1
|
Rynkiewicz-Szczepanska E, Kosciuczuk U, Maciejczyk M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure-A Systematic Review. Diagnostics (Basel) 2024; 14:2561. [PMID: 39594227 PMCID: PMC11593164 DOI: 10.3390/diagnostics14222561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: The available literature indicates that oxidant-antioxidant imbalance plays a significant role in the pathophysiology of traumatic brain injury and the subsequent secondary organ dysfunctions. However, there is a lack of studies summarizing the knowledge in this area, and no clear guidelines exist regarding the use of biomarkers of oxidative stress as diagnostics tools. Methods: The present work aims to provide a systematic review of the literature on the use of total antioxidant capacity (TAC) assays in predicting the outcomes of traumatic brain injury (TBI). A literature search was conducted up to 1 September 2024, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, using the PubMed and Scopus databases. Based on the inclusion criteria, 24 studies were used for the final review. Results: Promising data indicate that TAC assays are useful in predicting 30-day mortality and neurological outcomes. Moreover, they correlate with radiological findings on CT scans in brain injury and the clinical classifications of injuries, as well as the parameters of organ failure. Conclusions: Total antioxidant capacity assays can be used to assess the extent of brain damage and prognosticate general vital functions. Future experiments should include long-term randomized clinical trials on larger populations of TBI patients.
Collapse
Affiliation(s)
- Ewa Rynkiewicz-Szczepanska
- Department of Anaesthesiology and Intensive Therapy, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Urszula Kosciuczuk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| |
Collapse
|
2
|
Han D, Wang C, Feng X, Hu L, Wang B, Hu X, Wu J. ALCAT1-Mediated Pathological Cardiolipin Remodeling and PLSCR3-Mediated Cardiolipin Transferring Contribute to LPS-Induced Myocardial Injury. Biomedicines 2024; 12:2013. [PMID: 39335527 PMCID: PMC11428616 DOI: 10.3390/biomedicines12092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiolipin (CL), a critical phospholipid situated within the mitochondrial membrane, plays a significant role in modulating intramitochondrial processes, especially in the context of certain cardiac pathologies; however, the exact effects of alterations in cardiolipin on septic cardiomyopathy (SCM) are still debated and the underlying mechanisms remain incompletely understood. This study highlights a notable increase in the expressions of ALCAT1 and PLSCR3 during the advanced stage of lipopolysaccharide (LPS)-induced SCM. This up-regulation potential contribution to mitochondrial dysfunction and cellular apoptosis-as indicated by the augmented oxidative stress and cytochrome c (Cytc) release-coupled with reduced mitophagy, decreased levels of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2) and lowered cell viability. Additionally, the timing of LPS-induced apoptosis coincides with the decline in both autophagy and mitophagy at the late stages, implying that these processes may serve as protective factors against LPS-induced SCM in HL-1 cells. Together, these findings reveal the mechanism of LPS-induced CL changes in the center of SCM, with a particular emphasis on the importance of pathological remodeling and translocation of CL to mitochondrial function and apoptosis. Additionally, it highlights the protective effect of mitophagy in the early stage of SCM. This study complements previous research on the mechanism of CL changes in mediating SCM. These findings enhance our understanding of the role of CL in cardiac pathology and provide a new direction for future research.
Collapse
Affiliation(s)
- Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Chenyang Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Li Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Anesthesiology, Wuhan Fourth Hospital & Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| |
Collapse
|
3
|
Fan X, Yang G, Yang Z, Uhlig S, Sattler K, Bieback K, Hamdani N, El-Battrawy I, Duerschmied D, Zhou X, Akin I. Catecholamine induces endothelial dysfunction via Angiotensin II and intermediate conductance calcium activated potassium channel. Biomed Pharmacother 2024; 177:116928. [PMID: 38889637 DOI: 10.1016/j.biopha.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial dysfunction contributes to the pathogenesis of Takotsubo syndrome (TTS). However, the exact mechanism underlying endothelial dysfunction in the setting of TTS has not been completely clarified. This study aims to investigate the roles of angiotensin II (Ang II) and intermediate-conductance Ca2+-activated K+ (SK4) channels in catecholamine-induced endothelial dysfunction. Human cardiac microvascular endothelial cells (HCMECs) were exposed to 100 µM epinephrine (Epi), mimicking the setting of TTS. Epi treatment increased the ET-1 concentration and reduced NO levels in HCMECs. Importantly, the effects of Epi were found to be mitigated in the presence of Ang II receptor blockers. Furthermore, Ang II mimicked Epi effects on ET-1 and NO production. Additionally, Ang II inhibited tube formation and increased cell apoptosis. The effects of Ang II could be reversed by an SK4 activator NS309 and mimicked by an SK4 channel blocker TRAM-34. Ang II also inhibited the SK4 channel current (ISK4) without affecting its expression level. Ang II could depolarize the cell membrane potential. Ang II promoted ROS release and reduced protein kinase A (PKA) expression. A ROS blocker prevented Ang II effect on ISK4. The PKA activator Sp-8-Br-cAMPS increased SK4 channel currents. Epinephrine enhanced the activity of ACE by activating the α1 receptor/Gq/PKC signal pathway, thereby promoting the secretion of Ang II. The study suggested that high-level catecholamine can increase Ang II release from endothelial cells by α1 receptors/Gq/PKC signal pathway. Ang II can inhibit SK4 channel current by increasing ROS generation and reducing PKA expression, thereby contributing to endothelial dysfunction.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guoqiang Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhen Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
| | - Stefanie Uhlig
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine Sattler
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Karen Bieback
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Li C, Li P, Peddibhotla B, Teng C, Shi A, Lu X, Cai P, Dai Q, Wang B. Takotsubo syndrome and vaccines: a systematic review. ESC Heart Fail 2024; 11:1795-1801. [PMID: 38344896 PMCID: PMC11098634 DOI: 10.1002/ehf2.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
AIMS Takotsubo syndrome (TTS) is a rare complication of vaccination. In this study, we sought to provide insight into the characteristics of reported TTS induced by vaccination. METHODS AND RESULTS We did a systematic review, searching PubMed, Embase, Web of Science, Ovid MEDLINE, Journals@Ovid, and Scopus databases up to 26 April 2023 to identify case reports or case series of vaccine-induced TTS. We then extracted and summarized the data from these reports. Eighteen reports were identified, with a total of 19 patients with TTS associated with vaccinations. Of the 19 included patients, the majority were female (n = 13, 68.4%) with a mean age of 56.6 ± 21.9 years. Seventeen patients developed TTS after coronavirus disease 2019 vaccination, 14 of whom received an mRNA vaccination. Two cases of TTS occurred after influenza vaccination. Among the 19 patients, 17 (89.5%) completed transthoracic echocardiography and 16 (84.2%) underwent angiography procedures. Seven patients (36.8%) completed cardiac magnetic resonance imaging. The median time to symptom onset was 2 (inter-quartile range, 1-4) days. The most common symptoms were chest pain (68.4%), dyspnoea (57.9%), and digestive symptoms (31.6%). A total of 57.9% of patients developed nonspecific symptoms such as fatigue, myalgia, diaphoresis, and fever. Among the 16 reported cases of TTS, 15 patients (93.8%) exhibited elevated cardiac troponin levels, while among the nine reported cases, eight patients (88.9%) had elevated natriuretic peptide levels. All patients had electrocardiographic changes: ST-segment change (47.1%), T-wave inversion (58.8%), and prolonged corrected QT interval (35.3%). The most common TTS type was apical ballooning (88.2%). Treatment during hospitalization typically included beta-blockers (44.4%), angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (33.3%), and diuretics (22.2%). After treatment, 81.3% of patients were discharged with improved symptoms. Among this group, nine patients (56.3%) were reported to have recovered ventricular wall motion during follow-up. Two patients (12.5%) died following vaccination without resuscitation attempts. CONCLUSIONS TTS is a rare but potentially life-threatening complication of vaccination. Typical TTS symptoms such as chest pain and dyspnoea should be considered alarming symptoms, though nonspecific symptoms are common. The risks of such rare adverse events should be balanced against the risks of infection.
Collapse
Affiliation(s)
- Chenlin Li
- Department of CardiologyJieyang People's HospitalJieyangGuangdongChina
| | - Pengyang Li
- Division of Cardiology, Pauley Heart CenterVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Catherine Teng
- Division of Cardiology, Department of MedicineUniversity of Texas San AntonioSan AntonioTXUSA
| | - Ao Shi
- Faculty of MedicineSt George's University of LondonLondonUK
| | - Xiaojia Lu
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Peng Cai
- Department of Mathematical SciencesWorcester Polytechnic InstituteWorcesterMAUSA
| | - Qiying Dai
- Division of CardiologyMayo ClinicRochesterMNUSA
| | - Bin Wang
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
5
|
Kim J, Shimizu C, He M, Wang H, Hoffman HM, Tremoulet AH, Shyy JYJ, Burns JC. Endothelial Cell Response in Kawasaki Disease and Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:12318. [PMID: 37569694 PMCID: PMC10418493 DOI: 10.3390/ijms241512318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Although Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share some clinical manifestations, their cardiovascular outcomes are different, and this may be reflected at the level of the endothelial cell (EC). We performed RNA-seq on cultured ECs incubated with pre-treatment sera from KD (n = 5), MIS-C (n = 7), and healthy controls (n = 3). We conducted a weighted gene co-expression network analysis (WGCNA) using 935 transcripts differentially expressed between MIS-C and KD using relaxed filtering (unadjusted p < 0.05, >1.1-fold difference). We found seven gene modules in MIS-C, annotated as an increased TNFα/NFκB pathway, decreased EC homeostasis, anti-inflammation and immune response, translation, and glucocorticoid responsive genes and endothelial-mesenchymal transition (EndoMT). To further understand the difference in the EC response between MIS-C and KD, stringent filtering was applied to identify 41 differentially expressed genes (DEGs) between MIS-C and KD (adjusted p < 0.05, >2-fold-difference). Again, in MIS-C, NFκB pathway genes, including nine pro-survival genes, were upregulated. The expression levels were higher in the genes influencing autophagy (UBD, EBI3, and SQSTM1). Other DEGs also supported the finding by WGCNA. Compared to KD, ECs in MIS-C had increased pro-survival transcripts but reduced transcripts related to EndoMT and EC homeostasis. These differences in the EC response may influence the different cardiovascular outcomes in these two diseases.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Biomedical Informatics, University of California, San Diego, CA 92093, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chisato Shimizu
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Hao Wang
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Hal M. Hoffman
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Adriana H. Tremoulet
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - John Y.-J. Shyy
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Jane C. Burns
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
6
|
Zeng J, Liao S, Liang Z, Li C, Luo Y, Wang K, Zhang D, Lan L, Hu S, Li W, Lin R, Jie Z, Hu Y, Dai S, Zhang Z. Schisandrin A regulates the Nrf2 signaling pathway and inhibits NLRP3 inflammasome activation to interfere with pyroptosis in a mouse model of COPD. Eur J Med Res 2023; 28:217. [PMID: 37400851 PMCID: PMC10316617 DOI: 10.1186/s40001-023-01190-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious chronic lung disease. Schisandrin A (SchA) is one of the most important active ingredients in Schisandra chinensis and has been used to treat various lung diseases in several countries. Here, we studied the pharmacological effect of SchA on airway inflammation induced by cigarette smoke (CS) and explored the therapeutic mechanism of SchA in COPD model mice. Our results showed that SchA treatment significantly improved the lung function of CS-induced COPD model mice and reduced the recruitment of leukocytes and hypersecretion of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in bronchoalveolar lavage fluid (BALF). H&E staining showed that SchA treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. In addition, we found that SchA treatment can stimulate the expression of heme oxygenase-1 (HO-1) through the nuclear factor-erythroid 2-related factor (Nrf2) pathway, significantly reduce oxidative stress, increase catalase (CAT) and superoxide dismutase (SOD) levels, and suppress the level of malondialdehyde (MDA) in COPD model mice. Moreover, SchA treatment suppressed the generation of the NLRP3/ASC/Caspase1 inflammasome complex to inhibit the inflammatory response caused by IL-1β and IL-18 and pyroptosis caused by GSDMD. In conclusion, our study shows that SchA treatment can inhibit the production of ROS and the activation of the NLRP3 inflammasome by upregulating Nrf-2, thereby producing anti-inflammatory effects and reducing lung injury in COPD model mice. More importantly, SchA exhibited similar anti-inflammatory effects to dexamethasone in COPD model mice, and we did not observe substantial side effects of SchA treatment. The high safety of SchA makes it a potential candidate drug for the treatment of COPD.
Collapse
Affiliation(s)
- Jiamin Zeng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Sida Liao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Caiping Li
- Guangzhou Medical University, Guangzhou, China
| | - Yuewen Luo
- Guangzhou Medical University, Guangzhou, China
| | - Kexin Wang
- Guangzhou Medical University, Guangzhou, China
| | - Dapeng Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Lan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suzhen Hu
- Huangdao District Chinese Medicine Hospital, Qingdao, China
| | - Wanyan Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zichen Jie
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanlong Hu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Shiting Dai
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Dong F, Yin L, Sisakian H, Hakobyan T, Jeong LS, Joshi H, Hoff E, Chandler S, Srivastava G, Jabir AR, Kimball K, Chen YR, Chen CL, Kang PT, Shabani P, Shockling L, Pucci T, Kegecik K, Kolz C, Jia Z, Chilian WM, Ohanyan V. Takotsubo syndrome is a coronary microvascular disease: experimental evidence. Eur Heart J 2023; 44:2244-2253. [PMID: 37170610 PMCID: PMC10290875 DOI: 10.1093/eurheartj/ehad274] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND AND AIMS Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.
Collapse
Affiliation(s)
- Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hamayak Sisakian
- Department of Cardiology, Yerevan State Medical University, Yerevan, Kentron, Armenia
| | - Tatevik Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lacey S Jeong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hirva Joshi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Ellianna Hoff
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Geetika Srivastava
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Abdur Rahman Jabir
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Kelly Kimball
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| |
Collapse
|
8
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
9
|
Polednikova K, Kozel M, Linkova H, Novackova M, Trinh MD, Tousek P. Triggers, characteristics, and hospital outcome of patients with Takotsubo syndrome: 10 years experience in a large university hospital centre. Eur Heart J Suppl 2023; 25:E10-E16. [PMID: 37234233 PMCID: PMC10206857 DOI: 10.1093/eurheartjsupp/suad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A unique clinical feature of Takotsubo syndrome (TTS) is the stress trigger factor. Different types of triggers exist, generally divided into emotional and physical stressor. The aim was to create long-term registry of all consecutive patients with TTS across all disciplines in our large university hospital. We enrolled patients on the basis of meeting the diagnostic criteria of the international InterTAK Registry. We aimed to determine type of triggers, clinical characteristics, and outcome of TTS patients during 10 years period. In our prospective, academic, single centre registry, we enrolled 155 consecutive patients with diagnoses of TTS between October 2013 and October 2022. The patients were divided into three groups, those having unknown (n = 32; 20.6%), emotional (n = 42; 27.1%), or physical (n = 81; 52.3%) triggers. Clinical characteristics, cardiac enzyme levels, echocardiographic findings, including ejection fraction, and TTS type did not differ among the groups. Chest pain was less common in the group of patients with a physical trigger. On the other hand, arrhythmogenic disorders such as prolonged QT intervals, cardiac arrest requiring defibrillation, and atrial fibrillation were more common among the TTS patients with unknown triggers compared with the other groups. The highest in-hospital mortality was observed between patients having physical trigger (16% vs. 3.1% in TTS with emotional trigger and 4.8% in TTS with unknown trigger; P = 0.060). Conclusion: More than half of the patients with TTS diagnosed in a large university hospital had a physical trigger as a stress factor. An essential part of caring for these types of patients is the correct identification of TTS in the context of severe other conditions and the absence of typical cardiac symptoms. Patients with physical trigger have a significantly higher risk of acute heart complications. Interdisciplinary cooperation is essential in the treatment of patients with this diagnosis.
Collapse
Affiliation(s)
| | - Martin Kozel
- Cardiocentre of University Hospital Kralovske Vinohrady, Srobarova 1150/50, Prague 100 34, Czechia
- Third Faculty of Medicine, Charles University, Ruska 2411, Prague 100 00, Czechia
| | - Hana Linkova
- Cardiocentre of University Hospital Kralovske Vinohrady, Srobarova 1150/50, Prague 100 34, Czechia
- Third Faculty of Medicine, Charles University, Ruska 2411, Prague 100 00, Czechia
| | - Marketa Novackova
- Cardiocentre of University Hospital Kralovske Vinohrady, Srobarova 1150/50, Prague 100 34, Czechia
- Third Faculty of Medicine, Charles University, Ruska 2411, Prague 100 00, Czechia
| | - Minh Duc Trinh
- Cardiocentre of University Hospital Kralovske Vinohrady, Srobarova 1150/50, Prague 100 34, Czechia
- Third Faculty of Medicine, Charles University, Ruska 2411, Prague 100 00, Czechia
| | | |
Collapse
|
10
|
Akhtar MM, Cammann VL, Templin C, Ghadri JR, Lüscher TF. Takotsubo syndrome: getting closer to its causes. Cardiovasc Res 2023:7161872. [PMID: 37183265 DOI: 10.1093/cvr/cvad053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 05/16/2023] Open
Abstract
Takotsubo syndrome (TTS) accounts for between 1 and 4% of cases presenting clinically as an acute coronary syndrome. It typically presents as a transient cardiac phenotype of left ventricular dysfunction with spontaneous recovery. More dramatic presentations may include cardiogenic shock or cardiac arrest. Despite progress in the understanding of the condition since its first description in 1990, considerable questions remain into understanding underlying pathomechanisms. In this review article, we describe the current published data on potential underlying mechanisms associated with the onset of TTS including sympathetic nervous system over-stimulation, structural and functional alterations in the central nervous system, catecholamine secretion, alterations in the balance and distribution of adrenergic receptors, the additive impact of hormones including oestrogen, epicardial coronary or microvascular spasm, endothelial dysfunction, and genetics as potentially contributing to the cascade of events leading to the onset. These pathomechanisms provide suggestions for novel potential therapeutic strategies in patients with TTS including the role of cognitive behavioural therapy, beta-blockers, and endothelin-A antagonists. The underlying mechanism of TTS remains elusive. In reality, physical or emotional stressors likely trigger through the amygdala and hippocampus a central neurohumoral activation with the local and systemic secretion of excess catecholamine and other neurohormones, which exert its effect on the myocardium through a metabolic switch, altered cellular signalling, and endothelial dysfunction. These complex pathways exert a regional activation in the myocardium through the altered distribution of adrenoceptors and density of autonomic innervation as a protective mechanism from myocardial apoptosis. More research is needed to understand how these different complex mechanisms interact with each other to bring on the TTS phenotype.
Collapse
Affiliation(s)
- Mohammed Majid Akhtar
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London SW3 6NP, UK
| | - Victoria L Cammann
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Christian Templin
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Jelena R Ghadri
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London SW3 6NP, UK
- Center for Molecular Cardiology, University of Zürich, Zürich 8952, Switzerland
| |
Collapse
|
11
|
Wang T, Xiong T, Yang Y, Zuo B, Chen X, Wang D. Metabolic remodeling in takotsubo syndrome. Front Cardiovasc Med 2022; 9:1060070. [PMID: 36505375 PMCID: PMC9729286 DOI: 10.3389/fcvm.2022.1060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The heart requires a large and constant supply of energy that is mainly the result of an efficient metabolic machinery that converges on mitochondrial oxidative metabolism to maintain its continuous mechanical work. Perturbations in these metabolic processes may therefore affect energy generation and contractile function directly. Metabolism characteristics in takotsubo syndrome (TTS) reveals several metabolic alterations called metabolic remodeling, including the hyperactivity of sympathetic metabolism, derangements of substrate utilization, effector subcellular dysfunction and systemic metabolic disorders, ultimately contributing to the progression of the disease and the development of a persistent and long-term heart failure (HF) phenotype. In this review, we explore the current literature investigating the pathological metabolic alterations in TTS. Although the metabolic dysfunction in takotsubo hearts is initially recognized as a myocardial metabolic inflexibility, we suggest that the widespread alterations of systemic metabolism with complex interplay between the heart and peripheral tissues rather than just cardiometabolic disorders per se account for long-term maladaptive metabolic, functional and structural impairment under this condition. Therapeutic strategies with the recent evidence from small clinical and animal researches, especially for targeting substrate utilization and/or oxidative stress, might be promising tools to improve the outcome of patients with TTS beyond that achieved with traditional sympathetic inhibition and symptomatic therapies.
Collapse
Affiliation(s)
- Ti Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, Jiangsu, China
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, Jiangsu, China
| | - Bangyun Zuo
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, Jiangsu, China
| | - Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, Jiangsu, China
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, Jiangsu, China,*Correspondence: Daxin Wang, ,
| |
Collapse
|
12
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
13
|
Ruiz P, Gabarre P, Chenevier-Gobeaux C, François H, Kerneis M, Cidlowski JA, Oakley RH, Lefèvre G, Boissan M. Case report: Changes in the levels of stress hormones during Takotsubo syndrome. Front Cardiovasc Med 2022; 9:931054. [PMID: 35935637 PMCID: PMC9354975 DOI: 10.3389/fcvm.2022.931054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Takotsubo syndrome is an acute cardiac condition usually involving abnormal regional left ventricular wall motion and impaired left ventricular contractility. It is due mainly to hyper-stimulation of the sympathetic nerve system, inducing an excess of catecholamines, usually triggered by intense psychological or physiological stress. The relationship between Takotsubo syndrome and the circulating stress hormones cortisol and copeptin (a surrogate marker of arginine vasopressin) has not been well documented. Case summary Here, we describe the dynamic changes in circulating cortisol and copeptin during an entire episode of Takotsubo syndrome in a post-partum woman after spontaneous vaginal delivery. The patient was diagnosed with inverted Takotsubo syndrome accompanied by HELLP syndrome. We found qualitative and quantitative changes in cortisol: a loss of circadian rhythm and a three-fold elevation in the plasma concentration of the hormone with a peak appearing several hours before circulating cardiac biomarkers began to rise. By contrast, levels of copeptin remained normal during the entire episode. Discussion Our findings indicate that the levels of cortisol change during Takotsubo syndrome whereas those of copeptin do not. This association between elevated cortisol and Takotsubo syndrome suggests that aberrant levels of this stress hormone may contribute to the observed cardiac pathology. We conclude that biochemical assays of circulating cortisol and cardiac biomarkers may be a useful complement to the diagnosis of Takotsubo syndrome by non-invasive cardiac imaging.
Collapse
Affiliation(s)
- Pablo Ruiz
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, Laboratoire de Biochimie, Paris, France
| | - Paul Gabarre
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Paris, France
| | - Camille Chenevier-Gobeaux
- Assistance Publique-Hôpitaux de Paris (AP-HP)-Centre Université de Paris, Hôpital Cochin, Department of Automated Biological Diagnostic, Paris, France
| | - Hélène François
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Paris, France
- Sorbonne Université, Inserm, UMR_S1155, Paris, France
| | - Mathieu Kerneis
- Sorbonne Université, ACTION Study Group, INSERM UMRS_1166, Institut de Cardiologie (AP-HP), Paris, France
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Guillaume Lefèvre
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, Laboratoire de Biochimie, Paris, France
| | - Mathieu Boissan
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, Laboratoire de Biochimie, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- *Correspondence: Mathieu Boissan
| |
Collapse
|
14
|
Fan X, Yang G, Kowitz J, Akin I, Zhou X, El-Battrawy I. Takotsubo Syndrome: Translational Implications and Pathomechanisms. Int J Mol Sci 2022; 23:ijms23041951. [PMID: 35216067 PMCID: PMC8875072 DOI: 10.3390/ijms23041951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Takotsubo syndrome (TTS) is identified as an acute severe ventricular systolic dysfunction, which is usually characterized by reversible and transient akinesia of walls of the ventricle in the absence of a significant obstructive coronary artery disease (CAD). Patients present with chest pain, ST-segment elevation or ischemia signs on ECG and increased troponin, similar to myocardial infarction. Currently, the known mechanisms associated with the development of TTS include elevated levels of circulating plasma catecholamines and their metabolites, coronary microvascular dysfunction, sympathetic hyperexcitability, inflammation, estrogen deficiency, spasm of the epicardial coronary vessels, genetic predisposition and thyroidal dysfunction. However, the real etiologic link remains unclear and seems to be multifactorial. Currently, the elusive pathogenesis of TTS and the lack of optimal treatment leads to the necessity of the application of experimental models or platforms for studying TTS. Excessive catecholamines can cause weakened ventricular wall motion at the apex and increased basal motion due to the apicobasal adrenoceptor gradient. The use of beta-blockers does not seem to impact the outcome of TTS patients, suggesting that signaling other than the beta-adrenoceptor-associated pathway is also involved and that the pathogenesis may be more complex than it was expected. Herein, we review the pathophysiological mechanisms related to TTS; preclinical TTS models and platforms such as animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models and their usefulness for TTS studies, including exploring and improving the understanding of the pathomechanism of the disease. This might be helpful to provide novel insights on the exact pathophysiological mechanisms and may offer more information for experimental and clinical research on TTS.
Collapse
Affiliation(s)
- Xuehui Fan
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jacqueline Kowitz
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
- Correspondence: (X.Z.); (I.E.-B.)
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
- Correspondence: (X.Z.); (I.E.-B.)
| |
Collapse
|
15
|
A Pilot Study on the 1H-NMR Serum Metabolic Profile of Takotsubo Patients Reveals Systemic Response to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121982. [PMID: 34943085 PMCID: PMC8750825 DOI: 10.3390/antiox10121982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Takotsubo syndrome (TTS) presents as an acute coronary syndrome characterized by severe left ventricular (LV) dysfunction and non-obstructive coronary artery disease that typically shows spontaneous recovery within days or weeks. The mechanisms behind TTS are mainly related to beta-adrenergic overstimulation and acute endogenous catecholamine surge, both of which could increase oxidative status that may induce further deterioration of cardiac function. Although several studies reported evidence of inflammation and oxidative stress overload in myocardial tissue of TTS models, systemic biochemical evidence of augmented oxidant activity in patients with TTS is lacking. In this study, serum samples of ten TTS patients and ten controls have been analyzed using 1H-NMR spectroscopy. The results of this pilot study show a marked alteration in the systemic metabolic profile of TTS patients, mainly characterized by significant elevation of ketone bodies, 2-hydroxybutyrate, acetyl-L-carnitine, and glutamate levels, in contrast with a decrease of several amino acid levels. The overall metabolic fingerprint reflects a systemic response to oxidative stress caused by the stressor that triggered the syndrome’s onset.
Collapse
|
16
|
Topf A, Mirna M, Bacher N, Paar V, Edlinger C, Motloch LJ, Gharibeh S, Bannehr M, Hoppe UC, Lichtenauer M. The Value of Fetuin-A as a Predictor to Identify Takotsubo Patients at Risk of Cardiovascular Events. J Cardiovasc Dev Dis 2021; 8:jcdd8100127. [PMID: 34677196 PMCID: PMC8539626 DOI: 10.3390/jcdd8100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Takotsubo cardiomyopathy (TTC) remains a life-threatening disease with the risk of decompensated heart failure and arrhythmias. Valid markers for the prediction of outcome are unavailable. The novel biomarkers fetuin-A, matrix metalloproteinases-2 (MMP-2), myeloperoxidase (MPO), Syndecan-1 and CD40-L show promising results for risk stratification of cardiovascular patients. Nevertheless, clinical implementation has not been investigated in TTC patients. METHODS To investigate this issue, we evaluated clinical complications in 51 patients hospitalized for TTC and measured the serum levels of fetuin-A, MPO, MMP-2, Syndecan-1 and CD40-L within 24 h after admission. RESULTS Serum levels of Fetuin-A correlated inversely with the risk of cardiac decompensation and all cause complications within the acute phase of TTC. Fetuin-A levels over 190.1 µg/mL (AUC: 0.738, sensitivity 87.5%, specificity: 52.6%) indicate an acute phase of TTC without cardiac decompensation. Despite lower fetuin-A levels in patients with all cause complications, the combined endpoint remained slightly unmet (p = 0.058, AUC: 0.655). Patients with fetuin-A levels over 213.3 µg/mL are at risk of experiencing hemodynamic relevant rhythm disorders (AUC: 0.794; sensitivity: 75.0%, specificity: 79.1%). Other biomarkers failed to reveal a prognostic impact. Pro-BNP and hs troponin levels at admission did not predict adverse cardiac events. CONCLUSION Fetuin-A is a promising marker in our study and could be of benefit for the prediction of short-term adverse cardiac events in TTC patients. Therefore, fetuin-A might be of value to evaluate an individual's risk for complications within the acute phase of TTC and to individually choose the time of intensive care and hospitalization.
Collapse
Affiliation(s)
- Albert Topf
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Moritz Mirna
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Nina Bacher
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Vera Paar
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Christoph Edlinger
- Department of Cardiology, Heart Center Brandenburg, 16321 Bernau bei Berlin, Germany; (C.E.); (M.B.)
| | - Lukas J. Motloch
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Sarah Gharibeh
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Marwin Bannehr
- Department of Cardiology, Heart Center Brandenburg, 16321 Bernau bei Berlin, Germany; (C.E.); (M.B.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria; (A.T.); (M.M.); (N.B.); (V.P.); (L.J.M.); (S.G.); (U.C.H.)
- Correspondence: ; Tel.: +43-(0)57-57-418; Fax: +43-57-255–4111
| |
Collapse
|
17
|
Ferradini V, Vacca D, Belmonte B, Mango R, Scola L, Novelli G, Balistreri CR, Sangiuolo F. Genetic and Epigenetic Factors of Takotsubo Syndrome: A Systematic Review. Int J Mol Sci 2021; 22:9875. [PMID: 34576040 PMCID: PMC8471495 DOI: 10.3390/ijms22189875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023] Open
Abstract
Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.
Collapse
Affiliation(s)
- Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Ruggiero Mango
- Cardiology Unit, Department of Emergency and Critical Care, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Letizia Scola
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
18
|
Daiber A, Andreadou I, Schulz R, Hausenloy DJ. Special issue "Implications of oxidative stress and redox biochemistry for heart disease and cardioprotection - The EU-CARDIOPROTECTION COST action (CA16225)". Free Radic Biol Med 2021; 171:314-318. [PMID: 33965564 DOI: 10.1016/j.freeradbiomed.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore.
| |
Collapse
|