1
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
2
|
Jorgensen A, Baago IB, Rygner Z, Jorgensen MB, Andersen PK, Kessing LV, Poulsen HE. Association of Oxidative Stress-Induced Nucleic Acid Damage With Psychiatric Disorders in Adults: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:920-931. [PMID: 35921094 PMCID: PMC9350850 DOI: 10.1001/jamapsychiatry.2022.2066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Nucleic acid damage from oxidative stress (NA-OXS) may be a molecular mechanism driving the severely increased morbidity and mortality from somatic causes in adults with psychiatric disorders. OBJECTIVE To systematically retrieve and analyze data on NA-OXS across the psychiatric disorder diagnostic spectrum. DATA SOURCES The PubMed, Embase, and PsycINFO databases were searched from inception to November 16, 2021. A hand search of reference lists of relevant articles was also performed. STUDY SELECTION Key study inclusion criteria in this meta-analysis were as follows: adult human study population, measurement of any marker of DNA or RNA damage from oxidative stress, and either a (1) cross-sectional design comparing patients with psychiatric disorders (any diagnosis) with a control group or (2) prospective intervention. Two authors screened the studies, and 2 senior authors read the relevant articles in full and assessed them for eligibility. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. Two authors performed data extraction independently, and a senior coauthor was consulted in cases of disagreement. Data were synthesized with random-effects and multilevel meta-analyses. MAIN OUTCOMES AND MEASURES The predefined hypothesis was that individuals with psychiatric disorders have increased NA-OXS levels. The main outcome was the standardized mean differences (SMDs) among patients and controls in nucleic acid oxidation markers compared across diagnostic groups. Analyses were divided into combinations of biological matrices and nucleic acids. RESULTS Eighty-two studies fulfilled the inclusion criteria, comprising 205 patient vs control group comparisons and a total of 10 151 patient and 10 532 control observations. Overall, the data showed that patients with psychiatric disorders had higher NA-OXS levels vs controls across matrices and molecules. Pooled effect sizes ranged from moderate for urinary DNA markers (SMD = 0.44 [95% CI, 0.20-0.68]; P < .001) to very large for blood cell DNA markers (SMD = 1.12 [95% CI, 0.69-1.55; P < .001). Higher NA-OXS levels were observed among patients with dementias followed by psychotic and bipolar disorders. Sensitivity analyses excluding low-quality studies did not materially alter the results. Intervention studies were few and too heterogenous for meaningful meta-analysis. CONCLUSIONS AND RELEVANCE The results of this meta-analysis suggest that there is an association with increased NA-OXS levels in individuals across the psychiatric disorder diagnostic spectrum. NA-OXS may play a role in the somatic morbidity and mortality observed among individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ida Bendixen Baago
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Zerlina Rygner
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| |
Collapse
|
3
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 565] [Impact Index Per Article: 282.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Chen X, Yu H, Li Z, Ye W, Liu Z, Gao J, Wang Y, Li X, Zhang L, Alenina N, Bader M, Ding H, Li P, Aung LHH. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol 2022; 13:725919. [PMID: 35418873 PMCID: PMC8995861 DOI: 10.3389/fphys.2022.725919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Zhe Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Hongyan Ding
- School of Bioengineering, Suqian University, Suqian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| |
Collapse
|
5
|
Zhou M, Wang DO, Li W, Zheng J. RNA adduction derived from electrophilic species in vitro and in vivo. Chem Biol Interact 2022; 351:109748. [PMID: 34801539 DOI: 10.1016/j.cbi.2021.109748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022]
Abstract
RNA molecules are essential for cell function by not only serving as genetic materials, but also providing cells with structural support and catalytic functions. Due to nucleophilicity of nucleobases, RNA molecules can react with electrophilic species thus to be "adducted". The electron-deficient agents potentially inducing adduction exist in a variety of natural sources including metabolic products of biomolecules. Although evident and readily detected in human tissue, RNA adduction remains poorly understood for their physiological and pathological function. In this article, we review a collection of exogenous and endogenous molecular species that participate in RNA adduction and elaborates on the chemical nature of their RNA adduction sites. Furthermore, we provide perspectives on the potential of RNA adducts as biomarkers of environmental insults. Finally, we project future investigations that are necessary for understanding the mechanisms of cellular toxicity of RNA adduction.
Collapse
Affiliation(s)
- Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
6
|
Li D, Yan L, Lin F, Yuan X, Yang X, Yang X, Wei L, Yang Y, Lu Y. Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer. J Gastric Cancer 2022; 22:306-318. [DOI: 10.5230/jgc.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dehong Li
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Fugui Lin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Lu
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
7
|
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42:101887. [PMID: 33579666 PMCID: PMC8113039 DOI: 10.1016/j.redox.2021.101887] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.
Collapse
Affiliation(s)
- Bato Korac
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, L7 8TX, Liverpool, UK
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|