1
|
Purbiantoro W, Huynh-Phuoc V, Castillo-Corea BRJ, Byadgi OV, Cheng TC. Effectiveness of dietary heat-killed Bacillus subtilis harboring plasmid containing 60 copies of CpG-ODN 1668 against Vibrio harveyi in Penaeus vannamei. Vet Res Commun 2024; 48:85-101. [PMID: 37530963 DOI: 10.1007/s11259-023-10182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The cost of the purification process hinders the extensive use of cytosine phosphate guanosine-oligodeoxynucleotides (CpG-ODNs) for shrimp culture. Therefore, this study used a shuttle vector plasmid to carry 60 copies of CpG-ODN 1668 (pAD43-25_60CpG), which can replicate in Escherichia coli and Bacillus subtilis strain RIK1285. The first experiment used a reverse gavage procedure to deliver a substance (PBS [CK], pAD43-25 [P0], and pAD43-25_60CpG [P60], respectively) directly into the anterior midgut of Penaeus vannamei and transcriptome sequence analysis with a reference genome was performed to examine the expression of well-known immune-related genes. The results showed that the expression levels of immune-related genes in P60 group were significantly increased, particularly those associated with AMPs. In addition, using RT‒qPCR, the expression levels of AMP genes (LvALF, LvPEN-2, and LvPEN-3) in the P60 group may vary depending on the tissue and time point. The second experiment used dietary supplementation with three kinds of heat-killed B. subtilis (HKBS, HKBS-P0, and HKBS-P60) in 28 days of feeding experiments. The results showed that dietary supplementation with HKBS-P60 did not significantly improve shrimp growth performance and survival. However, on days 14 and 28 of the feeding regimens, alkaline phosphatase (AKP) and acid phosphatase (ACP) activity were considerably higher than in other treatments. In addition, following infection with Vibrio harveyi, AKP and ACP activity in the HKBS-P60 group was significantly higher than in other treatments, particularly at the early stage of bacterial infection. Moreover, HKBS-P60 was found to be better protected against V. harveyi infection with lower cumulative mortality (60%) compared to HKBS (90%) and HKBS-P0 (100%) at 7 days after infection. Overall, these findings confirmed that P60 could increase immunological responses in the shrimp midgut, and HKBS-P60 could be used as an effective tool to enhance the immune response and disease resistance in shrimp.
Collapse
Affiliation(s)
- Wahyu Purbiantoro
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Mataram, Nusa Tenggara Barat, Indonesia
| | - Vinh Huynh-Phuoc
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - B R J Castillo-Corea
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Omkar Vijay Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
2
|
Jiang H, Zhang Y, Wang X, Wang G, Zhu J, Sun J, Zhang M, Li Y, Xu S, Hu J, Wang Y. Establishment and characterization of a liver cell line from silver pomfret (Pampus argenteus) for studying fish health. JOURNAL OF FISH DISEASES 2023; 46:1193-1205. [PMID: 37496293 DOI: 10.1111/jfd.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Fish cell lines have become a useful tool to study in resource conservation, genetic breeding, diseases control, and environmental pollutants detection. The silver pomfret (Pampus argenteus) is a high-valued marine fish species in aquaculture, which is seriously threatened by various fish diseases. In this study, a new cell line derived from P. argenteus liver (PaL) was established and characterized. PaL cells mainly consisted of fibroblast-like morphology and multiplied well in Leibovitz's L-15 medium supplemented with 15% foetal bovine serum and 3 ng/mL basic fibroblast growth factor at 22°C. Amplification of the Cyt b gene confirmed that the origin of PaL cells as P. argenteus. Chromosome analysis revealed that PaL cells had a diploid Karyotyp. The PaL cells were efficiently transfected with pEGFP-N3 plasmids, indicating its potential application in foreign gene manipulation studies. The PaL cells were found to be susceptible to red sea bream iridovirus (RSIV) and the expression of immune-related gene (TLR5) and apoptosis-related genes (Bax, Cyt c3, CASP9) were upregulated. Furthermore, lipopolysaccharide and palmitic acid (PA) treatments decreased cell viability and up-regulated the expression of inflammation related genes (IL-8, IL-1β). Meanwhile, PA incubation induced cell apoptosis by Bcl-2-regulated caspase activation. In conclusion, the newly established PaL cell line will be an appropriate in vitro tool for viral propagation and immune response.
Collapse
Affiliation(s)
- Huan Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Youyi Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Xiangbing Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Guanlin Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Jiajie Zhu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Jiachu Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ningbo, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Chen P, Jin D, Yang S, Yu X, Yi G, Hu S, Sun Y, Hu Y, Cui J, Rang J, Xia L. Aeromonas veronii infection remarkably increases expression of lysozymes in grass carp (Ctenopharyngodon idellus) and injection of lysozyme expression cassette along with QCDC adjuvant significantly upregulates immune factors and decreases cumulative mortality. Microb Pathog 2022; 169:105646. [PMID: 35716927 DOI: 10.1016/j.micpath.2022.105646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Duo Jin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Shijia Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Xiaojing Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Ganfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jun Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jie Rang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Bedekar MK, Kole S. Fundamentals of Fish Vaccination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:147-173. [PMID: 34816404 DOI: 10.1007/978-1-0716-1888-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur's "isolate, inactivate and inject," but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.
Collapse
Affiliation(s)
- Megha Kadam Bedekar
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - Sajal Kole
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.,Department of Aqualife Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Liu H, Yang M, Tang X, Liu J, Zheng L, Xu D, Chi C, Lv Z. Molecular insights of a novel fish Toll-like receptor 9 homologue in Nibea albiflora to reveal its function as PRRs. FISH & SHELLFISH IMMUNOLOGY 2021; 118:321-332. [PMID: 34555530 DOI: 10.1016/j.fsi.2021.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Toll-like receptors (TLRs) are an important class of molecules involved in non-specific immunity, and they are also the bridge connecting between non-specific immunity and specific immunity. As a vital member of TLR family TLR9 can be activated by bacterial DNA and induce the production of inflammatory cytokines. In this study, a full length of TLR9 homologue of 3677 bp in Nibea albiflora (named as NaTLR9, GenBank accession no: MN125017.1) was characterized, and its ORF was 3180 bp encoding 1059 amino acid residues with a calculated molecular weight of 121.334 kDa (pI = 6.29). Several leucine-rich repeated sequences (LRR domain) and conservative TIR domain were found in NaTLR9, which was mainly expressed in dendritic cells and macrophages. The phylogenetic and synteny analysis further revealed high sequence identity of NaTLR9 with its counterparts of other teleost, confirming their correct nomenclature and conservative during evolution as an important pattern recognition receptor. The NaTLR9-TIR-pEGFP-N1 fusion protein showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection of NaTLR9-TIR-pEGFP-N1 and NaMyD88-pDsRED-Monomer-N1, green fluorescence obviously overlapped with red and changed into yellowish-green, which suggested that there might be the interaction between homologous NaTLR9-TIR and MyD88. Based on this result the pCDNA3.1-NaTLR9-TIR-flag and pcMV-NaMyD88-TIR-Myc plasmids were co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, TLR9 and MyD88 protein could interact with each other. Furthermore, NaTLR9 was ubiquitously expressed in all the investigated tissues, most abundantly in head kidney, followed by stomach, spleen, liver and gill, but lower in muscle. The vitro immune stimulation experiments revealed that Pseudomonas plecoglossicida and polyinosinic-polycytidylic acid [Poly (I:C)] induced higher levels of NaTLR9 mRNA expression with the peaks of 9.52 times at 2 h and 39.91 times at 24 h compared with the control group respectively. The functional domains (LRRs and TIR, named NaTLR9-TIR and NaTLR9-LRR respectively) of NaTLR9 were expressed and purified, the recombinant proteins both could bind three kinds of typical aquatic pathogenic bacteria (Vibrio. parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi), which showed that NaTLR9 could couple to bacteria by its function domains. The aforementioned results indicated that NaTLR9 played a significant role in the defense against pathogenic bacteria infection in innate immune response of sciaenidae fish, which may provide some further understandings of the regulatory mechanisms in the teleostean innate immune system.
Collapse
Affiliation(s)
- Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Meijun Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiuqin Tang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
6
|
Injection Vaccines Formulated with Nucleotide, Liposomal or Mineral Oil Adjuvants Induce Distinct Differences in Immunogenicity in Rainbow Trout. Vaccines (Basel) 2020; 8:vaccines8010103. [PMID: 32106599 PMCID: PMC7157222 DOI: 10.3390/vaccines8010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Protection facilitated by the widespread use of mineral oil adjuvanted injection vaccines in salmonid fish comes with adverse effects of varying severity. In this study, we characterized the immunological profiles of two alternative vaccine formulations, both with proven efficacy and an improved safety profile in rainbow trout. Experimental injection vaccines were prepared on an identical whole-cell Aeromonas salmonicida bacterin platform and were formulated with CpG oligodeoxynucleotides, a liposomal (CAF01) or a benchmark mineral oil adjuvant, respectively. A naïve group, as well as bacterin and saline-injected groups were also included. Following administration, antigen-specific serum antibody titers, the tissue distribution of immune cell markers, and the expression of immune-relevant genes following the in vitro antigenic restimulation of anterior kidney leukocytes was investigated. Immunohistochemical staining suggested prolonged antigen presentation for the particulate formulations and increased mucosal presence of antigen-presenting cells in all immunized fish. Unlike the other immunized groups, the CAF01 group only displayed a transient elevation in specific antibody titers and immunohistochemical observations, and the transcription data suggest an increased role of cell-mediated immunity for this group. Finally, the transcription profile of the CpG formulation approached that of a TH1 profile. When compared to the benchmark formulation, CAF01 and CpG adjuvants induce slight, but distinct differences in the resulting protective immune responses. This is important, as it allows a broader immunological approach for the future development of safer vaccines.
Collapse
|
7
|
Angulo C, Alamillo E, Hirono I, Kondo H, Jirapongpairoj W, Perez-Urbiola JC, Reyes-Becerril M. Class B CpG-ODN2006 is highly associated with IgM and antimicrobial peptide gene expression through TLR9 pathway in yellowtail Seriola lalandi. FISH & SHELLFISH IMMUNOLOGY 2018; 77:71-82. [PMID: 29567135 DOI: 10.1016/j.fsi.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to characterize the TLR9 gene from yellowtail (Seriola lalandi) and evaluate its functional activity using the class B Cytosine-phosphate-guanine-oligodeoxynucleotide2006 (CpG-ODN2006) in an in vivo experiment after one-week immunostimulation. The gene expressions of TLR9, Immunoglobulin M (IgM), antimicrobial peptides and cytokines were evaluated by real time PCR, and humoral immune parameters were analyzed in serum. The TLR9 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. The yellowtail full-length cDNA sequence of SlTLR9 was 3789 bp in length, including a 66-bp 5'-untranslated region (UTR), a 3'-UTR of 528 bp, and an open reading frame (ORF) of 3192 bp translatable to 1064 amino acid showing a high degree of similarity with the counterparts of other fish species and sharing common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR9 mRNA in all analyzed tissues; the highest levels were observed in intestine, liver and spleen where they play an important role in the fish immune system. The expression levels of TLR9 after B class CpG-ODN2006 (the main TLR9-agonist) was significantly up-regulated in all analyzed tissues, with the high expression observed in spleen followed by intestine and skin. The CpG-B has been shown as a potent B cell mitogen, and interestingly, IgM mRNA transcript was up-regulated in spleen and intestine, which was highly correlated with TLR9 after CpG-ODN2006 stimulation. The antimicrobial peptides, piscidin and NK-lysine, were up-regulated in spleen and gill after CpG-ODN2006 injection with a high correlation (r ≥ 0.82) with TLR9 gene expression. Cytokine genes were up-regulated in spleen, intestine and skin after CpG-ODN was compared with the control group. No significant correlation was observed between TLR9 and IL-1β, TNF-α and Mx gene expressions. The results showed that CpG-ODN2006 intraperitoneal injection enhanced lysozyme, peroxidase and superoxide dismutase activities in serum and demonstrated that CpG-ODN2006 can induce a specific immune response via TLR9 in which IgM and antimicrobial peptides must have an important role in the defense mechanisms against infections in yellowtail.
Collapse
Affiliation(s)
- Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Erika Alamillo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Juan Carlos Perez-Urbiola
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Martha Reyes-Becerril
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
8
|
Feng J, Lin P, Wang Y, Guo S, Zhang Z, Yu L. Identification of a type I interferon (IFN) gene from Japanese eel and its expression analysis in vivo and in vitro. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Alternatives to mineral oil adjuvants in vaccines against Aeromonas salmonicida subsp. salmonicida in rainbow trout offer reductions in adverse effects. Sci Rep 2017; 7:5930. [PMID: 28724973 PMCID: PMC5517504 DOI: 10.1038/s41598-017-06324-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/12/2017] [Indexed: 11/08/2022] Open
Abstract
In an effort to reduce the frequency and severity of adverse reactions seen from the use of mineral oil adjuvants in salmonid fish, the effects of two alternative adjuvants were assessed, focusing on the induction of adverse effects as well as protection. Using rainbow trout (Oncorhynchus mykiss) as recipients, injection vaccines based on formalin-inactivated Aeromonas salmonicida subspecies salmonicida were formulated with CpG oligodeoxynucleotides, the liposomal cationic adjuvant formulation 01 (CAF01) or with Freund’s incomplete adjuvant and administered intraperitoneally. Control groups of unvaccinated, Tris-buffered saline-injected or bacterin-injected individuals were included, and each group included in the study held a total number of 240 individuals. Subsequently, individuals from each group were examined for differences in Fulton’s condition factor, macro- and microscopic pathological changes, as well as protection against experimental infection with A. salmonicida. While adverse effects were not eliminated, reductions in microscopic and macroscopic adverse effects, in particular, were seen for both the nucleotide- and liposome-based vaccine formulations. Furthermore, the induced protection appears similar to that of the benchmark formulation, thus introducing viable, potential alternative types of adjuvants for use in future fish vaccines.
Collapse
|
10
|
U-Taynapun K, Chirapongsatonkul N, Itami T, Tantikitti C. CpG ODN mimicking CpG rich region of myxosporean Myxobolus supamattayai stimulates innate immunity in Asian sea bass (Lates calcarifer) and defense against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2016; 58:116-124. [PMID: 27629917 DOI: 10.1016/j.fsi.2016.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine CpG dinucleotides within specific sequence contexts (CpG motifs) have been reported as pathogen-associated molecular patterns (PAMPs). Its immunostimulatory effects have been demonstrated in diverse vertebrate models. CpG ODN is typically found in bacterial or viral genome and recognized by a non-self recognition receptor Toll-like receptor9 (TLR9). Here, a new CpG ODN 1013 which mimics sequence of SSU rDNA of early eukaryotic organism myxosporidia, Myxobolus supamattayai, was employed to stimulate the immune responses of Asian sea bass Lates calcarifer. Its immunostimulant potentiality was comparatively compared with that of CpG ODN 1668, a widely used as functional immunostimulant. Both unmethylated CpG ODNs with some modified phosphorothioated positions were intraperitoneally injection (5 μg/fish). Hematological examination, immunological assays and immune-related genes expression were evaluated 12 h, 1, 3 and 5 d after post CpG ODN challenge. The immunosimulatory effect of these CpG ODNs on fish immunity to protect the bacterial pathogen Streptococcus iniae was also determined. The results demonstrated that these two CpG ODNs could induce immune responses in Asian sea bass including the significant (P < 0.05) increase level of WBC, peroxidase activity and oxidative radicals in head kidney (HK) leukocyte, serum innate immune parameters and up-regulation of four immune responsive genes compared with the control group. Most of immune responses induced by ODN 1668 were strong within 1 d but lesser extended while ODN 1013 prolonged the stimulatory effects during the whole experimental period. After challenge with S. iniae, the survival proportion in ODN 1013-treated fish was apparently higher than that treated with ODN 1668 and PBS, respectively. The results together suggested that CpG ODN 1013 enhanced innate immune responses, including humoral and cellular responses, through TLR9 mediated signaling pathway which is mainly contribute to the protective immunity in Asian sea bass against S. iniae infection. These findings can lead to a new approach in immunostimulant development by using the novel CpG ODN originating from the parasite M. supamattayai, besides those from bacterial and viral genomes, for disease control in fish host.
Collapse
Affiliation(s)
- Kittichon U-Taynapun
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nion Chirapongsatonkul
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Department of Biochemistry, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Toshiaki Itami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 889-2192, Japan
| | - Chutima Tantikitti
- Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
11
|
Cárdenas-Reyna T, Angulo C, Hori-Oshima S, Velázquez-Lizárraga E, Reyes-Becerril M. B-cell activating CpG ODN 1668 enhance the immune response of Pacific red snapper (Lutjanus peru) exposed to Vibrio parahaemolitycus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:72-81. [PMID: 27143535 DOI: 10.1016/j.dci.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/30/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
B-class CpG ODN 1668 is known to possess clear immunostimulatory properties. In this study, we investigated the potential ability of CpG ODN 1668 to enhance the immune response of Pacific red snapper exposed to Vibrio parahaemolyticus. Four different treatments were evaluated in Pacific red snapper: (1) stimulatory CpG ODN 1668, (2) stimulatory CpG ODN 1668 and V. parahaemolyticus, (3) exposure only to V. parahaemolyticus and (4) PBS. Samples were taken at 24, 72, 168 and 240 h of stimulation/infection. The results show that intraperitoneal injection of CpG-ODN 1668 enhanced the anti-protease, superoxide dismutase and catalase activities in serum. CpG ODN 1668 upregulated TLR9 and IgM gene expression in head-kidney, intestine and skin, with higher expression in head-kidney. A higher correlation was observed between TLR9 and IgM in head-kidney and intestine. Finally, no histopathological damages were observed in fish stimulated with CpG ODN 1668. In contrast, melanomacrophages-like structures were present in higher numbers in infected fish. Taken together, these results indicate that CpG ODN 1668 activates innate immune response and upregulate the TLR9 and IgM-mediated immune response. These results may be exploited for the control of Vibriosis in farmed Pacific red snapper.
Collapse
Affiliation(s)
- Tomás Cárdenas-Reyna
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Esteban Velázquez-Lizárraga
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| |
Collapse
|
12
|
Su H, Yuan G, Su J. A specific CpG oligodeoxynucleotide induces protective antiviral responses against grass carp reovirus in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:218-227. [PMID: 26972738 DOI: 10.1016/j.dci.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) show strong immune stimulatory activity in vertebrate, however, they possess specific sequence feature among species. In this study, we screened out an optimal CpG ODN sequence for grass carp (Ctenopharyngodon idella), 1670A 5'-TCGAACGTTTTAACGTTTTAACGTT-3', from six published sequences and three sequences designed by authors based on grass carp head kidney mononuclear cells and CIK (C. idella kidney) cells proliferation. VP4 mRNA expression was strongly inhibited by CpG ODN 1670A in CIK cells with GCRV infection, showing its strong antiviral activity. The mechanism via toll-like receptor 9 (TLR9)-mediated signaling pathway was measured by real-time quantitative RT-PCR, and TLR21 did not play a role in the immune response to CpG ODN. The late up-regulation of CiRIG-I mRNA expression indicated that RIG-I-like receptors (RLRs) signaling pathway participated in the immune response to CpG ODN which is the first report on the interaction between CpG and RLRs. We also found that the efficient CpG ODN can activates interferon system. Infected with GCRV, type I interferon expression was reduced and type II interferon was induced by the efficient CpG ODN in CIK cells, especially IFNγ2, suggesting that IFNγ2 played an important role in response to the efficient CpG ODN. These results provide a theoretical basis and new development trend for further research on CpG and the application of CpG vaccine adjuvant in grass carp disease control.
Collapse
Affiliation(s)
- Hang Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Gailing Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
13
|
Xinxian W, Peng J, Guixiang T, Jinjin W, Xiaocong Z, Junqiang H, Xianle Y, Hong L. Effect of common carp (Cyprinus carpio) TLR9 overexpression on the expression of downstream interferon-associated immune factor mRNAs in epithelioma papulosum cyprini cells. Vet Immunol Immunopathol 2016; 170:47-53. [DOI: 10.1016/j.vetimm.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
14
|
Kang YJ, Choi SH, Kim KH. Preventive and therapeutic effects of auxotrophic Edwardsiella tarda mutant harboring CpG 1668 motif-enriched plasmids against scuticociliatosis in olive flounder (Paralichthys olivaceus). Exp Parasitol 2014; 144:34-8. [DOI: 10.1016/j.exppara.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023]
|
15
|
Zhou ZX, Zhang J, Sun L. C7: a CpG oligodeoxynucleotide that induces protective immune response against megalocytivirus in Japanese flounder (Paralichthys olivaceus) via Toll-like receptor 9-mediated signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:124-132. [PMID: 24333437 DOI: 10.1016/j.dci.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Megalocytivirus is the causative agent of severe disease outbreaks in farmed fish. Currently there is no effective control against megalocytivirus in aquaculture. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs are known to possess marked immunostimulatory properties. In this study, we investigated the potentials of ten CpG ODNs as antiviral agents in a model of Japanese flounder (Paralichthys olivaceus). We found that, when administered into flounder, three of the ten CpG ODNs inhibited viral replication in kidney, spleen, and liver. ODN C7, which exhibited the strongest inhibitory activity, was able to promote proliferation of peripheral blood leukocytes and enhance activation of head kidney mononuclear adherent phagocytes. When the expression of toll-like receptor 9 (TLR9) was knocked down in vivo by small interfering RNA, C7-mediated immune response and antiviral activity were significantly blocked. Moreover, when C7 was co-administered with pCN86, a DNA vaccine against megalocytivirus, a significant increase in vaccine-induced protection was observed compared to administration with pCN86 alone. Further analysis showed that compared to fish immunized with pCN86, fish immunized with pCN86 plus C7 exhibited significantly upregulated expression of a wide range of genes involved in innate and adaptive immunity. Taken together, these results indicate that ODN C7 activates TLR9-mediated immune response and possesses antiviral and adjuvant potentials that may be exploited for the control of megalocytivirus infection in farmed flounder.
Collapse
Affiliation(s)
- Zhi-xia Zhou
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
16
|
Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1740-1750. [PMID: 23507338 DOI: 10.1016/j.fsi.2013.02.029] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|
18
|
Parker S, La Flamme A, Salinas I. The ontogeny of New Zealand groper (Polyprion oxygeneios) lymphoid organs and IgM. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:215-223. [PMID: 22766099 DOI: 10.1016/j.dci.2012.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/18/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
This study investigates the ontogeny of New Zealand groper (Polyprion oxygeneios) immune system, a new species for aquaculture in the Southern Pacific Ocean. In the eggs, both lysozyme and IgM were detected. Egg IgM was found at 1.07-1.56 μg/g wet weight and consisted of monomers compared to the polymerized IgM found in adult serum. In larvae, the head-kidney (HK) was first observed at 6 dph, followed by the spleen at 16 dph, and thymus at 20 dph, and within these organs IgM(+) cells were first detected in the HK (12 dph), then the spleen (32 dph) and finally in the thymus and the gastrointestinal tract (45 dph). Low levels of Igμ heavy chain transcripts were detected at 2 and 3 dph and they increased at 9 dph. Igμ expression further increased from day 45 onwards. In juveniles (115 dph), the HK and blood showed similar percentages of IgM(+) cells as the adult groper. These results highlight the important maturation steps that occur during the development of the immune system in the marine teleost P. oxygeneios.
Collapse
Affiliation(s)
- S Parker
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | |
Collapse
|
19
|
Kirchhoff NT, Leef MJ, Valdenegro V, Hayward CJ, Nowak BF. Correlation of humoral immune response in southern bluefin tuna, T. maccoyii, with infection stage of the blood fluke, Cardicola forsteri. PLoS One 2012; 7:e45742. [PMID: 23029217 PMCID: PMC3459975 DOI: 10.1371/journal.pone.0045742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/24/2012] [Indexed: 01/13/2023] Open
Abstract
The blood fluke, Cardicola forsteri, is a prevalent infection in ranched southern bluefin tuna. This project aimed to define the timing and intensity of the various developmental stages of C. forsteri within southern bluefin tuna as well as to relate infection to host pathology and immune response. Archival samples from several cohorts of T. maccoyii sampled from 2008 to 2010 were used in this study. The prevalence and intensity of C. forsteri infection was described using heart flushes and histological examination. Humoral immune response, i.e. C. forsteri specific antibody, lysozyme activity, and alternative complement activity, was also described. Based on the validated and detailed C. forsteri infection timeline, relationships between infection events, physiological response, and diagnosis were proposed. Immune response developed concurrently with C. forsteri infection, with the majority of physiological response coinciding with commencing egg production. Further research is needed to confirm the origin of C. forsteri antigen which is responsible for immune response development and how T. maccoyii immune response works against infection. To aide this research, further diagnostic methods for confirmation of infection need to be developed.
Collapse
Affiliation(s)
- Nicole T. Kirchhoff
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Melanie J. Leef
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Victoria Valdenegro
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Craig J. Hayward
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
- SARDI Aquatic Sciences, Lincoln Marine Science Center, Port Lincoln, South Australia, Australia
| | - Barbara F. Nowak
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
20
|
Poly D,L-lactide-co-glycolic acid-liposome encapsulated ODN on innate immunity in Epinephelus bruneus against Vibrio alginolyticus. Vet Immunol Immunopathol 2012; 147:77-85. [PMID: 22551979 DOI: 10.1016/j.vetimm.2012.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/23/2022]
Abstract
The efficacy of poly D,L-lactide-co-glycolic acid (PLGA)-liposome (L) encapsulated oligodeoxynucleotides with unmethylated deoxycytidyl-deoxyguanosine motifs (CpG-ODNs) on innate and adaptive immune response and disease resistance in kelp grouper (Epinephelus bruneus) against Vibrio alginolyticus at weeks 1, 2, and 4 is reported. The superoxide dismutase (SOD), respiratory burst, and lysozyme activities significantly increased in E. bruneus when immunized with ODN, PLGA+ODN, L+ODN, and PLGA+L+ODN on weeks 2 and 4. The serum complement activity was significantly enhanced with L+ODN and PLGA+L+ODN on week 1 while it increased with PLGA+ODN, L+ODN, and PLGA+L+ODN on weeks 2 and 4. The antibody titre consistently was increased with PLGA or L encapsulated with ODN (PLGA+ODN, L+ODN, and PLGA+L+ODN) from weeks 1 to 4. The cumulative mortality was 20% each in PLGA+ODN administered groups and 15% each in ODN, L+ODN, and PLGA+L+ODN groups during a period of 30 days. The present study suggests that PLGA-liposome encapsulated ODN has the potential to modulate the immune system and can serve as a useful tool for further design of immunoprophylatic nano drug formulations against bacterial diseases.
Collapse
|
21
|
Palti Y. Toll-like receptors in bony fish: from genomics to function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1263-1272. [PMID: 21414346 DOI: 10.1016/j.dci.2011.03.006] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/25/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Receptors that recognize conserved pathogen molecules are the first line of cellular innate immunity defense. Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in mammals. Key features of the fish TLRs and the factors involved in their signaling cascade have high structural similarity to the mammalian TLR system. However, the fish TLRs also exhibit very distinct features and large diversity which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Six non-mammalian TLRs were identified in fish. TLR14 shares sequence and structural similarity with TLR1 and 2, and the other five (TLR19, 20, 21, 22 and 23) form a cluster of novel TLRs. TLR4 was lost from the genomes of most fishes, and the TLR4 genes found in zebrafish do not recognize the mammalian agonist LPS and are likely paralogous and not orthologous to mammalian TLR4 genes. TLR6 and 10 are also absent from all fish genomes sequenced to date. Of the at least 16 TLR types identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S and TLR22. The common carp TLR2 was shown to recognize the synthetic triacylated lipopeptide Pam(3)CSK(4) and lipopeptides from gram positive bacteria. The membrane-bound TLR5 (TLR5M) signaling in response to flagellin in rainbow trout is amplified through interaction with the soluble form (TLR5S) in a positive loop feedback. In Fugu, TLR3 is localized to the endoplasmic reticulum (ER) and recognizes relatively short dsRNA, while TLR22 has a surveillance function like the human cell-surface TLR3. Genome and gene duplications have been major contributors to the teleost's rich evolutionary history and genomic diversity. Duplicate or multi-copy TLR genes were identified for TLR3 and 7 in common carp, TLR4b, 5, 8 and 20 in zebrafish, TLR8a in rainbow trout and TLR22 in rainbow trout and Atlantic salmon. The main task for current and near-future fish TLRs research is to develop specificity assays to identify the ligands of all fish TLRs, which will advance comparative immunology research and will contribute to our understanding of disease resistance mechanisms in fish and the development of new adjuvants and/or more effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Yniv Palti
- United States Department of Agriculture, Agriculture Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA.
| |
Collapse
|
22
|
Pridgeon JW, Klesius PH, Mu X, Yancey RJ, Kievit MS, Dominowski PJ. Efficacy of QCDCR formulated CpG ODN 2007 in Nile tilapia against Streptococcus iniae and identification of upregulated genes. Vet Immunol Immunopathol 2011; 145:179-90. [PMID: 22129787 DOI: 10.1016/j.vetimm.2011.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/15/2022]
Abstract
The potential of using a QCDCR (quilA:cholesterol:dimethyl dioctadecyl ammonium bromide:carbopol:R1005 glycolipid) formulated CpG oligodeoxynucleotide (ODN), ODN 2007, to confer protection in Nile tilapia against Streptococcus iniae infection was evaluated in this study. At two days post treatment, QCDCR formulated ODN 2007 elicited significant (P<0.05) protection to Nile tilapia, with relative percent survival of 63% compared to fish treated by QCDCR alone. To understand the molecular mechanisms involved in the protective immunity elicited by ODN 2007, suppression subtractive cDNA hybridization technique was used to identify upregulated genes induced by ODN 2007. A total of 69 expressed sequence tags (ESTs) were identified from the subtractive cDNA library. Quantitative PCR revealed that 44 ESTs were significantly (P<0.05) upregulated by ODN 2007, including 29 highly (>10-fold) and 15 moderately (<10-fold) upregulated ESTs. Of all ESTs, putative peroxisomal sarcosine oxidase was upregulated the highest. The 69 ESTs only included six genes that had putative functions related to immunity, of which only two (putative glutaredoxin-1 and carboxypeptidase N catalytic chain) were confirmed to be significantly upregulated. Our results suggest that the protection elicited by ODN 2007 is mainly through innate immune responses directly or indirectly related to immunity.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Strandskog G, Villoing S, Iliev DB, Thim HL, Christie KE, Jørgensen JB. Formulations combining CpG containing oliogonucleotides and poly I:C enhance the magnitude of immune responses and protection against pancreas disease in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1116-1127. [PMID: 21527278 DOI: 10.1016/j.dci.2011.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Both CpG oligodeoxynucleotides and double-stranded RNA (poly I:C) have documented effects as treatments against several viral diseases in fish. However, as stand-alone treatments their effects have been modest. We have tested here whether CpG and poly I:C, alone or in combination induce protection against Salmonid Alphavirus (SAV), the causative agent of pancreas disease in Atlantic salmon. Our results revealed a significant reduction of viraemia 2 weeks after ip injection of the combined treatment and 1 week after challenge with SAV subtype 3, followed by reduced SAV induced heart pathology 3 weeks later. The SAV titers in blood samples from the combination group were lower as compared to single treatments with either CpG or poly I:C. Surprisingly, reduced SAV levels could also be found in fish as long as 7 weeks after receiving the combination treatment. The expression of IFNγ and to a lesser extent IFNa and Mx was up-regulated in head kidney and spleen 5 days after the fish had been treated with CpG and poly I:C. Furthermore, the complement factor C4 was depleted in serum 8 weeks post treatment, suggesting complement activation leading to C4 consumption. We hypothesize that the CpG/poly I:C-induced protection against SAV3 is mediated by mechanisms involving type I and type II IFN induced antiviral activity and complement mediated protective responses.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
24
|
Kirchhoff NT, Rough KM, Nowak BF. Moving cages further offshore: effects on southern bluefin tuna, T. maccoyii, parasites, health and performance. PLoS One 2011; 6:e23705. [PMID: 21901129 PMCID: PMC3161990 DOI: 10.1371/journal.pone.0023705] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/23/2011] [Indexed: 11/18/2022] Open
Abstract
The effects of offshore aquaculture on SBT health (particularly parasitic infections and haematology) and performance were the main aim of this study. Two cohorts of ranched Southern Bluefin tuna (SBT) (Thunnus maccoyii) were monitored throughout the commercial season, one maintained in the traditional near shore tuna farming zone and one maintained further offshore. SBT maintained offshore had reduced mortality, increased condition index at week 6 post transfer, reduced blood fluke and sealice loads, and haematological variables such as haemoglobin or lysozyme equal to or exceeding near shore maintained fish. The offshore cohort had no Cardicola forsteri and a 5% prevalence of Caligus spp., compared to a prevalence of 85% for Cardicola forsteri and 55% prevalence for Caligus spp. near shore at 6 weeks post transfer. This study is the first of its kind to examine the effects of commercial offshore sites on farmed fish parasites, health and performance.
Collapse
Affiliation(s)
- Nicole T Kirchhoff
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia.
| | | | | |
Collapse
|
25
|
Kirchhoff NT, D'Antignana T, Leef MJ, Hayward CJ, Wilkinson RJ, Nowak BF. Effects of immunostimulants on ranched southern bluefin tuna Thunnus maccoyii: immune response, health and performance. JOURNAL OF FISH BIOLOGY 2011; 79:331-355. [PMID: 21781096 DOI: 10.1111/j.1095-8649.2011.03019.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ranched southern bluefin tuna Thunnus maccoyii were fed baitfishes supplemented with vitamins (predominantly E and C) or vitamins and immunostimulants, nucleotides and β-glucans, over 12 weeks after transfer and monitored for enhancement in immune response, health and performance through their 19 week grow-out period. Fish from two different tows were sampled separately at three different sampling points: at transfer to grow-out pontoons, at 8 weeks post-transfer and at harvest, 19 weeks post-transfer. Lysozyme activity was enhanced during vitamin supplementation compared to control fish. Performance (i.e. survival, condition index and crude fat), health (i.e. blood plasma variables including pH, osmolality, cortisol, lactate and glucose) and alternative complement activity were not commonly improved through diet supplementation. There were some tow-specific improvements in performance through vitamin supplementation including survival, selected parasite prevalence and intensity, and alternative complement activity. Immunostimulant supplementation also showed a tow-specific improvement in plasma cortisol level. Tow-specific responses may suggest that life history, previous health condition and husbandry can affect the success of vitamin and immunostimulant enhancement of immune response, health and performance of ranched T. maccoyii.
Collapse
Affiliation(s)
- N T Kirchhoff
- National Center for Marine Conservation and Resource Sustainability, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Caipang CMA, Gallage S, Lazado CC, Brinchmann MF, Kiron V. Unmethylated CpG oligodeoxynucleotides activate head kidney leukocytes of Atlantic cod, Gadus morhua. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:1151-1158. [PMID: 20349339 DOI: 10.1007/s10695-010-9393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODNs) that contain unmethylated CpG motifs are strong inducers of immune response in most mammalian organisms. The use of these synthetic CpG motifs in fish, particularly in salmonids and carp, resulted in the modulation of their immune system. However, much less is known in other species of fish such as gadoids including Atlantic cod, Gadus morhua. Using head kidney (HK) leukocytes of cod in an in vitro study, we determined the effects of some established CpG-ODNs on the cellular responses of the fish immunocytes. Incubation of the HK leukocytes with 2 μM concentration of the CpG-ODNs resulted in enhanced respiratory burst. There were differential effects on the activities of acid phosphatase and cellular myeloperoxidase. Only CpG-ODN 1826 triggered a significant increase in the level of both enzymes. On the other hand, the supernatants derived from the HK leukocytes after incubation with different CpG-ODNs did not possess bactericidal activity against Vibrio anguillarum and Aeromonas salmonicida. This study has shown that CpG-ODNs at low concentrations are able to stimulate respiratory burst in cod but have minimal effects on cellular enzymatic activities and antibacterial action.
Collapse
|
27
|
Liu CS, Sun Y, Hu YH, Sun L. Identification and analysis of a CpG motif that protects turbot (Scophthalmus maximus) against bacterial challenge and enhances vaccine-induced specific immunity. Vaccine 2010; 28:4153-61. [PMID: 20416262 DOI: 10.1016/j.vaccine.2010.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/26/2010] [Accepted: 04/05/2010] [Indexed: 11/19/2022]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class IIalpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity.
Collapse
Affiliation(s)
- Chun-sheng Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
28
|
Strandskog G, Skjaeveland I, Ellingsen T, Jørgensen JB. Double-stranded RNA- and CpG DNA-induced immune responses in Atlantic salmon: comparison and synergies. Vaccine 2008; 26:4704-15. [PMID: 18602433 DOI: 10.1016/j.vaccine.2008.06.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/30/2008] [Accepted: 06/13/2008] [Indexed: 01/06/2023]
Abstract
Several TLR agonists are shown to activate piscine immunity and are interesting adjuvant candidates in vaccine development. To test the outcome of stimulating Atlantic salmon with CpG DNA and poly I:C, ligands for TLR9 and 3, respectively, we have measured the in vivo expression of different immune molecules in spleen and head kidney. The expression profiles for individual treatments with CpGs or poly I:C not only showed similarities but they also displayed unique profiles. When combining them a synergistic up-regulation of the genes interferon (IFN)-alpha1/alpha2, Mx, CXCL10, IL-1beta, IFN-gamma and CD83 was detected. Interestingly, synergies between two different CpG ODNs classes also resulted in pronounced IFN-alpha1/alpha2 and IFN-gamma transcripts levels. To our knowledge this is the first study showing synergy by combining two different TLR9 ligands. In conclusion, detection of dsRNA and CpG DNA in fish may mimic viral recognition, resulting in an enhanced innate immune response that could be used for vaccination.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|