1
|
Shin JW, Kim KE, Park JS, Kim MJ, Lee TK, Kim YJ, Kim HJ, Kim SM, Jung SW. Metavirome Insights into the Diversity and Potential Pathogenic Infection of Chlamys farreri in the Coastal Seas of the Republic of Korea. Pathogens 2024; 13:935. [PMID: 39599488 PMCID: PMC11597635 DOI: 10.3390/pathogens13110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Chlamys farreri is primarily cultivated in Japan, China, and South Korea. Although mass mortality of scallops has been occurring recently, likely caused by high temperatures or infectious diseases, the underlying cause remains unclear. Little is known regarding the viral diseases affecting them. Therefore, we explored DNA virus diversity in the mid-gut gland of C. farreri and compared it with that of seawater. C. farreri was cultivated at depths below 5 m from the sea surface in the coastal waters of South Korea and sampled from May to August 2018. Different DNA viral communities were observed in both C. farreri and seawater. In C. farreri, prevalent groups included Mimiviridae (7%), Poxviridae (6%), and Phycodnaviridae (5%). Conversely, the dominant groups in seawater were Autographiviridae (20%), Kyanoviridae (12%), and Zobellviridae (10%). We identified C. farreri-specific viral communities and potentially infectious viruses, such as Ostreid herpesvirus 1 and Abalone herpesvirus Victoria/AUS/2009. Furthermore, C. farreri acts as a reservoir for various viruses, which impact microbial community dynamics and disease transmission in marine ecosystems. Understanding these viral communities is crucial to protecting and restoring coastal ecosystems by highlighting their role in the transmission of potential avian- and bivalve-specific viruses.
Collapse
Affiliation(s)
- Ji Woo Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
| | - Min-Jeong Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea;
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Seon Min Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (J.W.S.); (K.E.K.); (J.S.P.); (M.-J.K.); (Y.J.K.); (H.-J.K.); (S.M.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Mansour C, Ben Taheur F, Safta Skhiri S, Jridi M, Saidane Mosbahi D, Zouari N. Probiotics from kefir: Evaluating their immunostimulant and antioxidant potential in the carpet shell clam (Ruditapesdecussatus). Microb Pathog 2024; 190:106641. [PMID: 38588925 DOI: 10.1016/j.micpath.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.
Collapse
Affiliation(s)
- Chalbia Mansour
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Fadia Ben Taheur
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia
| | - Sihem Safta Skhiri
- ABCDF Laboratory, Faculty of Dental Medicine, University of Monastir, Monastir, 5000, Tunisia
| | - Mourad Jridi
- Higher Institute of Biotechnology of Beja (ISBB), University of Jandouba, Beja, 9000, Tunisia
| | - Dalila Saidane Mosbahi
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, 4119, Tunisia.
| |
Collapse
|
3
|
Zhao L, Huang J, Li Y, Wu S, Kang Y. Comprehensive analysis of immune parameters, mRNA and miRNA profiles, and immune genes expression in the gill of rainbow trout infected with infectious hematopoietic necrosis virus (IHNV). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108546. [PMID: 36646338 DOI: 10.1016/j.fsi.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a species of cold-water fish with important economic values, widely cultivated worldwide. However, the outbreak of infectious hematopoietic necrosis virus (IHNV) caused the large-scale death of rainbow trout and seriously restricted the development of the trout farming industry. In this study, the changes of immune parameters in different periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 h post-infection (hpi)), transcriptome profiles of 48 hpi (T48G) compared to control (C48G), and key immune-related genes expression patterns were measured in rainbow trout gill following IHNV challenge through biochemical methods, RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that alkaline phosphatase (AKP), acid phosphatase (ACP), total superoxide dismutase (T-SOD), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, as well as lysozyme (LZM) and malonaldehyde (MDA) content decreased and then increased during infection, and remained at a high level after 48 hpi (P < 0.05), whereas catalase (CAT) activity showed a significant peak at 48 hpi (P < 0.05). The mRNA and miRNA analysis identified 4343 differentially expressed genes (DEGs) and 11 differentially expressed miRNAs (DEMs), and numerous immune-related DEGs involved in the Toll-like receptor signaling pathway, apoptosis, DNA replication, p53 signaling, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway and expression were significantly up-regulated in T48Gm group, including tlr3, tlr7, tlr8, traf3, ifih1, trim25, dhx58, ddh58, hsp90a.1, nlrc3, nlrc5, socs3, irf3, irf7, casp7, mx1, and vig2. The integrated analysis identified several important miRNAs (ola-miR-27d-3p_R+5, gmo-miR-124-3-5p, ssa-miR-301a-5p_L+2, and ssa-miR-146d-3p) that targeted key immune-related DEGs. Expression analysis showed that tlr3, tlr7, traf3, ifih1, dhx58, hap90a.1, irf3, irf7, and mx1 genes increased and then decreased during infection, and peaked at 72 hpi (P < 0.05). However, trim25 expression peaked at 96 hpi (P < 0.05). This study contributes to understanding immune response of rainbow trout against IHNV infection, and provides new insights into the immune regulation mechanisms and disease resistance breeding studies.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
4
|
Zhang Y, Hu J, Li Y, Zhang M, Jacques KJ, Gu W, Sun Y, Sun J, Yang Y, Xu S, Wang Y, Yan X. Immune response of silver pomfret (Pampus argenteus) to Amyloodinium ocellatum infection. JOURNAL OF FISH DISEASES 2021; 44:2111-2123. [PMID: 34585397 DOI: 10.1111/jfd.13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Amyloodinium ocellatum (AO) infection in silver pomfret (Pampus argenteus) causes extensive mortality. Insufficient information exists on the molecular immune response of silver pomfret to AO infestation, so herein we simulated the process of silver pomfret being infected by AO. Translucent trophosomes were observed on the gills of AO-infected fish. Transcriptome profiling was performed to investigate the effects of AO infection on the gill, kidney complex and spleen. Overall, 404,412,298 clean reads were obtained, assembling into 96,341 unigenes, which were annotated against public databases. In total, 2730 differentially expressed genes were detected, and few energy- and immune-related genes were further assessed using RT-qPCR. Moreover, activities of three immune-related (SOD, AKP and ACP) and three energy-related (PKM, LDH and GCK) enzymes were determined. AO infection activated the immune system and increased interleukin-1 beta and immunoglobulin M heavy chain levels. Besides, the PPAR signalling pathway was highly enriched, which played a role in improving immunity and maintaining homeostasis. AO infection also caused dyspnoea, leading to extensive lactic acid accumulation, potentially contributing towards a strong immune response in the host. Our data improved our understanding regarding the immune response mechanisms through which fish coped with parasitic infections and may help prevent high fish mortality in aquaculture.
Collapse
Affiliation(s)
- Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Kimran Jean Jacques
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Weiwei Gu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yibo Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiachu Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhang H, Wang H, Chen H, Wang M, Zhou Z, Qiu L, Wang L, Song L. The transcriptional response of the Pacific oyster Crassostrea gigas under simultaneous bacterial and heat stresses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:1-10. [PMID: 30648602 DOI: 10.1016/j.dci.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Bacterial infection and heat stress are considered as two major environmental threats for the aquaculture industry of oyster Crassostrea gigas. In the present study, the expression profiles of mRNA transcripts in the hemocytes of oysters under bacterial challenge and heat stress were examined by next-generation sequencing. There were 21,095, 21,957 and 21,141 transcripts identified in the hemocytes of oysters from three groups, respectively, including control group (designated as Con group), Vibrio splendidus challenge group (Bac group), and bacterial and heat stress combined treatment group (BacHeat group). There were 4610, 5093 and 5149 differentially expressed transcripts (DTs) in the three pairwise comparisons Con/Bac, Con/BacHeat and Bac/BacHeat, respectively. The main enriched GO terms in biological process category of the DTs included the metabolic processes, cellular process, response to stimulus and immune system process. The expression patterns of DTs involved in pattern recognition, immune signal transduction and energy metabolic indicated that the immune response to bacterial challenge was disturbed under acute heat stress, which was also confirmed by quantitative real-time PCR. The neuroendocrine immunomodulation, especially the catecholaminergic regulation, played indispensable roles in stress response. The total energy reserves as well as cellular energy allocation (CEA) in hepatopancreas of oysters decreased remarkably especially in BacHeat group, while the energy consumption generally increased, suggesting that the immune defense against the simultaneous stimulation of pathogen and heat stress imposed greater costs on oyster's energy expenditure than a single stressor. These results above indicated that, the heat stress disturbed the normal expression of genes involved in immune response and energy metabolism, accelerated energy consumption and broke the metabolic balance, leading to a decline in resilience to infection and mass mortality of oyster in summer.
Collapse
Affiliation(s)
- Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Mengqiang Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Limei Qiu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
| |
Collapse
|
6
|
Li JP, Fu YW, Zhang QZ, Xu DH, Liu YM, Zhou SY, Lin DJ. Grass carp which survive Dactylogyrus ctenopharyngodonid infection also gain partial immunity against Ichthyophthirius multifiliis. DISEASES OF AQUATIC ORGANISMS 2018; 129:63-70. [PMID: 29916393 DOI: 10.3354/dao03223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dactylogyrus ctenopharyngodonid and Ichthyophthirius multifiliis are 2 important ectoparasites of fish. Both parasites can induce an immune response in fish that leads to a decrease in parasitic infection intensity and the development of resistance against parasitic reinfection. The present study evaluated whether grass carp Ctenopharyngodon idella that survived a D. ctenopharyngodonid infection could develop immunity against infection by D. ctenopharyngodonid and I. multifiliis. The results demonstrated that when grass carp were infected with D. ctenopharyngodonid, the number of red blood cells and the percentages of thrombocytes, monocytes, and neutrophils in the white blood cells increased significantly in the early stage of infection. The percentage of lymphocytes increased over time following parasitic infection. The mean infection intensity of D. ctenopharyngodonid decreased to 0 on Day 28. The activities of serum acid phosphatase, alkaline phosphatase, lysozyme, and superoxide dismutase increased significantly after D. ctenopharyngodonid infection. In addition, the grass carp that survived a previous D. ctenopharyngodonid infection could completely resist D. ctenopharyngodonid reinfection and partially resist I. multifiliis infection.
Collapse
Affiliation(s)
- Jian-Pei Li
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Guangzhou 510632, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Fu YW, Wang B, Zhang QZ, Xu DH, Lin DJ, Yang XY, Zhu SQ, Pan JY, Deng Q, Liu YM, Zhou SY. Combined effects of Chinese medicine feed and ginger extract bath on co-infection of Ichthyophthirius multifiliis and Dactylogyrus ctenopharyngodonid in grass carp. Parasitol Res 2017; 116:2017-2025. [PMID: 28528516 DOI: 10.1007/s00436-017-5507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/07/2017] [Indexed: 10/24/2022]
Abstract
Dactylogyrus ctenopharyngodonid and Ichthyophthirius multifiliis are two important ectoparasites of freshwater fish. Co-infection by the two parasites leads to high fish mortality and results in heavy economic losses. This study aimed to evaluate the efficacy of medicated feed and a ginger extract bath against D. ctenopharyngodonid and I. multifiliis on grass carp and investigate the hematological response of grass carp co-infected by the two parasites. These results demonstrated that red blood cell (RBC) and thrombocyte percentage among leucocytes significantly decreased after grass carp were co-infected by D. ctenopharyngodonid and I. multifiliis. The monocyte and neutrophil percentages significantly increased with the increment of parasite mean intensities, while the lymphocyte percentage decreased. The activities of serum acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM), and superoxide dismutase (SOD) significantly increased after co-infection. When grass carp treated with medicated feed containing 4% of Astragalus membranaceus, Allium sativum, Morus alba, and Glycyrrhiza uralensis, the activities of ACP, AKP, LZM, and SOD were significantly enhanced, and the mean intensities of D. ctenopharyngodonid and I. multifiliis were significantly decreased. When grass carp was treated with medicated feed and a 4-mg/L ginger extract bath, all parasites were eliminated during 28 days. The bath of ginger extract at a concentration of 4 mg/L kept a low mean intensity of I. multifiliis and D. ctenopharyngodonid, then the two parasites were eliminated by oral administration of the medicated feed with an immunostimulant (Chinese medicine compound).
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Bin Wang
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - De-Jie Lin
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xing-Ya Yang
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shu-Qun Zhu
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jing-Yang Pan
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qian Deng
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yan-Meng Liu
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Sheng-Yu Zhou
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
8
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
9
|
Chi C, Giri SS, Jun JW, Kim HJ, Yun S, Kim SG, Park SC. Marine Toxin Okadaic Acid Affects the Immune Function of Bay Scallop (Argopecten irradians). Molecules 2016; 21:E1108. [PMID: 27563864 PMCID: PMC6272952 DOI: 10.3390/molecules21091108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Okadaic acid (OA) is produced by dinoflagellates during harmful algal blooms and is a diarrhetic shellfish poisoning toxin. This toxin is particularly problematic for bivalves that are cultured for human consumption. This study aimed to reveal the effects of exposure to OA on the immune responses of bay scallop, Argopecten irradians. Various immunological parameters were assessed (total hemocyte counts (THC), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), lactate dehydrogenase (LDH), and nitric oxide (NO) in the hemolymph of scallops at 3, 6, 12, 24, and 48 h post-exposure (hpe) to different concentrations of OA (50, 100, and 500 nM). Moreover, the expression of immune-system-related genes (CLT-6, FREP, HSP90, MT, and Cu/ZnSOD) was also measured. Results showed that ROS, MDA, and NO levels and LDH activity were enhanced after exposure to different concentrations of OA; however, both THC and GSH decreased between 24-48 hpe. The expression of immune-system-related genes was also assessed at different time points during the exposure period. Overall, our results suggest that exposure to OA had negative effects on immune system function, increased oxygenic stress, and disrupted metabolism of bay scallops.
Collapse
Affiliation(s)
- Cheng Chi
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Jin Woo Jun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| |
Collapse
|
10
|
Yin F, Gong H, Ke Q, Li A. Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2015; 47:344-351. [PMID: 26370540 DOI: 10.1016/j.fsi.2015.09.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
To clarify the effects of a Cryptocaryon irritans infection on the stress, antioxidant and mucosal immune response of the large yellow croaker Pseudosciaena crocea, this study utilized C. irritans at dose of 12,000 (group I); 24,000 (group II); and 36,000 (group III) theronts/fish to infect large yellow croaker weighing 100 ± 10 g. The food intake, survival and relative infection intensity (RII); levels of reactive oxygen species (ROS), malondialdehyde (MDA) and vitamin C (VC), activities of super oxide dismutase (SOD) and catalase (CAT) in liver; variation patterns of lysozyme (LZM), alkaline phosphatase (AKP), complement component 3 (C3) and immunoglobulin M (IgM) levels in the body surface mucus at different time points after infection were compared. These results showed that with the increase of the infection dose and the passage of time, the food intake and survival of the fish gradually decreased. The final survival of the control group (0 theronts/fish), group I, group II, and group III was 100, 100, 96.67 ± 5.77, and 48.33 ± 7.64. Group I, II, and III stopped feeding respectively on the third, third and second days after infection. RII increased significantly with increased infection dose. The RII of the control group, group I, group II, and group III was 0, 0.73 ± 0.06, 1.30 ± 0.26, and 1.84 ± 0.02. With the infection dose increased, ROS contents showed an overall upward trend; MDA contents of the group I, group II and group III did not show significant changes at any timepoint compared with the control group; Activities of SOD and CAT and the overall VC levels in the liver of P. crocea dropped; LZM activity showed an overall upward trend; AKP activity increased first then dropped at each timepoint with its highest level appearing at group II; Complement C3 and IgM levels in body surface mucus were significantly increased. In conclusion, P. crocea has a strong ability to resist oxidative stress caused by the infection of C. irritans. The body surface mucus of P. crocea contains high levels of immune factors, which presented a rapid and significant response to the infection of C. irritans.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China
| | - Qiaozhen Ke
- Key Laboratory of Large Yellow Croaker in Fujian Province, Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province 352000, PR China
| | - Anxing Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education, State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, PR China.
| |
Collapse
|
11
|
Green TJ, Raftos D, Speck P, Montagnani C. Antiviral immunity in marine molluscs. J Gen Virol 2015; 96:2471-2482. [DOI: 10.1099/jgv.0.000244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Timothy J. Green
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Caroline Montagnani
- IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| |
Collapse
|
12
|
Yin F, Sun P, Tang B, Dan X, Li A. Immunological, ionic and biochemical responses in blood serum of the marine fish Trachinotus ovatus to poly-infection by Cryptocaryon irritans. Exp Parasitol 2015; 154:113-7. [DOI: 10.1016/j.exppara.2015.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
13
|
|
14
|
Sun Z, Jiang Q, Wang L, Zhou Z, Wang M, Yi Q, Song L. The comparative proteomics analysis revealed the modulation of inducible nitric oxide on the immune response of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2014; 40:584-94. [PMID: 25149594 DOI: 10.1016/j.fsi.2014.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is an important gasotransmitter which plays a key role on the modulation of immune response in all vertebrates and invertebrates. In the present study, the modulation of inducible NO on immune response of scallop Chlamys farreri was investigated via proteomic analysis. Total proteins from hepatopancreas of scallops treated with lipopolysaccharide (LPS) and/or the inhibitor of vertebrate inducible NO synthase (S-methylisothiourea sulfate, SMT) for 12 h were analyzed via 2-D PAGE and ImageMaster 2D Platinum. There were 890, 1189 and 1046 protein spots detected in the groups treated by phosphate buffered saline (PBS), LPS and LPS+SMT, respectively, and 26 differentially expressed protein spots were identified among them. These proteins were annotated with binding or catalytic activity, and most of them were involved in metabolic or cellular processes. Some immune-related or antioxidant-related molecules such as single Ig IL-1-related receptor, guanine nucleotide-binding protein subunit beta-like protein and peroxiredoxin were identified, and the changes of their expression levels in LPS group were intensified significantly after adding SMT. The decreased expression level of tyrosinase and increased level of glutathione S-transferase 4 in LPS group were diametrically reversed by appending SMT. Moreover, interferon stimulated exonuclease gene 20-like protein and copper chaperone for superoxide dismutase were only induced by LPS+SMT stimulation but not by LPS stimulation. These data indicated that NO could modulate many immunity processes in scallop, such as NF-κB transactivation, cytoskeleton reorganization and other pivotal processes, and it was also involved in the energy metabolism, posttranslational modification, detoxification and redox balance during the immune response.
Collapse
Affiliation(s)
- Zhibin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
15
|
Chen G, Zhang C, Jiang F, Wang Y, Xu Z, Wang C. Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2014; 37:75-86. [PMID: 24457045 DOI: 10.1016/j.fsi.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/01/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
The sustainable development of the scallop Chlamys farreri industry in China is hindered by mass mortality mainly caused by a novel pathogen known as acute viral necrosis virus (AVNV). A better understanding of host-virus interactions, especially those at the molecular level, may facilitate the prevention and cure of AVNV infections. MicroRNAs (miRNAs) represent a class of small RNA molecules involved in several biological processes, including mediating host-pathogen responses. In this study, two hemocyte small RNA libraries were constructed from control (control library, CL) and AVNV-infected (infection library, IL) C. farreri for high throughput sequencing using Solexa technology. Acquired data were further used to identify conserved and novel miRNAs, screen differentially expressed miRNAs, and predict their target genes through bioinformatics analysis. Solexa sequencing produced 19,485,719 and 20,594,513 clean reads representing 2,248,814 and 1,510,256 unique small RNAs from CL and IL, respectively. A total of 57 conserved miRNAs were identified in both libraries, among which only two were unique to IL. Novel miRNA prediction using the Crassostrea gigas genome as a reference revealed 11 candidate miRNAs, 10 of which were validated by RT-PCR. Differential expression (p < 0.001) between libraries was observed in 37 miRNAs, among which 30 and 7 miRNAs were up- and downregulated, respectively. Expression differences were further confirmed by qRT-PCR. A sequence homology search against available C. farreri ESTs showed that these differentially expressed miRNAs may target 177 genes involved in a broad range of biological processes including immune defense and stress response. This study is the first to characterize C. farreri miRNAs and miRNA expression profiles in response to AVNV infection by deep sequencing. The results presented here will deepen our understanding of the pathogenesis of AVNV at the molecular level and provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Fengjuan Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Zhong Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Chongming Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| |
Collapse
|
16
|
Yin F, Dan XM, Sun P, Shi ZH, Gao QX, Peng SM, Li AX. Growth, feed intake and immune responses of orange-spotted grouper (Epinephelus coioides) exposed to low infectious doses of ectoparasite (Cryptocaryon irritans). FISH & SHELLFISH IMMUNOLOGY 2014; 36:291-298. [PMID: 24316499 DOI: 10.1016/j.fsi.2013.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/28/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
To explore the effect of low-dose Cryptocaryon irritans infection on growth, feeding and antiparasitic immunity of orange-spotted grouper (Epinephelus coioides), this study utilized C. irritans at concentrations of 5500 theronts/fish (Group I, 1/10 of 96 h LC50) or 11,000 theronts/fish (Group II) to infect E. coioides weighing 38 g on average at week 0, 2 and 4, respectively. Food consumption was recorded daily; the fish were weighed weekly; serum immobilizing titer (SIT), and acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), lysozyme (LZM) activity were recorded every 2 weeks; the fish were treated with lethal dose (70,000 theronts/fish) of C. irritans in the 8th week and death number were recorded. The result shows that in the 1st week after the first infection, the fish's weight gain (WG), length gain (LG), and specific growth rate (SGR) dropped as parasite dose increased, and WG, SGR values were negative; while, after the 2nd and the 3rd infection, no significant differences were detected among the three groups. These results indicated that the 1st infection affected the fish most, while the following infections were protected by some immunity. In the 3rd, 7th, and 8th week, condition factor (CF) increased with the increased infectious dose, indicating that the parasite affected body length more than body weight. As the experiment went on, accumulated food consumption (AFC) of all three groups steadily grew (control > Group I > Group II). But on the 2nd day after the first infection, daily food consumption (DFC) of Group I and II significantly dropped, the decline of Group II was greater than that of Group I, DFC recovered in the following week, with Group I earlier than Group II. After the 2nd infection, DFC of Group I and II dropped again, Group II still dropped more than Group I, and both groups recovered on the 3rd day after infection. The 3rd infection caused no significant difference in week food consumption (WFC). These results indicated that a higher dose of infection causes a greater drop in FC and a slower recovery. Weekly feed conversion ratio (WFCR) values of Group I and II in the 1st week was negative; in the 2nd week, WFCR was lower in the group infected by a higher dose of parasite; while in the 3rd and following weeks, no significant pattern was observed. Accumulate feed conversion ratio (AFCR) dropped as the infectious dose increased (control > Group I > Group II), AFCR of Group I and II reached above 0 in the 2nd and 4th week, respectively. From the 4th week on, the inter-group AFCR of the 3 groups still took on a declining trend with the increased infectious dose but the gap became smaller. One week after the first infection, SIT of Group I and Group II were 0; one week after the 2nd infection, SIT reached up to 8 (Group I) and 16 (Group II) respectively; and after the 3rd infection, SIT further increased and peaked in the 7th week. When challenged by lethal dose of C. irritans, fish of all 3 groups began to die since the 3rd day after infection, and the final deaths were 14, 12 and 8 for the control group, Group I and Group II, respectively. ACP activity in the 1st, 5th, 7th but the 3rd week was higher in the experiment group than that in the control group, but no significant difference was detected between Group I and II throughout the experiment. AKP activity increased as the infectious dose increased, but the difference among the three groups gradually became less obvious in latter infections, and no significant difference can be detected in the end. SOD activity increased with infection dose at each time point, while both group I and group II had their SOD activities first increased and then decreased as times of infection increased. The LZM activity of the two infection groups increased as the infectious times increased. Combining the results on growth and feeding, we speculated that the fish's physiological condition stabilized after 3 rounds of infection. To sum up, low-dose infection by C. irritans can induce the fish's immunity, but at the cost of decreasing food intake, decreased food conversion, and lagged growth.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, PR China
| | - Peng Sun
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
| | - Zhao-Hong Shi
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
| | - Quan-Xin Gao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
| | - Shi-Ming Peng
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, PR China
| | - An-Xing Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education, State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, Guangdong Province 510275, PR China.
| |
Collapse
|
17
|
Yue X, Huan P, Xiao G, Liu B. Expression patterns of an i-type lysozyme in the clam Meretrix meretrix along with larval development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:27-32. [PMID: 23583308 DOI: 10.1016/j.dci.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
An i-type lysozyme (MmeLys) has been proved to function in immunity of the clam Meretrix meretrix in our previous studies. In this study, the expression patterns of MmeLys mRNA and protein at four chief developmental stages of M. meretrix were analyzed, which was able to provide information about how ontogeny of immunity and, in particular, antibacterial ability occured in the bivalve. The results of real-time PCR and western blot showed that MmeLys expressions were activated in D-veligers and dramatically increased to the highest level in pediveligers. It is proposed that the expression changes at these two stages might be due to the visceral organs changes, which were related to the archenteron formation in D-veligers and the organ-restructuring in pediveligers during metamorphosis. In addition, new methods of whole mount in situ hybridization and whole mount immunofluorescence were applied to identify the MmeLys expression tissues, and these tissues (i.e. hepatopancreas, gill, mantle, mouth, velum and foot) may be involved in the immune function during development of clams. Our study is valuable to a certain extent for exploring the origin of immune functions in clams and provides new methodology for future studies on the immune ontogeny of bivalves.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
18
|
Jenkins C, Hick P, Gabor M, Spiers Z, Fell SA, Gu X, Read A, Go J, Dove M, O'Connor W, Kirkland PD, Frances J. Identification and characterisation of an ostreid herpesvirus-1 microvariant (OsHV-1 µ-var) in Crassostrea gigas (Pacific oysters) in Australia. DISEASES OF AQUATIC ORGANISMS 2013; 105:109-126. [PMID: 23872855 DOI: 10.3354/dao02623] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Between November 2010 and January 2011, triploid Crassostrea gigas (Pacific oysters) cultivated in the Georges River, New South Wales, experienced >95% mortality. Mortalities also occurred in wild diploid C. gigas in the Georges River and shortly thereafter in the adjacent Parramatta River estuary upstream from Sydney Harbour. Neighbouring Saccostrea glomerata (Sydney rock oysters) did not experience mortalities in either estuary. Surviving oysters were collected to investigate the cause of mortalities. Histologically all oysters displayed significant pathology, and molecular testing revealed a high prevalence of ostreid herpesvirus-1 (OsHV-1). Quantitative PCR indicated that many C. gigas were carrying a high viral load at the time of sampling, while the load in S. glomerata was significantly lower (p < 0.001). Subsequent in situ hybridisation experiments confirmed the presence of a herpesvirus in C. gigas but not S. glomerata tissues, suggesting that S. glomerata is not susceptible to infection with OsHV-1. Naïve sentinel triploid C. gigas placed in the Georges River estuary in January 2011 quickly became infected and experienced nearly 100% mortality within 2 wk of exposure, indicating the persistence of the virus in the environment. Phylogenetic analysis of sequences derived from the C2/C6 region of the virus revealed that the Australian strain of OsHV-1 belongs to the microvariant (µ-var) cluster, which has been associated with severe mortalities in C. gigas in other countries since 2008. Environmental data revealed that the Woolooware Bay outbreaks occurred during a time of considerable environmental disturbance, with increased water temperatures, heavy rainfall, a toxic phytoplankton bloom and the presence of a pathogenic Vibrio sp. all potentially contributing to oyster stress. This is the first confirmed report of OsHV-1 µ-var related C. gigas mortalities in Australia.
Collapse
Affiliation(s)
- Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen G, Wang C, Zhang C, Wang Y, Xu Z, Wang C. A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1619-1627. [PMID: 23507337 DOI: 10.1016/j.fsi.2013.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
The scallop Chlamys farreri is one of the most important aquaculture species in northern coastal provinces. However, the sustainable development of scallop industry is currently threatened by a notorious pathogen named as acute viral necrobiotic virus (AVNV), which often causes mass mortality of the animals. Despite that great attention has been focused on this novel pathogen, little knowledge about the host-virus interactions is available. In this study, suppression subtractive hybridization (SSH) was employed to identify the up-regulated differentially expressed genes in the hemocytes of C. farreri challenged by AVNV. A forward subtracted cDNA library was finally constructed and 288 positive colonies representing differentially genes were screened to perform sequencing. A total of 275 ESTs were used for further analysis using bioinformatics tools after vector screening, among which 167 ESTs could be finally identified, with significant match (E values <1 × 10(-3)) to the deposited genes (proteins) in the corresponding databases. These genes could be classified into ten categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cell defense and homeostasis (13.82%), cellular protein metabolic process (14.90), cellular metabolism (13.09%), cytoskeletal or cellular component (5.82%), transcription regulation or RNA processing (2.18%), cell division (meiosis)/apoptosis (2.18%), DNA metabolic process and repair (1.45%), cell adhesion/signaling (1.09%), microsatellite (0.73%), and ungrouped or unknown functions (6.88). The possible biological significance of some novel genes (mainly immune and homeostasis related genes) in the host response to AVNV were discussed. This study is the first global analysis of differentially expressed genes in hemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated scallop disease, the results presented here should provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Wang X, Wang L, Zhang H, Ji Q, Song L, Qiu L, Zhou Z, Wang M, Wang L. Immune response and energy metabolism of Chlamys farreri under Vibrio anguillarum challenge and high temperature exposure. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1016-1026. [PMID: 22960216 DOI: 10.1016/j.fsi.2012.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The complex interactions among host, pathogen and environment are believed to be the main causes for the mass mortality of cultured scallops during summer period. In the present study, the temporal variations of immune and energy parameters of Chlamys farreri under Vibrio anguillarum challenge, higher temperature (29°C) exposure as well as their combined treatment were investigated in order to better understand the energetic mechanisms of scallop immune defense. After the treatments, the superoxide anion level, the activities of superoxide dismutase (SOD) and acid phosphatase, as well as heat shock protein 70 expression level in the hemolymph of scallops increased substantially within 48 h. And as time progressed, the malondialdehyde content in the serum of scallops in the higher temperature treated and the combined stress treated groups were significantly increased, while the SOD activity was significantly depressed (96 h, P<0.05). After 3 h, a significant decline (P<0.05) in glycogen reserves was observed in the examined tissues of all the scallops in the bacteria challenged, higher temperature treated and the combined stress treated groups. The cellular energy allocation (CEA) in the examined tissues dropped considerably when the treatments lasted 48 h. There was a significant decline in the CEA and a significant increase in the energy consumption in the examined tissues compared with other treatments when the scallops were exposed to the combined stress for 96 h (P<0.05). All the results demonstrated that the antioxidant systems and acute phase response system in scallops were not enough to wholly repair oxidative damage caused by higher temperature and the combined stress with bacteria challenge, and glycogen reserved in relative tissues were mobilized to meet the increased energy demands during the process of immune defense. Immune defense against the combined stress imposed greater costs on scallop's energy expenditure than either stressor alone, and CEA could be a useful tool to evaluate energetic allocation. The information provided valuable insights into possible mechanisms of scallop mass mortalities during summer period.
Collapse
Affiliation(s)
- Xingqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang X, Wang L, Yao C, Qiu L, Zhang H, Zhi Z, Song L. Alternation of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2012; 32:741-749. [PMID: 22326939 DOI: 10.1016/j.fsi.2012.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
The complex interactions among host, pathogen and environment are believed to be the main causes for the mass mortality of cultured scallops. In the present study, the temporal variations of immune parameters and cellular energy allocation (CEA) of Chlamys farreri under ammonia-N, Vibrio anguillarum as well as their combined treatment were investigated to better understand the energetic mechanisms of scallop in immune defense. After 1 d exposure to ammonia-N, V. anguillarum and their combination, the superoxide anion level and superoxide dismutase (SOD) activity in the serum of scallops increased substantially. At 24 d post exposure, the mRNA expression levels of isocitrate dehydrogenase (IDH), heat shock protein 70 (HSP 70), HSP 90 and glutamine synthetase (GS), as well as the malondialdehyde content remarkably increased, while SOD activity was depressed significantly (P < 0.05). The glycogen reserved in the tissues from scallops exposed to the combined stress for 1 d, 12 d and 24 d were significantly lower than those in the control (P < 0.05). The CEA values in all the examined tissues including gonad, gill, hepatopancreas and adductor muscle were significantly lower than those of control (P < 0.05) when exposure to ammonia-N, V. anguillarum and their combined treatment for 12 and 24 d. Furthermore, the combined stress also had a significant impact upon CEA in all the examined tissues in scallops post 1 d exposure (P < 0.05). The above results demonstrated that SOD, IDH, HSPs and GS in hemolymph of treated scallops are necessary, but not sufficient to the complete protection against stress-induced cellular damage along with the treatment duration. Immune defense against the combination of pathogen invasion and environmental stress can impose greater costs on scallop's energy expenditure than a single stressor, and the combined treatment preferentially consumed more available glycogen in scallops for immune defense. Hence, in addition to be used in immunological evaluation, CEA is also a powerful tool to provide valuable insights into possible mechanisms of mass mortalities in cultured scallops.
Collapse
Affiliation(s)
- Xingqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Huan P, Wang H, Liu B. Comparative proteomic analysis of challenged Zhikong scallop (Chlamys farreri): a new insight into the anti-Vibrio immune response of marine bivalves. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1186-92. [PMID: 22019832 DOI: 10.1016/j.fsi.2011.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/12/2011] [Accepted: 10/11/2011] [Indexed: 05/15/2023]
Abstract
The current studies on molecular mechanism of bivalves interacting with bacteria are mainly on mRNA and recombinant protein levels. These works provide little information on natural proteins, which limit further understandings. In this study, we conducted a pioneer work to promote researches on the anti-Vibrio immune response of Zhikong Scallop Chlamys farreri through proteomic techniques. Firstly a reference map was constructed for the hepatopancreas of C. farreri. Totally 65 protein spots were included in the reference map, while 46 of them were identified. Gene ontology analysis revealed high activities of metabolism and immunity in hepatopancreas. Furthermore, hepatopancreas of C. farreri injected with Vibrio harveyi at 24 h post-injection (hpi) were used for comparative proteomic analysis. Totally 27 differentially expressed proteins spots after challenge were screened; and 15 were successfully identified. These proteins include some immune-related proteins, metabolism enzymes, and new molecules which were not paid attentions in previous immunity studies in C. farreri. The results indicated that molecular chaperons and the antioxidant system are key elements in the anti-Vibrio immune response of hepatopancreas of C. farreri. The identification of new molecules provides indications for further studies. The results of this work provide a new insight into the anti-Vibrio immune response of marine bivalves.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | |
Collapse
|
23
|
Huang X, Bi K, Hu L, Sun Y, Lu W, Bao Z. Fertilization and cytogenetic examination of interspecific reciprocal hybridization between the scallops, Chlamys farreri and Mimachlamys nobilis. PLoS One 2011; 6:e27235. [PMID: 22110617 PMCID: PMC3215693 DOI: 10.1371/journal.pone.0027235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Crossbreeding is a powerful tool for improving productivity and profitability in aquaculture. We conducted a pilot study of an artificial cross between two important cultivated scallops in China, Chlamys farreri and Mimachlamys nobilis, to test the feasibility of interspecific hybridization. Reciprocal hybridization experiments were performed using a single-pair mating strategy (M. nobilis ♀ × C. farreri ♂ and C. farreri ♀ × M. nobilis ♂). The fertilization of each pair was tracked using fluorescence staining of the gametes, and the chromosomes of the F1 hybrid larvae were examined via conventional karyotyping and genomic in situ hybridization (GISH). We observed moderate fertilization success in both interspecific crosses, although the overall fertilization was generally less rapid than that of intraspecific crosses. Conventional karyotyping showed that 70.4% of the viable F1 larvae in M. nobilis ♀ × C. farreri ♂ and 55.4% in C. farreri ♀ × M. nobilis ♂ comprised hybrid karyotypes (2n = 35 = 6m+5sm+11st+13t), and the results were further confirmed by GISH. Interestingly, we detected a few F1 from the M. nobilis ♀ × C. farreri ♂ cross that appeared to have developed gynogenetically. In addition, chromosome fragmentations, aneuploids and allopolyploids were observed in some F1 individuals. Our study presents evidence that the artificial cross between M. nobilis and C. farreri is experimentally possible. Further investigations of the potential heterosis of the viable F1 offspring at various developmental stages should be conducted to obtain a comprehensive evaluation of the feasibility of crossbreeding between these two scallop species.
Collapse
Affiliation(s)
- Xiaoting Huang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | | | | | | | | |
Collapse
|
24
|
Chen G, Zhang C, Li C, Wang C, Xu Z, Yan P. Haemocyte protein expression profiling of scallop Chlamys farreri response to acute viral necrosis virus (AVNV) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1135-1145. [PMID: 21530577 DOI: 10.1016/j.dci.2011.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 05/30/2023]
Abstract
Acute viral necrosis virus (AVNV) was newly reported as one causative agent responsible for mass mortality of adult Chinese scallop Chlamys farreri, which is widely cultured on northern China coast. Unfortunately, the interaction between virus and host is largely unknown. According to these, this study was undertaken to deeply explore the immune response of haemocyte against AVNV. Two-dimensional gel electrophoresis (2-DE) was introduced to produce protein expression profiles from samples taken at 24h post-infection (hpi) from the haemocytes of C. farreri that were either specific pathogen free or else infected with AVNV. Forty-eight protein spots, which consistently showed either a marked change (≥1.5-fold difference) in accumulated levels or else were highly expressed in haemocytes, were selected for further investigation. In-gel trypsin digestion was conducted followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). Matching search was subsequently performed throughout bioinformatics databases. A total of 42 proteins were identified, all of which were classified into eight categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cytoskeleton proteins, proteins involved in metabolism, proteins related to calcium homeostasis, chaperone, proteins involved in immunity, proteins involved in transcriptional regulation, proteins related to signal transduction, and ungrouped proteins. The possible biological significance of some observed proteins in the host response to AVNV was discussed. These studies could be served as the first global analysis of differentially expressed proteins in haemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the pathogenesis of this virus-associated scallop disease, the results presented here should be useful both for potential biomarkers identification and anti-virus approaches development as well.
Collapse
Affiliation(s)
- Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Yue X, Liu B, Sun L, Tang B. Cloning and characterization of a hsp70 gene from Asiatic hard clam Meretrix meretrix which is involved in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2011; 30:791-799. [PMID: 21215805 DOI: 10.1016/j.fsi.2010.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
In the present study, a 71.43 kDa heat shock protein cDNA was cloned from Asiatic hard clam Meretrix meretrix. The cDNA was 2292 bp, containing an open reading frame (ORF) of 1959 bp, which encodes a protein of 652 amino acids with a theoretical molecular weight of 71.43 kDa and an isoelectric point of 5.32. Based on the amino acid sequence analysis and phylogenetic analysis, this hsp70 cDNA is a member of cytoplasmic hsc70 (constitutive genes) subfamily in the hsp70 family, and is designated as MmeHsc71. Quantitative RT-PCR was carried out to compare the spatial and temporal expression patterns of MmeHsc71 in the mRNA level between control clams and Vibrio parahaemolyticus-infected clams. Spatially, MmeHsc71 mRNA was found in all tested tissues, including foot, hepatopancreas, mantle and gill. MmeHsc71 mRNA expression level in hepatopancreas and gill displayed a significant increase in vibrio-challenged clams at 24h post-infection compared to control clams (P < 0.05). Temporally, there was a significant increase of MmeHsc71 mRNA level in hepathopancreas of vibrio-challenged clams compared to control clams at 6, 12, and 24h post-challenge, respectively. The result of quantitative immunofluorescence also indicated that there was obvious increase of MmeHsc71 in hepatopancreas of vibrio-challenged clams compared to control clams in protein level at 24h post-infection. The results suggested that MmeHsc71 may play an important role in mediating the immune responses of M. meretrix to bacterial challenge.
Collapse
Affiliation(s)
- Xin Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|