j.ejphar.2023.175642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Cognitive impairment has become a major public health problem. Growing evidence suggests that high-fat diet (HFD) can cause cognitive dysfunction and increase the risk of dementia. However, effective treatment for cognitive impairment is not available. Ferulic acid (FA) is a single phenolic compound with anti-inflammatory and antioxidant properties. Nevertheless, its role in regulating learning and memory in HFD-fed mice and the underlying mechanism remains unclear. In this study, we aimed to identify the neuroprotective mechanisms of FA in HFD induced cognitive impairment. We found that FA improved the survival rate of HT22 cells treated with palmitic acid (PA), inhibited cell apoptosis, and reduced oxidative stress via the IRS1/PI3K/AKT/GSK3β signaling pathway; Furthermore, FA treatment for 24 weeks improved the learning and memory of HFD-fed mice and decreased hyperlipidemia. Moreover, the expression of Nrf2 and Gpx4 proteins were decreased in HFD-fed mice. After FA treatment, the decline of these proteins was reversed. Our study showed that the neuroprotective effect of FA on cognitive impairment was related to the inhibition of oxidative stress and apoptosis and regulation of glucose and lipid metabolism. These findings suggested that FA can be developed as a potential agent for the treatment of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Zhengrong Mei
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Ye Hong
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510440, PR China
| | - Haiyi Yang
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Shihong Cai
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Yujun Hu
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Qibo Chen
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhongwen Yuan
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China.
| | - Xixia Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China; Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
He X, Pei S, Meng X, Hua Q, Zhang T, Wang Y, Zhang Z, Zhu X, Liu R, Guo Y, Chen L, Li D. Punicalagin Attenuates Neuronal Apoptosis by Upregulating 5-Hydroxymethylcytosine in the Diabetic Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4995-5004. [PMID: 35412829 DOI: 10.1021/acs.jafc.2c00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Punicalagin exerts neuroprotective activity by improving AMP-activated kinase (AMPK) and mitochondrial Krebs cycle. AMPK and Krebs cycle metabolites regulate 5-hydroxymethylcytosine (5hmC) via acting on ten-eleven translocation (TET) enzymes. Therefore, we hypothesized that punicalagin inhibits diabetes-related neuronal apoptosis by upregulating 5hmC in the diabetic mouse brain. C57BL/6J mice aged 8 weeks were randomly separated into five groups (n = 10), normal control (NC), diabetes mellitus (DM), resveratrol (RES), low-dose punicalagin (LPU), and high-dose punicalagin (HPU). Compared with other groups, the neuronal apoptosis rate was significantly higher and the 5hmC level of the cerebral cortex was significantly lower in the DM group. The levels of TET2 and P-AMPKα/AMPKα were significantly lower in the DM group than in both LPU and HPU groups. The ratio of (succinic acid + fumaric acid)/α-ketoglutarate was significantly higher in the DM group than in other groups. The present results suggest that punicalagin upregulates 5hmC via activating AMPK and maintaining Krebs cycle homeostasis, thus inhibiting neuronal apoptosis in the diabetic mouse brain.
Collapse
Affiliation(s)
- Xin He
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Shengjie Pei
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Tianyu Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yan Wang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Zhizhao Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xinyu Zhu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Run Liu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Chen
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Duo Li
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| |
Collapse
|
10
|
Luo L, Li R, Wang G, Chen J, Chen L, Qin LQ, Yu Z, Wan Z. Age-dependent effects of a high-fat diet combined with dietary advanced glycation end products on cognitive function and protection with voluntary exercise. Food Funct 2022; 13:4445-4458. [PMID: 35342920 DOI: 10.1039/d1fo03241k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine whether a high fat diet (HFD) combined with an advanced glycation end products (AGEs) diet will induce worse cognitive impairment than a HFD alone and to investigate whether voluntary exercise is capable of improving cognitive function after the combined diet, young and middle-aged male C57BL/6J mice were randomly assigned to four groups, i.e., control, HFD, combined diet, and combined diet treated with voluntary exercise. Compared to HFD, combined diet induced worse memory abilities only in middle-aged mice, as exhibited by the reduced number of crossings and reduced distance in the target zone during a probe trial. Exercise reversed combined-diet-induced cognitive impairment for both ages of mice. For young mice, the neuro-protective effects of exercise were mainly associated with inhibition of NLRP3, Dnmt3a, Dnmt3b, and H3K9me2 and elevation of OST48; it also elevated Bacilli and reduced Epsilonproteobacteria, Campylobacterales, and Helicobacter. For middle-aged mice, exercise elevated Tet2, inhibited NF-κB and NLRP3, and rebalanced circadian clock proteins and the RAGE-OST48 axis; also, exercise elevated Coriobacteriia/Coriobacteriaceae, Erysipelotrichaceae, and Allobaculum and restored intestinal permeability.
Collapse
Affiliation(s)
- Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Guiping Wang
- Laboratory Animal Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, China
| | - Jingsi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
11
|
Zhang T, Chen L, Guo X, Li S, He X, Pei S, Li D. N-3 polyunsaturated fatty acids prevent the D-galactose-induced cognitive impairment by up-regulating the levels of 5-hydroxymethylcytosine in the mouse brain. Food Funct 2022; 13:4101-4113. [PMID: 35316827 DOI: 10.1039/d1fo04420f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decreased 5-hydroxymethylcytosine (5hmC) levels caused by mitochondrial dysfunction in the brain are closely associated with the development of neurodegenerative disease. It has been reported that n-3 polyunsaturated fatty acids (PUFAs) prevent cognitive dysfunction by improving mitochondrial function in the brain. However, whether n-3 PUFA prevents cognitive dysfunction by increasing the levels of 5hmC in the brain is undisclosed. Mice were randomly divided into six groups (n = 10), injected with D-galactose (200 mg kg-1 day-1) for the model group and given different oils [0.1 mL per 10 g body weight per day, fish oil (FO), peony seed oil (PSO), corn oil (CO) and olive oil (OO)] for the prevention groups, and injected with the same dose of saline for the normal control group (NC) for 10 weeks, respectively. Peony seed oil and fish oil have shown preventive effects on D-galactose-induced cognitive dysfunction in behavioral tests. The content of docosahexaenoic acid (C22:6n-3, DHA content) in the brain was significantly higher in FO and PSO groups than in the other groups. Brain oxidative stress and neuronal apoptosis were significantly lower in PSO and FO groups than in the other groups. RNA-seq results showed that the different genes between PSO and FO compared with the model group were involved in the DNA demethylation process and the 5-methylcytosine metabolic process. The brain levels of 5hmC and the ten-eleven translocation family of dioxygenases (TETs) were significantly higher in FO and PSO groups compared with the model group, as analyzed by dot-blot and western blot. In conclusion, peony seed oil and fish oil increased the C22:6n-3 content, which activated the TET activity, led to up-regulation of the 5hmc level, resulted in inhibition of neuronal apoptosis, and then improved the cognitive function in D-gal-induced mice.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Lei Chen
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xin He
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shengjie Pei
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
L M, C H, V V, J L, M M, E Q, T C, M DN, F M. A plant-based diet differentially affects the global hepatic methylome in rainbow trout depending on genetic background. Epigenetics 2022; 17:1726-1737. [PMID: 35345978 PMCID: PMC9621033 DOI: 10.1080/15592294.2022.2058226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Replacing fish meal and oil in trout diets with plant-derived ingredients is a contemporary challenge to move towards more sustainable aquaculture practices. However, such dietary replacement causes hepatic metabolic changes that have not yet been elucidated. Here, we aimed to decipher the effect of a 100% plant-based diet on the hepatic global DNA methylation landscape in trout and assess whether changes depend on fish genetic background. We analysed the global methylome and the expression of DNA (de)methylation-related genes of three isogenic lines that exhibit similar growth when fed a marine resource-based diet (M diet), but differ in their responses to a plant-based diet (V diet). Our results revealed that the V diet induced a decrease in 5-cytosine combined with an increase in 5-hydroxymethylcytosine in two of the three analysed lines. For one of these 2 affected lines, when fed the M diet but at the same feed intake of the V diet (MR), no methylome differences were highlighted between M and MR or between MR and V-fed trout whereas for the other affected line, M fed trout displayed a divergent methylome profile from MR and V fed fish. DNA (de)methylation-related genes were also affected by the V or MR diets. Our findings showed that the global hepatic methylome of trout is affected by a V diet, depending on genetic background. This latter effect seems to be due to either a decreased feed intake alone or combined with the effect of the dietary composition per se.
Collapse
Affiliation(s)
- Marandel L
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Heraud C
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Véron V
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Laithier J
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Marchand M
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Quillet E
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Callet T
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Dupont-Nivet M
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Médale F
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| |
Collapse
|
13
|
Pei S, Zhao H, Chen L, He X, Hua Q, Meng X, Shi R, Zhang J, Zhang H, Liu R, Li D. Preventive Effect of Ellagic Acid on Cardiac Dysfunction in Diabetic Mice through Regulating DNA Hydroxymethylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1902-1910. [PMID: 35129965 DOI: 10.1021/acs.jafc.1c07574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ellagic acid (EA) improves mitochondrial dysfunction and protects diabetic hearts. The mitochondrial tricarboxylic acid (TCA) cycle regulates DNA 5-hydroxymethylcytosine (5hmC) levels by affecting activity of 10-11 translocation enzymes (TETs). Therefore, we hypothesized that EA prevents diabetic cardiac dysfunction by modulating DNA 5hmC levels. C57BL/6J mice were fed a high-fat diet to induce diabetes and treated with EA (100 mg kg-1 day-1) for 8 weeks. Serum concentrations of glucose, insulin, and triglyceride and aspartate transaminase and creatine kinase activities were significantly lower in the EA group than the diabetes mellitus (DM) group. DNA 5hmC levels of mice hearts were significantly higher in the EA group than the DM group. The protein levels of TET, complexes I/III/V were significantly higher in the EA group than the DM group. The results shows that EA has a preventive effect on diabetic cardiac dysfunction, which may be achieved by upregulating TET activity through improving the TCA cycle, to reshape DNA 5hmC levels of mice hearts.
Collapse
Affiliation(s)
- Shengjie Pei
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Haifeng Zhao
- Qingdao Institute for Food and Drug Control, Qingdao, Shandong 266071, People's Republic of China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Qinglian Hua
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xiangyuan Meng
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Ruiqing Shi
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jingyuan Zhang
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hong Zhang
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
14
|
Liu J, Heraud C, Véron V, Laithier J, Burel C, Prézelin A, Panserat S, Marandel L. Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. J Nutr 2022; 152:29-39. [PMID: 34550380 DOI: 10.1093/jn/nxab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Jésabel Laithier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Christine Burel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Audrey Prézelin
- Université Paris Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
15
|
Noro F, Marotta A, Bonaccio M, Costanzo S, Santonastaso F, Orlandi S, Tirozzi A, Parisi R, De Curtis A, Persichillo M, Gianfagna F, Di Castelnuovo A, Donati MB, Cerletti C, de Gaetano G, Iacoviello L, Gialluisi A, Izzi B. Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns. Eur J Nutr 2021; 61:1231-1243. [PMID: 34741648 DOI: 10.1007/s00394-021-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. METHODS ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. RESULTS We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. CONCLUSION We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Federica Santonastaso
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Sabatino Orlandi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | | | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy. .,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy.
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | | |
Collapse
|