1
|
Ren QX, Wang R, Mu QR, Chen L, Chen M, Wang LJ, Li P, Yang H, Gao W. Molecular networking and Paterno-Büchi reaction guided glycerides characterization and antioxidant activity assessment of Ganoderma lucidum spore oil. Food Chem 2025; 468:142500. [PMID: 39700810 DOI: 10.1016/j.foodchem.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ganoderma lucidum spore oil (GLSO) is a dietary supplement, with glycerides (GLs) recognized as its important active component. However, comprehensive profiling and accurate structural characterization of GLs in GLSO remain underexplored. In this study, 59 GLs from GLSO were identified by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) and molecular networking (MN). The double bond isomers of these compounds were further resolved by the Paterno-Büchi (PB) reaction coupled with UPLC-Q-TOF MS, resulting in the identification of 36 unsaturated GLs, including 5 pairs of positional isomers. In summary, 64 GLs were characterized, consisting of 9 diacylglycerols (DGs) and 55 triacylglycerols (TGs). Additionally, the compositional variations, antioxidant activities, and relative isomer ratios of CC positional isomers of GLSO from eight different manufacturers were revealed, with 11 GLs correlating with antioxidant activity. This study enhances the understanding of the nutritional value of GLSO and lays a foundation for future quality standard formulation.
Collapse
Affiliation(s)
- Qing-Xuan Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qin-Ru Mu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jiang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Chen BK, Chan CH, Tsao A, Wang CK. Improvement of Echinacea purpurea and Ganoderma lucidum Extracts with Cell Model on Influenza A/B Infection. Molecules 2024; 29:3609. [PMID: 39125012 PMCID: PMC11314549 DOI: 10.3390/molecules29153609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2019, COVID-19 has been raging around the world. Respiratory viral infectious diseases such as influenza and respiratory syncytial virus (RSV) infection are also prevalent, with influenza having the ability to cause seasonal pandemics. While vaccines and antiviral drugs are available to prevent and treat disease, herbal extracts would be another option. This study investigated the inhibitory effects of extracts of Echinacea purpurea (EP) and Ganoderma lucidum (G. lucidum) and the advanced G. lucidum drink (AG) on influenza A/B viruses. To determine whether EP and G. lucidum extracts enhance cell immunity and thus prevent virus infection or act to directly suppress viruses, cell survival and hemagglutination (HA) assays were used in this study. Cells were treated with samples at different concentrations (each sample concentration was tested from the highest non-cytotoxic concentration) and incubated with influenza A/B for 24 h, with the results showing that both G. lucidum and EP extracts and mixtures exhibited the ability to enhance cell survival against viruses. In the HA assay, AG and EP extract showed good inhibitory effect on influenza A/B viruses. All of the samples demonstrated an improvement of the mitochondrial membrane potential and improved resistance to influenza A/B virus infection. EP and G. lucidum extracts at noncytotoxic concentrations increased cell viability, but only AG and EP extract directly decreased influenza virus titers. In conclusion, results indicate the ability of EP and G. lucidum extract to prevent viruses from entering cells by improving cell viability and mitochondrial dysfunction and EP extract showed direct inhibition on viruses and prevented viral infection at post-infection strategy.
Collapse
Affiliation(s)
- Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Arthur Tsao
- SFG Health Lab, Standard Foods Group, Taoyuan 337402, Taiwan;
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
3
|
Liu J, Zhang B, Wang L, Li S, Long Q, Xiao X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. CHINESE HERBAL MEDICINES 2024; 16:375-391. [PMID: 39072196 PMCID: PMC11283234 DOI: 10.1016/j.chmed.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 07/30/2024] Open
Abstract
Ganoderma lucidum is a Chinese medicinal fungus with a long history of use in healthcare and disease treatment. G. lucidum spores (GLS) are tiny germ cells released from the mushroom cap during the mature stage of growth. They contain all the genetic active substances of G. lucidum. G. lucidum spore oil (GLSO) is a lipid component extracted from broken-walled Ganoderma spores using supercritical CO2 extraction technology. GLSO contains fatty acids, Ganoderma triterpenes, sterols and other bioactive compounds. Previous studies have demonstrated that GLSO has a wide range of pharmacological properties, including anti-tumor, anti-aging, neuroprotection, immunomodulation, hepatoprotection and modulation of metabolic diseases. This review summarizes the research progress of GLSO over the past two decades in terms of its bioactive components, extraction and processing techniques, pharmacological effects and safety evaluation. This provides a solid foundation for further research and application of GLSO.
Collapse
Affiliation(s)
- Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Leqi Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| |
Collapse
|
4
|
Cheng KC, Chong PCT, Hsieh CC, Lin YT, Ye CH, Khumsupan D, Lu JJ, Yu WC, Cheng KW, Yap KY, Kou WS, Cheng MT, Hsu CC, Sheen LY, Lin SP, Wei AC, Yu SH. Identification of anti-fibrotic and pro-apoptotic bioactive compounds from Ganoderma formosanum and their possible mechanisms in modulating TGF-β1-induced lung fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118008. [PMID: 38458343 DOI: 10.1016/j.jep.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-β1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-β1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-β receptor 1. CONCLUSION Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Collapse
Affiliation(s)
- Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Department of Optometry, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan. R.O.C; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan. R.O.C
| | - Patrick Chun Theng Chong
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Meng-Tsung Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100025, Taiwan. R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Leeuwenhoek Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan. R.O.C
| | - Lee-Yan Sheen
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan. R.O.C
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C.
| |
Collapse
|
5
|
Li C, Ma Y, Shen X, Chen W, Zhou Y, Zhi X. Ultrasonic-assisted supercritical fluid separation removing plasticizers from ganoderma lucidum spores' oil. ULTRASONICS SONOCHEMISTRY 2023; 100:106622. [PMID: 37757601 PMCID: PMC10550761 DOI: 10.1016/j.ultsonch.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Ultrasonic-assisted supercritical fluid separation (USFS) was firstly applied to regulate solubility and remove plasticizers from ganoderma lucidum spores' oil to improve product safety. Separation efficiency was related with four variables, including temperature, pressure and ultrasonic power. The QD-T6A ultrasonic generator probe, which provided for the study with adjustable ultrasonic power 0 W to 800 W and the ultrasonic frequency was 40 kHz, was fixed at the entrance of the primary separation kettle. The optimal separation conditions were determined to be temperature as 15.0 °C, pressure as 18.0 MPa, and ultrasonic power as 360 W of ultrasonic power on the basis of response surface methodology (RSM). Experimental Di-n-butylphthalate (DBP) and Diethyl phthalate (DEP) content were 0.09 mg and 0.04 mg, respectively, which were below the limits for plasticizers. Meanwhile, the total triterpene and ganoderic acid A contents were 6.89 g and 1.10 g, respectively, comparable to conventional supercritical fluid extraction. The experiments with USFS at different power intensities revealed that ultrasonic at a power intensity of 36 W/L and the power density of 0.20 W/cm2 could resolve the separation contradiction between ganoderma lucidum spores' oil and plasticizers. This study revealed that USFS could be an innovation in the field of ultrasonic separation, with numerous potentials uses in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Yun Ma
- The Fourth People's Hospital of Taizhou City, Taizhou 225300, China
| | - Xin Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215109, China
| | - Yuqing Zhou
- Jiangsu Hongshou Biological Engineering Co., Ltd, Haian 226623, China
| | - Xinglei Zhi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
7
|
Ekiz E, Oz E, Abd El-Aty AM, Proestos C, Brennan C, Zeng M, Tomasevic I, Elobeid T, Çadırcı K, Bayrak M, Oz F. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023; 12:1512. [PMID: 37048331 PMCID: PMC10094145 DOI: 10.3390/foods12071512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.
Collapse
Affiliation(s)
- Elif Ekiz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 15784 Athens, Greece
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
- The German Institute of Food Technologies (DIL) Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Muharrem Bayrak
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
8
|
Wang Y, Wang H, Ma T, Liu G, Feng X, Liu X, Ma X, Liu S, Shi D, Wang B, Kang J, Wang H, Wang Z. Hawthorn extract inhibited the PI3k/Akt pathway to prolong the lifespan of Drosophila melanogaster. J Food Biochem 2022; 46:e14169. [PMID: 35383968 DOI: 10.1111/jfbc.14169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
HE is a natural extract with strong antioxidant capacity. Drosophila melanogaster was used to explore HE could delay aging in this study. We detected that 3 mg/ml HE could increase stress tolerance (heat, cold, starvation, oxidative stress), reduce intestinal dysfunction, and prolong the lifespan of D. melanogaster. Network pharmacology analysis showed HE could act through the PI3K-Akt pathway. Meanwhile, HE intervention inhibited the gene expression of InR, PI3K, and Akt-1, and further increased the gene expression of Atg1, Atg5, Atg8a, and Atg8b. Furthermore, HE inhibited the unnatural propagation of ISCs and increased the number of lysosomes. Supplement with HE may be an effective intervention for aging D. melanogaster. PRACTICAL APPLICATIONS: In recent years, diseases that come with aging have seriously affected people's healthy life. Hawthorn is a kind of nutrient-rich substance that is rich in flavonoids and thus has many potential biological and pharmacological functions. Our results showed that HE has good antioxidant properties and can maintain intestinal homeostasis, which provides a good theoretical basis for the development and research using HE as an effective natural antioxidant for the elderly.
Collapse
Affiliation(s)
- Yichun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Huali Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tianjiao Ma
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, China
| | - Xu Feng
- Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China.,Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaofang Ma
- Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Donglin Shi
- Department of Physical Education, Hebei Sport University, Shijiazhuang, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|
9
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Imam SS, Alshehri S, Kazmi I. Novelkaraya gum micro-particles loaded Ganoderma lucidum polysaccharide regulate sex hormones, oxidative stress and inflammatory cytokine levels in cadmium induced testicular toxicity in experimental animals. Int J Biol Macromol 2022; 194:338-346. [PMID: 34800521 DOI: 10.1016/j.ijbiomac.2021.11.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022]
Abstract
Presented research aimed to develop a spray drying process without the use of organic solvents for the preparation of novel Karaya gum polymer microparticles (MPs) of Ganoderma lucidum polysaccharide (GLP). The prepared microparticles were characterized and evaluated. Prepared novel karaya gum micro-particles loaded Ganoderma lucidum polysaccharide (GLP MPs) were observed an effect on cadmium (CAD) induced testicular toxicity. A total of 40 rats (male) was divided into 4 groups viz. 1. Control group, 2. GLP MPs (250 mg/kg, 60 days of b.w per day), 3. CAD (60 days of 30 mg/l/day), 4. GLP MPs + CAD. CAD was responsible for altering the sex hormones, oxidative stress and inflammatory cytokines. Furthermore, elevated levels of indicator of oxidative stress, malondialdehyde, and a reduced action of SOD, GSH, and CAT (antioxidant enzymes), were observed in the tissues of the testicles of CAD- treated group. Such harmful occurrences were followed by an up-regulation in proinflammatory cytokines (TNF-α, IL-1β) levels, protein expression of Nrf2, and HO-1 expression was decreased. GLP MPs pre-treatment significantly abrogated these toxic effects which were confirmed histologically. This study concluded that pre-treatment with GLP MPs exerts a protective effect against CAD-induced male reproductive testicular toxicity.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
10
|
Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int J Biol Macromol 2021; 187:769-779. [PMID: 34197853 DOI: 10.1016/j.ijbiomac.2021.06.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicine for ancient times. Massive demands of G. lucidum have fascinated the researchers towards its application as functional food, nutraceutical and modern medicine owing to wide range of application in various diseases include immunomodulators, anticancer, antiviral, antioxidant, cardioprotective, hepatoprotective. G. lucidum polysaccharides exhibit immunomodulatory properties through boosting the action of antigen-presenting cells, mononuclear phagocyte system, along with humoral and cellular immunity. β-Glucans isolated from G. lucidum are anticipated to produce an immune response through pathogen associated molecular patterns (PAMPs). β-Glucans after binding with dectin-1 receptor present on different cells include macrophages, monocytes, dendritic cells and neutrophils produce signal transduction that lead to trigger the mitogen-activated protein kinases (MAPKs), T cells and Nuclear factor-κB (NF-κB) that refer to cytokines production and contributing to immune response. While triterpenoids produce antiviral effects through inhibiting various enzymes like neuraminidase, HIV-protease, DENV2 NS2B-NS3 protease and HSV multiplication. Polysaccharides and triterpenoids adjunct to other drugs exhibit potential action in prevention and treatment of various diseases. Immunomodulators and antiviral properties of this mushroom could be a potential source to overcome this current pandemic outbreak.
Collapse
|