1
|
Li H, Zhang Y, Chen Y, Zhu R, Zou W, Chen H, Hu J, Feng S, Zhong Y, Lu X. MUC1‑ND interacts with TRPV1 to promote corneal epithelial cell proliferation in diabetic dry eye mice by partly activating the AKT signaling pathway. Mol Med Rep 2024; 30:213. [PMID: 39370807 PMCID: PMC11450431 DOI: 10.3892/mmr.2024.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein‑protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1‑ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1‑ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1‑ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1‑ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.
Collapse
Affiliation(s)
- Haiqiong Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yu Zhang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yuting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Rong Zhu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Jia Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
2
|
Yang Q, Ju G, He Y. Corneal densitometry: A new evaluation indicator for corneal diseases. Surv Ophthalmol 2024:S0039-6257(24)00122-X. [PMID: 39326741 DOI: 10.1016/j.survophthal.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Corneal densitometry (CD) uses the biological properties of the cornea to visualize the morphology of the cornea and determine the degree of corneal transparency. At present, it is an emerging metric that has shown promise in various clinical diagnosis and evaluation of eye diseases and surgeries. We introduce the different methodologies used to measure CD. Furthermore, we systematically categorize the diagnostic value of CD into high, medium, and low levels based on its clinical significance. By analyzing a wide range of conditions, including keratoconus, postrefractive surgery changes, and other corneal pathologies, we assess the utility of CD in each context. We also discuss the potential implications of these classifications for disease monitoring and prognosis evaluation. Our review underscores the importance of integrating CD assessments into routine clinical practice to enhance the accuracy and effectiveness of diagnostic processes for corneal disorders.
Collapse
Affiliation(s)
- Qing Yang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China; The Second Clinical Medical College of Jilin University, Changchun, Jilin 130012, China
| | - Gen Ju
- Department of Ophthalmology, Baoji People's Hospital, Baoji, Shaanxi 721000, China
| | - Yuxi He
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
3
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Li Y, Tian L, Li S, Chen X, Lei F, Bao J, Wu Q, Wen Y, Jie Y. Disrupted mitochondrial transcription factor A expression promotes mitochondrial dysfunction and enhances ocular surface inflammation by activating the absent in melanoma 2 inflammasome. Free Radic Biol Med 2024; 222:106-121. [PMID: 38797339 DOI: 10.1016/j.freeradbiomed.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Severe dry eye disease causes ocular surface damage, which is highly associated with mitochondrial dysfunction. Mitochondrial transcription factor A (TFAM) is essential for packaging mitochondrial DNA (mtDNA) and is crucial for maintaining mitochondrial function. Herein, we aimed to explore the effect of a decreased TFAM expression on ocular surface damage. METHODS Female C57BL/6 mice were induced ocular surface injury by topical administrating benzalkonium chloride (BAC). Immortalized human corneal epithelial cells (HCECs) were stimulated by tert-butyl hydroperoxide (t-BHP) to create oxidative stress damage. HCECs with TFAM knockdown were established. RNA sequencing was employed to analyze the whole-genome expression. Mitochondrial changes were measured by transmission electron microscopy, Seahorse metabolic flux analysis, mitochondrial membrane potential, and mtDNA copy number. TFAM expression and inflammatory cytokines were determined using RT-qPCR, immunohistochemistry, immunofluorescence, and immunoblotting. RESULTS In both the corneas of BAC-treated mice and t-BHP-induced HCECs, we observed impaired TFAM expression, accompanied by mitochondrial structure and function defects. TFAM downregulation in HCECs suppressed mitochondrial respiratory capacity, reduced mtDNA content, induced mtDNA leakage into the cytoplasm, and led to inflammation. RNA sequencing revealed the absent in melanoma 2 (AIM2) inflammasome was activated in the corneas of BAC-treated mice. The AIM2 inflammasome activation was confirmed in TFAM knockdown HCECs. TFAM knockdown in t-BHP-stimulated HCECs aggravated mitochondrial dysfunction and the AIM2 inflammasome activation, thereby further triggering the secretion of inflammatory factors such as interleukin (IL) -1β and IL-18. CONCLUSIONS TFAM reduction impaired mitochondrial function, activated AIM2 inflammasome and promoted ocular surface inflammation, revealing an underlying molecular mechanism for ocular surface disorders.
Collapse
Affiliation(s)
- Yaqiong Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Siyuan Li
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xiaoniao Chen
- Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Jiayu Bao
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Qianru Wu
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ya Wen
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| |
Collapse
|
5
|
Qin G, Chen J, Li L, Qi Y, Chen Y, Zhang Q, Wu Y, You Y, Yang L, Guo N, Moutari S, Bu S, Moore JE, Xu L, He W, Yu S, He X, Pazo EE. Effects of Diquafosol Sodium Ophthalmic Solution on Tear Film Matrix Metallopeptidase-9 and Corneal Nerve Density in Patients with Type 2 Diabetic Dry Eye. J Ocul Pharmacol Ther 2024; 40:370-378. [PMID: 38100078 DOI: 10.1089/jop.2023.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose: Diabetes mellitus has been associated with increased dry eye disease (DED) and exacerbates DED's pathology. This preliminary short-term study aimed to evaluate the effects of 3% Diquafosol Sodium ophthalmic solution (DQS) on ocular surface inflammation and corneal nerve density in diabetic dry eye (DDE) patients. Methods: In this perspective, participants used 1 drop of 3% DQS (Diquas; Santen Pharmaceutical Co., Ltd., Osaka, Japan) 6 times daily for 8 weeks. Non-invasive tear breakup time (NITBUT), tear film lipid layer (TFLL), conjunctival hyperemia [redness score (RS)], corneoconjunctival staining (CFS), corneal sensitivity (CS), Meibomian gland quality (MGQ) and Meibomian gland expressibility (MGEx), corneal nerve fiber density (CNFD), and Standard Patient Evaluation Eye Dryness (SPEED) questionnaire were assessed at baseline, at weeks 4, and up to 8 weeks. Matrix metalloproteinase-9 (MMP-9) of tear samples was measured at baseline and weeks 8. Results: The mean age was 61.27 ± 11.68 years. At baseline NITBUT = 5.89 ± 2.81 s, tear meniscus height = 0.17 ± 0.05 mm, TFLL = 2.74 ± 0.51, CFS = 4.35 ± 0.68, CS = 53.83 ± 9.63 mm, MMP-9 = 49.10 ± 10.42 ng/mL, RS = 1.65 ± 0.44, MGEx = 1.85 ± 0.72, MGQ = 2.65 ± 0.50, CNFD = 20.36 ± 8.20 no./mm2, and SPEED = 12.62 ± 3.91. At week 4, significant improvements were found in all parameters except RS (1.59 ± 0.46, P = 0.172) and CNFD (21.46 ± 8.41, P = 0.163). Finally, at week 8, all parameters had significant improvements. Conclusion: Preliminary short-term findings suggest that treatment of DDE patients with DQS was found to be safe and efficacious in improving dry eye parameters. In addition, inflammatory marker and corneal nerve density were significantly improved. This study was registered with ClinicalTrials.gov (NCT05193331).
Collapse
Affiliation(s)
- Guanghao Qin
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Jiayan Chen
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Liangzhe Li
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Yifan Qi
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Yimeng Chen
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
- Department of Ophthalmology, Jinzhou Medical University, Jinzhou, China
| | - Qing Zhang
- Department of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yi Wu
- Department of Ophthalmology, China Medical University, Shenyang, China
| | - Yue You
- Department of Ophthalmology, Sinqi Eye Hospital, Shenyang, China
| | - Lanting Yang
- Department of Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Naici Guo
- School of Mathematics and Statistics, University of St. Andrews, Scotland, United Kingdom
| | - Salissou Moutari
- School of Mathematics and Physics, Queens University, Belfast, United Kingdom
| | - Shaochong Bu
- Department of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jonathan E Moore
- Department of Ophthalmology, Cathedral Eye Clinic, Belfast, United Kingdom
| | - Ling Xu
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Wei He
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| | - Sile Yu
- College of Public Health, He University, Shenyang, China
| | - Xingru He
- College of Public Health, He University, Shenyang, China
| | - Emmanuel Eric Pazo
- Department of Ophthalmology, He Eye Specialist Hospital, Shenyang, China
| |
Collapse
|
6
|
Wang Y, Wang Q, Dou S, Zhou Q, Xie L. Sleep deprivation induces corneal endothelial dysfunction by downregulating Bmal1. BMC Ophthalmol 2024; 24:268. [PMID: 38907352 PMCID: PMC11191275 DOI: 10.1186/s12886-024-03524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Sleep deprivation (SD) is a common public health problem that contributes to various physiological disorders and increases the risk of ocular diseases. However, whether sleep loss can damage corneal endothelial function remains unclear. This study aimed to determine the effect and possible mechanism of SD on the corneal endothelium. METHODS Male C57BL/6J mice were subjected to establish SD models. After 10 days, quantitative RT-PCR (qRT-PCR) and western blot or immunostaining for the expression levels of zonula occludens-1 (ZO-1), ATPase Na+/K + transporting subunit alpha 1 (Atp1a1), and core clock genes in the corneal endothelium were evaluated. Reactive oxygen species staining and mitochondrial abundance characterized the mitochondrial function. The regulatory role of Bmal1 was confirmed by specifically knocking down or overexpressing basic helix-loop-helix ARNT like 1 protein (Bmal1) in vivo. In vitro, a mitochondrial stress test was conducted on cultured human corneal endothelial cells upon Bmal1 knockdown. RESULTS SD damaged the barrier and pump functions of mouse corneal endothelium, accompanied by mitochondrial dysfunction. Interestingly, SD dramatically downregulated the core clock gene Bmal1 expression level. Bmal1 knockdown disrupted corneal endothelial function, while overexpression of Bmal1 ameliorated the dysfunction induced by SD. Mitochondrial bioenergetic deficiency mediated by Bmal1 was an underlying mechanism for SD induced corneal endothelial dysfunction. CONCLUSION The downregulation of Bmal1 expression caused by SD led to corneal endothelial dysfunction via impairing mitochondrial bioenergetics. Our findings offered insight into how SD impairs the physiological function of the corneal endothelium and expanded the understanding of sleep loss leading to ocular diseases.
Collapse
Affiliation(s)
- Yani Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qun Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China.
- School of ophthalmology, Shandong First Medical University, Shandong, China.
| |
Collapse
|
7
|
Rajbanshi G, Li W, Nong X, Li Y, Nong D. Lacrimal gland Alterations and the Effect of artesunate on experimental induced diabetes rat models and related mechanisms. Sci Rep 2024; 14:12556. [PMID: 38821986 PMCID: PMC11143198 DOI: 10.1038/s41598-024-61550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024] Open
Abstract
Diabetic patients are at high risk of developing lacrimal gland dysfunction, and the antimalarial drug artesunate (ART) was recently used to induce experimental-induced diabetes mellitus. This study's objective is to investigate the lacrimal gland alteration and the effect of ART on experimentally induced diabetes rat models and its related mechanisms. Forty rats were divided into five groups (8 rats/group): healthy control group (HC), diabetic group (DM), 50 mg/kg ART intervention diabetic group [DM + ART (50 mg/kg)], 100 mg/kg ART intervention diabetic group [DM + ART (100 mg/kg)] and 6 U/kg Insulin intervention diabetic group (DM + INS). The morphology of the eyeball and lacrimal gland tissues was determined using hematoxylin and eosin staining. In addition, external lacrimal glands were harvested for electronic microscopic examination, NFκB1, and TNF-α protein expression evaluation by immunohistochemistry and mRNA expression analysis by RT-PCR. Histopathological and ultrastructural changes suggest ART intervention has an improved structural effect. Protein expression of NFκB1 in the DM + ART (100 mg/kg) group was decreased. TNF-α significantly decreased in the DM + ART (50 mg/kg) and insulin groups. We concluded that ART improves structural changes in a lacrimal gland in diabetic rats. The present study provides further evidence of the therapeutic effect of ART on the lacrimal gland of diabetic rats by decreasing the expression of NFκB1 and TNF-α.
Collapse
Affiliation(s)
- Girju Rajbanshi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Pediatrics Dentistry & Preventive Dentistry, College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wei Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaolin Nong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, Guangxi, China.
| | - Yi Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Dongxiao Nong
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Chen S, Barnstable CJ, Zhang X, Li X, Zhao S, Tombran-Tink J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul Surf 2024; 32:1-12. [PMID: 38103731 DOI: 10.1016/j.jtos.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1β and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.
Collapse
Affiliation(s)
- Shuangping Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112.
| |
Collapse
|
9
|
Wan MM, Fu ZY, Jin T, Wang ZY, Sun XY, Gao WP. Electroacupuncture regulates the P2X 7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. Purinergic Signal 2024:10.1007/s11302-024-09991-0. [PMID: 38467962 DOI: 10.1007/s11302-024-09991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yi Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Zhao L, Chen R, Qu J, Yang L, Li Y, Ma L, Zang X, Qi X, Wang X, Zhou Q. Establishment of mouse model of neurotrophic keratopathy through TRPV1 neuronal ablation. Exp Eye Res 2024; 240:109814. [PMID: 38307190 DOI: 10.1016/j.exer.2024.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Neurotrophic keratopathy (NK) is a challenging disease with the reduced innervation to the cornea. To establish a genetic and stable mouse model of NK, we utilized the TRPV1-DTR mice with intraperitoneal injection of diphtheria toxin (DT) to selectively eliminate TRPV1 neurons. After DT administration, the mice exhibited robust ablation of TRPV1 neurons in the trigeminal ganglion, accompanied with reduced corneal sensation and nerve density, as well as the decreased calcitonin-gene-related peptide (CGRP) and substance P levels. According to disease progression of TRPV1 neuronal ablation, tear secretion was reduced from day 3, which followed by corneal epithelial punctate lesions from day 7. From day 11 to day 16, the mice exhibited persistent corneal epithelial defects and stromal edema. By day 21, corneal ulceration and stromal melting were observed with the abundant inflammatory cell infiltration, corneal neovascularization, and enhanced cell apoptosis. Moreover, subconjunctival injection of CGRP delayed the NK progression with the characteristics of reduced severe corneal epithelial lesions and corneal inflammation. In addition, the impairments of conjunctival goblet cells, lacrimal gland, and meibomian gland were identified by the diminished expression of MUC5AC, AQP5, and PPARγ, respectively. Therefore, these results suggest that the TRPV1-DTR mice may serve as a reliable animal model for the research of NK pathogenesis.
Collapse
Affiliation(s)
- Leilei Zhao
- Medical College, Qingdao University, Qingdao, China
| | - Rong Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Jingyu Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Linyan Ma
- Medical College, Qingdao University, Qingdao, China
| | - Xinyi Zang
- Weifang Medical University, Weifang, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
11
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
12
|
Dong W, Wang G, Bai Y, Li Y, Zhao L, Lu W, Wang C, Zhang Z, Lu H, Wang X, Chen H, Tan C. Repurposing an Antioxidant to Kill Mycobacterium tuberculosis by Targeting the 50S Subunit of the Ribosome. Biomolecules 2023; 13:1793. [PMID: 38136663 PMCID: PMC10742058 DOI: 10.3390/biom13121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberculosis and drug-resistant TB remain serious threats to global public health. It is urgent to develop novel anti-TB drugs in order to control it. In addition to redesigning and developing new anti-TB drugs, drug repurposing is also an innovative way to develop antibacterial drugs. Based on this method, we discovered SKQ-1 in the FDA-approved drug library and evaluated its anti-TB activity. In vitro, we demonstrated that SKQ-1 engaged in bactericidal activity against drug-sensitive and -resistant Mtb and confirmed the synergistic effects of SKQ1 with RIF and INH. Moreover, SKQ-1 showed a significant Mtb-killing effect in macrophages. In vivo, both the SKQ-1 treatment alone and the treatment in combination with RIF were able to significantly reduce the bacterial load and improve the survival rate of G. mellonella infected with Mtb. We performed whole-genome sequencing on screened SKQ-1-resistant strains and found that the SNP sites were concentrated in the 50S ribosomal subunit of Mtb. Furthermore, we proved that SKQ-1 can inhibit protein translation. In summary, from the perspective of drug repurposing, we discovered and determined the anti-tuberculosis effect of SKQ-1, revealed its synergistic effects with RIF and INH, and demonstrated its mechanism of action through targeting ribosomes and disrupting protein synthesis, thus making it a potential treatment option for DR-TB.
Collapse
Affiliation(s)
- Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yajuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuxin Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liying Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Weng J, Ross C, Baker J, Alfuraih S, Shamloo K, Sharma A. Diabetes-Associated Hyperglycemia Causes Rapid-Onset Ocular Surface Damage. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37938936 PMCID: PMC10637200 DOI: 10.1167/iovs.64.14.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The metabolic alterations due to chronic hyperglycemia are well-known to cause diabetes-associated complications. Short-term hyperglycemia has also been shown to cause many acute changes, including hemodynamic alterations and osmotic, oxidative, and inflammatory stress. The present study was designed to investigate whether diabetes-associated hyperglycemia can cause rapid-onset detrimental effects on the tear film, goblet cells, and glycocalyx and can lead to activation of an inflammatory cascade or cellular stress response in the cornea. Methods Mouse models of type 1 and type 2 diabetes were used. Tear film volume, goblet cell number, and corneal glycocalyx area were measured on days 7, 14, and 28 after the onset of hyperglycemia. Transcriptome analysis was performed to quantify changes in 248 transcripts of genes involved in inflammatory, apoptotic, and stress response pathways. Results Our data demonstrate that type 1 and type 2 diabetes-associated hyperglycemia caused a significant decrease in the tear film volume, goblet cell number, and corneal glycocalyx area. The decrease in tear film and goblet cell number was noted as early as 7 days after onset of hyperglycemia. The severity of ocular surface injury was significantly more in type 1 compared to type 2 diabetes. Diabetes mellitus also caused an increase in transcripts of genes involved in the inflammatory, apoptotic, and cellular stress response pathways. Conclusions The results of the present study demonstrate that diabetes-associated hyperglycemia causes rapid-onset damage to the ocular surface. Thus, short-term hyperglycemia in patients with diabetes mellitus may also play an important role in causing ocular surface injury and dry eye.
Collapse
Affiliation(s)
- Judy Weng
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Christopher Ross
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Jacob Baker
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Saleh Alfuraih
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| |
Collapse
|
14
|
Li L, Wang H, Pang S, Wang L, Fan Z, Ma C, Yang S, Banda J, Hui Q, Lv F, Fan H, Huang T, Zhang X, Wang X. rhFGF-21 accelerates corneal epithelial wound healing through the attenuation of oxidative stress and inflammatory mediators in diabetic mice. J Biol Chem 2023; 299:105127. [PMID: 37544647 PMCID: PMC10481360 DOI: 10.1016/j.jbc.2023.105127] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic keratopathy, commonly associated with a hyperactive inflammatory response, is one of the most common eye complications of diabetes. The peptide hormone fibroblast growth factor-21 (FGF-21) has been demonstrated to have anti-inflammatory and antioxidant properties. However, whether administration of recombinant human (rh) FGF-21 can potentially regulate diabetic keratopathy is still unknown. Therefore, in this work, we investigated the role of rhFGF-21 in the modulation of corneal epithelial wound healing, the inflammation response, and oxidative stress using type 1 diabetic mice and high glucose-treated human corneal epithelial cells. Our experimental results indicated that the application of rhFGF-21 contributed to the enhancement of epithelial wound healing. This treatment also led to advancements in tear production and reduction in corneal edema. Moreover, there was a notable reduction in the levels of proinflammatory cytokines such as TNF-α, IL-6, IL-1β, MCP-1, IFN-γ, MMP-2, and MMP-9 in both diabetic mouse corneal epithelium and human corneal epithelial cells treated with high glucose. Furthermore, we found rhFGF-21 treatment inhibited reactive oxygen species production and increased levels of anti-inflammatory molecules IL-10 and SOD-1, which suggests that FGF-21 has a protective role in diabetic corneal epithelial healing by increasing the antioxidant capacity and reducing the release of inflammatory mediators and matrix metalloproteinases. Therefore, we propose that administration of FGF-21 may represent a potential treatment for diabetic keratopathy.
Collapse
Affiliation(s)
- Le Li
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China; Department of Pharmacy, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China; Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Shucai Pang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China; Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Liangshun Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Zhengkai Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Chunyu Ma
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Shufen Yang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Joshua Banda
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Qi Hui
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Fangyi Lv
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Haibing Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Tongzhou Huang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China; Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Xiaobi Zhang
- Department of Pharmacy, The Eye Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaojie Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China; Department of Pharmacy, The Eye Hospital of Wenzhou Medical University, Wenzhou, China; Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science, Wenzhou, China.
| |
Collapse
|
15
|
Zhang S, Wang Q, Qu M, Chen Q, Bai X, Zhang Z, Zhou Q, Xie L. Hyperglycemia Induces Tear Reduction and Dry Eye in Diabetic Mice through the Norepinephrine-α 1 Adrenergic Receptor-Mitochondrial Impairment Axis of Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:913-926. [PMID: 37088455 DOI: 10.1016/j.ajpath.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with βAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qing Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
16
|
Li N, Liu B, Xiong R, Li G, Wang B, Geng Q. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol 2023; 63:102746. [PMID: 37244125 DOI: 10.1016/j.redox.2023.102746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Sepsis is one common cause of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which is closely associated with high mortality in intensive care units (ICU). Histone deacetylase 3 (HDAC3) serves as an important epigenetic modifying enzyme which could affect chromatin structure and transcriptional regulation. Here, we explored the effects of HDAC3 in type II alveolar epithelial cells (AT2) on lipopolysaccharide (LPS)-induced ALI and shed light on potential molecular mechanisms. We generated ALI mouse model with HDAC3 conditional knockout mice (Sftpc-cre; Hdac3f/f) in AT2 and the roles of HDAC3 in ALI and epithelial barrier integrity were investigated in LPS-treated AT2. The levels of HDAC3 were significantly upregulated in lung tissues from mice with sepsis and in LPS-treated AT2. HDAC3 deficiency in AT2 not only decreased inflammation, apoptosis, and oxidative stress, but also maintained epithelial barrier integrity. Meanwhile, HDAC3 deficiency in LPS-treated AT2 preserved mitochondrial quality control (MQC), evidenced by the shift of mitochondria from fission into fusion, decreased mitophagy, and improved fatty acid oxidation (FAO). Mechanically, HDAC3 promoted the transcription of Rho-associated protein kinase 1 (ROCK1) in AT2. In the context of LPS stimulation, the upregulated ROCK1 elicited by HDAC3 could be phosphorylated by Rho-associated (RhoA), thus disturbing MQC and triggering ALI. Furthermore, we found that forkhead box O1 (FOXO1) was one of transcription factors of ROCK1. HDAC3 directly decreased the acetylation of FOXO1 and promoted its nuclear translocation in LPS-treated AT2. Finally, HDAC3 inhibitor RGFP966 alleviated epithelial damage and improved MQC in LPS-treated AT2. Altogether, HDAC3 deficiency in AT2 alleviated sepsis-induced ALI by preserving mitochondrial quality control via FOXO1-ROCK1 axis, which provided a potential strategy for the treatment of sepsis and ALI.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Wang G, Zeng L, Gong C, Gong X, Zhu T, Zhu Y. Extracellular vesicles derived from mouse adipose-derived mesenchymal stem cells promote diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving dendritic cells. Exp Eye Res 2023; 231:109484. [PMID: 37080382 DOI: 10.1016/j.exer.2023.109484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Diabetic keratopathy (DK) is a common ocular complication of diabetes in which the dendritic cells (DCs)-mediated inflammatory response plays an important role. Nerve growth factor (NGF)/Tropomyosin receptor kinase A (TrkA)-mediated inhibition of the nuclear factor kappa B (NF-κB) pathway can reduce inflammatory cytokine production. Extracellular vesicles (EVs) derived from mouse adipose-derived mesenchymal stem cells (mADSC-EVs) have been explored extensively as treatments for degenerative eye disease. However, mADSC-EVs is poorly studied in the DK models. In this study, we investigated the anti-inflammatory effects of mADSC-EVs and explored the underlying mechanisms in vitro and in vivo DK models. Our results showed that mADSC-EVs have significant therapeutic effects including increasing tear volume and the ratio of lacrimal gland/body weight, promoting corneal nerve regeneration, and sensation recovery in streptozotocin (STZ)-induced DK mice. In addition, mADSC-EVs significantly reduced the inflammatory response involving DCs, consistently up-regulated protein expression of the NGF/TrkA pathway, and importantly, reduced lipopolysaccharide (LPS)-mediated IL-6 and TNF-α expression and directly dependent on TrkA in the induced culture of bone marrow-derived DCs (BMDCs). Taken together, our findings revealed that mADSC-EVs promoted diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving DCs. Given the significant therapeutic efficacy of mADSC-EVs and its clinical application, mADSC-EVs appears to be a promising new therapy for DK.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, China.
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Can Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Xileyuan Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Tupeng Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| |
Collapse
|
18
|
Chen Q, Qu M, Zhang B, Zhang S, Qi X, Qiao Y, Zhou Q. Involvement of aberrant acinar cell proliferation in scopolamine-induced dry eye mice. Exp Eye Res 2023; 227:109391. [PMID: 36696946 DOI: 10.1016/j.exer.2023.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/10/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Dry eye is a multifactorial disease that causes dryness, inflammation and damage of ocular surface. Subcutaneous injection of the muscarinic cholinergic antagonist scopolamine under desiccating stress reduces tear production and induces dry eye symptoms in mice. However, the expression profile and pathogenic changes of the lacrimal gland remain incompletely understood. In the present study, we performed comparative transcriptomic analysis of lacrimal glands from the control and scopolamine-treated mice. Primary analysis identified 677 upregulated genes and 269 downregulated genes in the lacrimal gland of mice with scopolamine treatment. Unexpectedly, KEGG pathway and hierarchical clustering analysis showed the enrichment of "DNA replication" and "cell cycle" categories in the upregulated genes. Subsequently, we confirmed that the acinar cells were the major proliferating cells of lacrimal gland, which exhibited significant increasing of the proliferating cell nuclear antigen (PCNA) expression after scopolamine treatment, accompanied with the upregulation of DNA damage marker γ-H2AX. More importantly, both prophylactic and therapeutic administration of the cyclin-dependent kinase (CDK) inhibitor AT7519 rescued the tear reduction and alleviated dry eye severity in the scopolamine-treated mice, including corneal epithelial barrier function, lacrimal and corneal inflammation, and conjunctival goblet cell density. Therefore, we conclude that aberrant acinar cell proliferation is involved in the scopolamine-induced tear reduction and dry eye onset, which can be improved by AT7519 treatment.
Collapse
Affiliation(s)
- Qing Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261053, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Yujie Qiao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
19
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
20
|
Zou Z, Wang H, Zhang B, Zhang Z, Chen R, Yang L. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother 2022; 151:113109. [PMID: 35594713 DOI: 10.1016/j.biopha.2022.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is one of the risk factors for meibomian gland dysfunction (MGD); however, the underlying molecular mechanism remains unknown. The current study aims to examine the effects of glioma-associated oncogene homolog 1 (Gli1), a transcription factor of the sonic hedgehog (Shh) pathway, in the modulation of diabetic-related MGD. Here, using RNA sequencing and qRT-PCR, we examined the mRNA changes of Shh pathway involving genes. mRNA sequencing analysis showed that the Shh pathway involving genes Shh and Gli1 were markedly upregulated in diabetic MG, and qRT-PCR detection of Shh pathway-associated genes found that Gli1 expression increased most significantly. Contrary to the elevation of Gli1 level, the expression of pparγ was downregulated in diabetic MG and in high glucose treated organotypic cultured mouse MG. GANT61, an inhibitor of Gli1, effectively inhibited the reduction of pparγ expression and lipid accumulation induced by high glucose, which was suppressed by pparγ inhibitor T0070907. We further demonstrated that advanced glycation end products (AGEs) treatment also promoted the expression of Gli1 and pparγ in organotypic cultured mouse MG. AGEs inhibitor Aminoguanidine suppressed high glucose caused Gli1 upregulation in organotypic cultured mouse MG. These results suggest that suppression of Gli1 may be a potentially useful therapeutic option for diabetic-related MGD.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Rong Chen
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
21
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|
22
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
23
|
Chen C, Zhou Q, Li Z, Duan H, Liu Y, Wan L, Wang H, Xie L. Hyperglycemia induces corneal endothelial dysfunction through attenuating mitophagy. Exp Eye Res 2021; 215:108903. [PMID: 34951999 DOI: 10.1016/j.exer.2021.108903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Hyperglycemia increases the risk of corneal endothelial dysfunction, resulting in damage to corneal endothelial structure and function. However, the effect and mechanism of hyperglycemia-induced corneal endothelial damage remain elusive. In this study, we demonstrated that hyperglycemia reduced the expression of pump-related protein Na+/K+ ATPase and barrier-related protein ZO-1. Moreover, we found hyperglycemia caused abnormal changes of morphological mitochondria and dynamics in vitro. In addition, the decreased levels of mitophagy were further confirmed Western blotting and LC3B-Mitotracker Immunofluorescence. Exogenous application of mitophagy agonist carbonyl cyanide m-chlorophenyl hydrazine (CCCP) increases the expression of Na+/K+ ATPase and ZO-1 in corneal endothelial cells through up-regulated mitophagy in vitro. In addition, CCCP effectively reverses the phenomenon of corneal opacity and increased corneal thickness in diabetic mice. Therefore, our demonstrated the novel function of mitophagy in the pathogenesis of diabetic cornea endothelial dysfunction, and provide potential approach for treating diabetic corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan, 250012, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Yameng Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Luqin Wan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Xue J, Zhang B, Dou S, Zhou Q, Ding M, Zhou M, Wang H, Dong Y, Li D, Xie L. Revealing the Angiopathy of Lacrimal Gland Lesion in Type 2 Diabetes. Front Physiol 2021; 12:731234. [PMID: 34531764 PMCID: PMC8438424 DOI: 10.3389/fphys.2021.731234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
For a better understanding of diabetic angiopathy (DA), the potential biomarkers in lacrimal DA and its potential mechanism, we evaluated the morphological and hemodynamic alterations of lacrimal glands (LGs) in patients with type 2 diabetes and healthy counterparts by color Doppler flow imaging (CDFI). We further established a type 2 diabetic mice model and performed hematoxylin-eosin (HE) staining, immunofluorescence staining of CD31, RNA-sequencing analysis, and connectivity map (CMap) analysis. We found atrophy and ischemia in patients with type 2 diabetes and mice models. Furthermore, we identified 846 differentially expressed genes (DEGs) between type 2 diabetes mellitus (T2DM) and vehicle mice by RNA-seq. The gene ontology (GO) analysis indicated significant enrichment of immune system process, regulation of blood circulation, apoptotic, regulation of secretion, regulation of blood vessel diameter, and so on. The molecular complex detection (MCODE) showed 17 genes were involved in the most significant module, and 6/17 genes were involved in vascular disorders. CytoHubba revealed the top 10 hub genes of DEGs, and four hub genes (App, F5, Fgg, and Gas6) related to vascular regulation were identified repeatedly by MCODE and cytoHubba. GeneMANIA analysis demonstrated functions of the four hub genes above and their associated molecules were primarily related to the regulation of circulation and coagulation. CMap analysis found several small molecular compounds to reverse the altered DEGs, including disulfiram, bumetanide, genistein, and so on. Our outputs could empower the novel potential targets to treat lacrimal angiopathy, diabetes dry eye, and other diabetes-related diseases.
Collapse
Affiliation(s)
- Junfa Xue
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Min Ding
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Mingming Zhou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Dongfang Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|