1
|
Leiva-Rebollo R, Labella AM, Gémez-Mata J, Castro D, Borrego JJ. Fish Iridoviridae: infection, vaccination and immune response. Vet Res 2024; 55:88. [PMID: 39010235 PMCID: PMC11247874 DOI: 10.1186/s13567-024-01347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.
Collapse
Affiliation(s)
- Rocío Leiva-Rebollo
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Juan Gémez-Mata
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Dolores Castro
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
2
|
Zhao Z, Meng Q, Sun TZ, Zhu B. Mannose modified targeted immersion vaccine delivery system improves protective immunity against Infectious spleen and kidney necrosis virus in mandarin fish (Siniperca chuatsi). Vaccine 2024; 42:2886-2894. [PMID: 38519342 DOI: 10.1016/j.vaccine.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Vaccination is an effective method to prevent viral diseases. However, the biological barrier prevents the immersion vaccine from achieving the best effect without adding adjuvants and carriers. Researches on the targeted presentation technology of vaccines with nanocarriers are helpful to develop immersion vaccines for fish that can break through biological barriers and play an effective role in fish defense. In our study, functionally modified single-walled carbon nanotubes (SWCNTs) were used as carriers to construct a targeted immersion vaccine (SWCNTs-M-MCP) with mannose modified major capsid protein (MCP) to target antigen-presenting cells (APCs), against iridovirus diseases. After bath immunization, our results showed that SWCNTs-M-MCP induced the presentation process and uptake of APCs, triggering a powerful immune response. Moreover, the highest relative percent survival (RPS) was 81.3% in SWCNTs-M-MCP group, which was only 41.5% in SWCNTs-MCP group. Altogether, this study indicates that the SWCNTs-based targeted immersion vaccine induces strong immune response and provided an effective protection against iridovirus diseases.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China
| | - Qiang Meng
- Shenzhen Vaccine Biotechnology Co., Ltd, B618, Virtual University Experimental Platform Building, Nanshan District, Shenzhen 518000, PR China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Xu S, Wang Y, Wang Y, Jiang Y, Li H, Han C, Wei B, Qin Q, Wei S. Development and immune evaluation of LAMP1 chimeric DNA vaccine against Singapore grouper iridovirus in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109218. [PMID: 37977543 DOI: 10.1016/j.fsi.2023.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.
Collapse
Affiliation(s)
- SuiFeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YueXuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YeWen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YunXiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huang Li
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - ChengZong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - BaoCan Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
4
|
Panchavarnam S, Kollanoor RJ, Mulloorpeedikayil RG, Mohaideenpitchai MM, Palraj MK, Muthumariyapan S. Development of recombinant major capsid protein Vaccine and assessment of its efficacy against SRDV in similar damselfish (Pomacentrus similis). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109035. [PMID: 37659655 DOI: 10.1016/j.fsi.2023.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Viral vaccines against emerging viral diseases are crucial for encouraging successful aquaculture production. In this research, an experimental recombinant major capsid protein vaccine of similar damselfish virus was prepared and examined for its efficacy in marine ornamental fish, similar damselfish (Pomacentrus similis). The MCP gene of the SRDV was amplified from the viral DNA by a specific primer set viz bamHI and XhoI- restriction sites and confirmed by agarose gel electrophoresis with a target size of 1416 bp. The gel-purified PCR product was double-digested with the said enzymes and incorporated into the pTriEx1.1 vector, which was subsequently transformed to E. coli DH5α. The plasmids of the two clones pTriEx-MCP-1416-1 and pTriEx-MCP-1416-3 were transformed to E. coli BL21 (DE-3) pLacI. A crude protein compound derived from a colony of E. coli BL21 (DE-3) with expressed MCP inserts was used to evaluate efficacy in similar damselfish by intra-peritoneal injection. After the challenge with SRDV, damselfish vaccinated with recombinant protein showed a lower protection level, while the fish vaccinated with recombinant protein supplemented Quil-A® adjuvant showed an RPS of 26%. According to RPS values recorded from the vaccinated and non-vaccinated damselfish group, the recombinant protein vaccine conferred only marginal protection against the SRDV challenge.
Collapse
Affiliation(s)
- Sivasankar Panchavarnam
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India.
| | - Riji John Kollanoor
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India
| | - Rosalind George Mulloorpeedikayil
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India
| | - Mohamed Mansoor Mohaideenpitchai
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India
| | - Magesh Kumar Palraj
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India
| | - Selvamagheswaran Muthumariyapan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu, India
| |
Collapse
|
5
|
Cai YJ, Li PH, Wang XA, Xu YM, Yang S, Tang YN, Zhu Z, Yang XY, He JY, Luo H, Zhang T, Qi H, Chen X, Qin QW, Sun HY. Epinephelus coioides PCSK9 affect the infection of SGIV by regulating the innate immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 126:113-121. [PMID: 35609761 DOI: 10.1016/j.fsi.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mammals is a multifunctional protein. In this study, PCSK9 of marine fish Epinephelus coioides was characterized. The full-length cDNA of E. coioides PCSK9 was 2458 bp in length containing 185 bp 5' UTR, 263 bp 3' UTR and 2010 bp open reading frame (ORF) encoding 669 amino acids with the predicted molecular weight of 71 kDa and the theoretical PI of 6.6. Similar to other members of PCSK9 family, E. coioides PCSK9 has three conserved domains: Inhibitor_ I9 super family, Peptidases_ S8_ PCSK9_ Proteinase K_ like, and PCSK9_ C-CRD super family. E. coioides PCSK9 mRNA could be detected in all the tissues examined by real-time quantitative PCR, with the highest expression in the brain, followed by skin, trunk kidney, head kidney, intestine, blood, liver, spleen, gill, muscle and heart. E. coioides PCSK9 was distributed in both the cytoplasm and nucleus. The expression of E. coioides PCSK9 was significantly upregulated during Singapore grouper iridovirus (SGIV) infection. Upregulated PCSK9 could significantly affect the activities of nuclear factor kappaB (NF-κB) promoter, SGIV-induced apoptosis, and the expressions of the key SGIV genes (ICP18, LITAT, MCP, and VP19) and the E. coioides proinflammatory factors (IL-6, IL-1β, IL-8, and TNF-α). The results illustrated that E. coioides PCSK9 might be involved in the pathogen infection by regulating the innate immune response.
Collapse
Affiliation(s)
- Yi-Jie Cai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Ai Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Min Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Shan Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Na Tang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zheng Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xin-Yue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hao Luo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Tong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong Qi
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
6
|
You Y, Xu L, Li F, Yang F. Proteomic analysis of the Decapod iridescent virus 1. Virus Res 2022; 311:198686. [DOI: 10.1016/j.virusres.2022.198686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
7
|
Zeng R, Pan W, Lin Y, He J, Luo Z, Li Z, Weng S, He J, Guo C. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. iScience 2021; 24:102750. [PMID: 34278259 PMCID: PMC8261673 DOI: 10.1016/j.isci.2021.102750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/29/2020] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Aquaculture provides important food, nutrition, and income sources for humans. However, aquaculture industry is seriously threatened by viral diseases. Infectious spleen and kidney necrosis virus (ISKNV) disease causes high mortality and economic losses to the fish culture industry in Asia and has been listed as a certifiable disease by the International Epizootic Office. Vaccine development is urgent to control this disease. Here, a gene-deleted live attenuated candidate vaccine (ΔORF022L) against ISKNV with low pathogenicity and high protection was developed. ΔORF022L replicated well in mandarin fish fry-1 cells and showed similar structure with wild-type ISKNV. However, the pathogenicity was significantly lower as 98% of the mandarin fish infected with ΔORF022L survived, whereas all those infected with wild-type ISKNV died. Of importance, 100% of the ΔORF022L-infected fish survived the ISKNV challenge. ΔORF022L induced anti-ISKNV specific antibody response and upregulation of immune-related genes. This work could be beneficial to the control of fish diseases.
Collapse
Affiliation(s)
- Ruoyun Zeng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Yifan Lin
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhiyong Luo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
8
|
Yi W, Zhang X, Zeng K, Xie D, Song C, Tam K, Liu Z, Zhou T, Li W. Construction of a DNA vaccine and its protective effect on largemouth bass (Micropterus salmoides) challenged with largemouth bass virus (LMBV). FISH & SHELLFISH IMMUNOLOGY 2020; 106:103-109. [PMID: 32721569 DOI: 10.1016/j.fsi.2020.06.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Largemouth bass virus (LMBV) is the causative agent of a disease causing high mortality rates in largemouth bass during summer. However, there is little information available about the development of vaccines for LMBV disease. Hence, a DNA vaccine, named pCDNA3.1(+)-MCP-Flag, was constructed by inserting the cloned LMBV major capsid protein (MCP) gene into the pCDNA3.1(+)-Flag plasmid. The expression of the recombinant plasmid was confirmed by Western blot (WB) and RT-PCR. The WB result revealed that the MCP protein produced a band of approximately 53 kDa, consistent with the expected result. The RT-PCR results also confirmed that MCP was transcribed in the EPC cells transfected with the recombinant plasmid. The largemouth bass in the DNA vaccine group were immunized with the pCDNA3.1(+)-MCP-Flag plasmid by pectoral fin base injection, and the relative percent survival (RPS) of fish challenged with LMBV was 63%. The relative immunological analyses were as follows. Compared with the PBS and pCDNA3.1(+) groups, the DNA vaccine group showed significantly upregulated expression of IL-1β, IL-8, TNF-α and Mx in the spleen, head kidney and liver. All largemouth bass immunized with the DNA vaccine produced a high titre of LMBV-specific neutralizing antibody during the immunization period. The titre was 1:375 ± 40 and peaked at 14 days post-vaccination. The expression of the recombinant plasmid was analysed in the tissues of the DNA vaccine group by RT-PCR. The recombinant plasmid was expressed in the spleen, head kidney and liver, and MCP protein was successfully expressed after vaccination. In conclusion, the recombinant plasmid expressing LMBV MCP induced significant immune responses in largemouth bass, and might represent a potential LMBV vaccine candidate for largemouth bass.
Collapse
Affiliation(s)
- Wanying Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Xin Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Ke Zeng
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - DaoFa Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Chao Song
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Kachon Tam
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - ZiJing Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Tianhong Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China.
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
9
|
Zhao Z, Xiong Y, Zhang C, Jia YJ, Qiu DK, Wang GX, Zhu B. Optimization of the efficacy of a SWCNTs-based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2020; 106:190-196. [PMID: 32755683 DOI: 10.1016/j.fsi.2020.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) cause a high mortality disease which brings substantial economic losses to the mandarin fish culture industry in China. This study was aimed at optimizing the efficacy of a SWCNTs-based immersion subunit vaccine (SWCNTs-M-MCP) which as a promising vaccine against ISKNV. Mandarin fish were vaccinated by immersion, then we designed an orthogonal experiment to optimize different parameters affecting vaccination such as immune duration of bath immunization, immune dose, and fish density when immunized. Our results showed that the highest relative percent survival (86.7%) was found in the group 6 with 8 h of immune duration, 20 mg/L of immune dose, and 8 fish per liter of fish density. And other immune responses (serum antibody production, enzyme activities, and immune-related genes expression) also demonstrated similar results. In addition, the expression of IRF-I in group 6 (8 h, 20 mg/L, 8 fish per liter) was significant extents, and about 16-folds increases were obtained than the control group at 21 d post-vaccination. And the highest specific antibody response was significantly increased (more than 4-folds) than control group which was found in group 6. The optimum immune duration, immune dose, and fish density of SWCNTs-M-MCP were 8 h, 20 mg/L, 8 fish per liter, respectively. Importantly, our results also showed that immune duration had the greatest effect on the immune response of our vaccine, followed by immune dose. The study reported herein provides a helpful reference for the effective use of vaccine in fish farming industry.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yan Xiong
- Yunnan Institute of Fishery Sciences Research, Kunmin, 650224, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Yu Q, Liu M, Wu S, Wei X, Xiao H, Yi Y, Cheng H, Wang S, Zhang Q, Qin Q, Li P. Specific Aptamer-Based Probe for Analyzing Biomarker MCP Entry Into Singapore Grouper Iridovirus-Infected Host Cells via Clathrin-Mediated Endocytosis. Front Microbiol 2020; 11:1206. [PMID: 32636813 PMCID: PMC7318552 DOI: 10.3389/fmicb.2020.01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biomarkers have important roles in various physiological functions and disease pathogenesis. As a nucleocytoplasmic DNA virus, Singapore grouper iridovirus (SGIV) causes high economic losses in the mariculture industry. Aptamer-Q5-complexed major capsid protein (MCP) in the membrane of SGIV-infected cells can be used as a specific molecular probe to investigate the crucial events of MCP endocytosis into SGIV-infected host cells during viral infection. Chlorpromazine blocks clathrin-mediated endocytosis, and MCP endocytosis into SGIV-infected cells decreased significantly when the cells were pretreated with chlorpromazine. The disruption of cellular cholesterol by methyl-β-cyclodextrin also significantly reduced MCP endocytosis. In contrast, inhibitors of key regulators of caveolae/raft-dependent endocytosis and macropinocytosis, including genistein, Na+/H+ exchanger, p21-activated kinase 1 (PAK1), myosin II, Rac1 GTPase, and protein kinase C (PKC), had no effect on MCP endocytosis. The endocytosis of the biomarker MCP is dependent on low pH and cytoskeletal actin filaments, as shown with various inhibitors (chloroquine, ammonia chloride, cytochalasin D). Therefore, MCP enters SGIV-infected host cells via clathrin-mediated endocytosis, which is dependent on dynamin, cholesterol, low pH, and cytoskeletal actin filaments. This is the first report of a specific aptamer-based probe used to analyze MCP endocytosis into SGIV-infected host cells during viral infection. This method provides a convenient strategy for exploring viral pathogenesis and facilitates the development of diagnostic tools for and therapeutic approaches to viral infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China.,Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fishery Sciences, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Shaowen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
11
|
Jeong KH, Kim HJ, Kim HJ. Current status and future directions of fish vaccines employing virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2020; 100:49-57. [PMID: 32130976 DOI: 10.1016/j.fsi.2020.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 05/15/2023]
Abstract
In most breeding schemes, fish are cultured in enclosed spaces, which greatly increases the risk of outbreaks where the onset of infectious diseases can cause massive mortality and enormous economic losses. Vaccination is the most effective and long-term measure for improving the basic make-up of a fish farm. As the relationship between antibody and antigen is similar to that between screw and nut, similarity in the shape or nature of the vaccine antigen to the original pathogen is important for achieving a satisfactory/good/excellent antibody response with a vaccine. Virus-like particles (VLPs) best fulfil this requirement as their tertiary structure mimics that of the native virus. For this reason, VLPs have been attracting attention as next-generation vaccines for humans and animals, and the effects of various types of VLP vaccines on humans and livestock have been examined. Recent studies of VLP-based fish vaccines indicate that these vaccines are promising, and raise hopes of extending their use in the near future. In this review, the structural properties and immunogenicity of VLP-based vaccines against fish viruses such as infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (SAV), nervous necrosis virus (NNV) and iridovirus are introduced/summarized. The NNV VLP vaccine is the most-studied VLP-based vaccine against fish viruses. Therefore, the current status of NNV VLP research is highlighted in this review, which deals with the advantages of using VLPs as vaccines, and the expression systems for producing them. Moreover, the need for lyophilized VLPs and oral VLP delivery is discussed. Finally, future directions for the development of VLP vaccines in the fish vaccine field are considered.
Collapse
Affiliation(s)
- Ki-Ho Jeong
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Yu Q, Liu M, Wei S, Xiao H, Wu S, Ke K, Huang X, Qin Q, Li P. Identification of Major Capsid Protein as a Potential Biomarker of Grouper Iridovirus-Infected Cells Using Aptamers Selected by SELEX. Front Microbiol 2019; 10:2684. [PMID: 31849862 PMCID: PMC6901930 DOI: 10.3389/fmicb.2019.02684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 01/31/2023] Open
Abstract
Biomarkers have important roles in disease pathogenesis, and serve as important disease indicators for developing novel diagnostic and therapeutic approaches. Grouper iridovirus is a nucleocytoplasmic DNA virus, which not only causes great economic losses in mariculture but also seriously threatens the global biodiversity. However, a lack of biomarkers has limited the progress in clarifying iridovirus pathogenesis. Here, we report novel molecular probes, aptamers, for specific identification of biomarkers in grouper iridovirus-infected cells. Aptamers are selected by SELEX, which is a completely different approach from conventional antibody-based methods for biomarkers discovery. Aptamer-based technology is the unique efficient selection for cell-specific target molecules, and helps find out new biomarkers without the knowledge of characteristics of proteins expressed on virus-infected cell surface. With the implementation of a two-step strategy (aptamer selection and biomarker discovery), combined with mass spectrometry, grouper iridovirus major capsid protein was ultimately identified as a potential biomarker of aptamer Q5 for grouper iridovirus infection. The specific interactions of aptamer Q5 and MCP were experimentally validated by several assays, including EMSA, co-localization of fluorescence by LSCM, binding competition tests, and siRNA silencing tests by flow cytometry. This aptamer-based method for biomarkers discovery developed with grouper iridovirus-infected cells could be applicable to other types of virus infection, markedly improve our studies of biomarker discovery and virus pathogenesis, and further facilitate the development of diagnostic tools and therapeutic approaches to treat virus infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Siting Wu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Xiaohong Huang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Qiwei Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China.,College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Non-Targeted UHPLC-Q-TOF/MS-Based Metabolomics Reveals a Metabolic Shift from Glucose to Glutamine in CPB Cells during ISKNV Infection Cycle. Metabolites 2019; 9:metabo9090174. [PMID: 31487859 PMCID: PMC6780522 DOI: 10.3390/metabo9090174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has caused serious economic losses in the cultured mandarin fish (Siniperca chuatsi) industry in China. Host metabolism alteration induced by disease infection may be the core problem of pathogenesis. However, to date, little is known about the disease-induced fish metabolism changes. In this study, we first reported ISKNV, the fish virus, induced metabolism alteration. The metabolomics profiles of Chinese perch brain cells (CPB) post-ISKNV infection at progressive time points were analyzed using the UHPLC-Q-TOF/MS technique. A total of 98 differential metabolites were identified. In the samples harvested at 24 hours post-infection (hpi; the early stage of ISKNV infection), 49 differential metabolites were identified comparing with control cells, including 31 up-regulated and 18 down-regulated metabolites. And in the samples harvested at 72 hpi (the late stage of ISKNV infection), 49 differential metabolites were identified comparing with control cells, including 27 up-regulated and 22 down-regulated metabolites. These differential metabolites were involved in many pathways related with viral pathogenesis. Further analysis on the major differential metabolites related to glucose metabolism and amino acid metabolism revealed that both glucose metabolism and glutamine metabolism were altered and a metabolic shift was determined from glucose to glutamine during ISKNV infection cycle. In ISKNV-infected cells, CPB cells prefer to utilize glucose for ISKNV replication at the early stage of infection, while they prefer to utilize glutamine to synthetize lipid for ISKNV maturation at the late stage of infection. These findings may improve the understanding of the interaction between ISKNV and host, as well as provide a new insight for elucidating the ISKNV pathogenic mechanism.
Collapse
|
14
|
Zhao Z, Zhang C, Jia YJ, Qiu DK, Lin Q, Li NQ, Huang ZB, Fu XZ, Wang GX, Zhu B. Immersion vaccination of Mandarin fish Siniperca chuatsi against infectious spleen and kidney necrosis virus with a SWCNTs-based subunit vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 92:133-140. [PMID: 31173860 DOI: 10.1016/j.fsi.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) cause a high mortality disease which lead to significant economic loss on mandarin fish in China. There is no effective drug or vaccine against this fatal disease at present. Meanwhile, many drugs and vaccines had no effect in many cases account of several impenetrable barriers (cell, skin and gastrointestinal tract). Here we reported an immersion subunit vaccine system (SWCNTs-MCP) encoding MCP gene of ISKNV based on single-walled carbon nanotubes (SWCNTs). To evaluate its efficacy against ISKNV, we found a stronger and longer duration immune response (serum antibody production, enzyme activities and immune-related genes expression) can be induced in fish vaccinated with SWCNTs-MCP in comparison with those vaccinated with MCP alone. Importantly, SWCNTs can increase the immune protective effect of naked subunit vaccine by ca. 23.8%. Thereby, this study demonstrates that SWCNTs as a promising carrier for subunit vaccine might be used to vaccinate large-scale juvenile mandarin fish by bath administration approach.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Ning-Qiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Zhi-Bin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Xiao-Zhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
15
|
Shih TC, Ho LP, Wu JL, Chou HY, Pai TW. A voting mechanism-based linear epitope prediction system for the host-specific Iridoviridae family. BMC Bioinformatics 2019; 20:192. [PMID: 31074372 PMCID: PMC6509842 DOI: 10.1186/s12859-019-2736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The Iridoviridae family is categorized into five genera and clustered into two subfamilies: Alphairidovirinae includes Lymphocystivirus, Ranavirus (GIV), and Megalocystivirus (TGIV), which infect vertebrate hosts and Betairidovirinae includes Iridovirus and Chloriridovirus, which infect invertebrate hosts. Clustered Iridoviridae subfamilies possess host-specific characteristics, which can be considered as exclusive features for in-silico prediction of effective epitopes for vaccine development. A voting mechanism-based linear epitope (LE) prediction system was applied to identify and endorse LE candidates with a minimum length requirement for each clustered subfamily Results The experimental results showed that four conserved epitopes among the Iridovirideae family, one exclusive epitope for invertebrate subfamily and two exclusive epitopes for vertebrate family were predicted. These predicted LE candidates were further validated by ELISA assays for evaluating the strength of antigenicity and cross antigenicity. The conserved LEs for Iridoviridae family reflected high antigenicity responses for the two subfamilies, while exclusive LEs reflected high antigenicity responses only for the host-specific subfamily Conclusions Host-specific characteristics are important features and constraints for effective epitope prediction. Our proposed voting mechanism based system provides a novel approach for in silico LE prediction prior to vaccine development, and it is especially powerful for analyzing antigen sequences with exclusive features between two clustered groups.
Collapse
Affiliation(s)
- Tao-Chuan Shih
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Li-Ping Ho
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Jen-Leih Wu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yiu Chou
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan. .,Department of Aquaculture, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan. .,Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
16
|
Wu S, Yu L, Fu X, Yan X, Lin Q, Liu L, Liang H, Li N. iTRAQ-based proteomic profile analysis of ISKNV-infected CPB cells with emphasizing on glucose metabolism, apoptosis and autophagy pathways. FISH & SHELLFISH IMMUNOLOGY 2018; 79:102-111. [PMID: 29733959 DOI: 10.1016/j.fsi.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has caused significant losses in the cultured mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie interaction between ISKNV and hosts are not fully understood. In this study, the proteomic profile of CPB cells at progressive time points after ISKNV infection was analyzed by isobaric tags for relative and absolute quantitation (iTRAQ). A total of 2731 proteins corresponding to 6363 novel peptides (false discovery rate <0.01) were identified. In the samples harvested 24 h (early-stage) and 72 h (late-stage) post-infection, 232 and 199 differentially expressed proteins were identified comparing with mock-infected cells, respectively. Western-blotting analysis of several proteins as G6PDH, β-tubulin and RPL11 were done to validate iTRAQ data. Among those differentially expressed proteins, several glucose metabolism-related enzymes, including glucose-6-phosphate dehydrogenase (G6PDH), pyruvate dehydrogenase phosphatase (PDP) and fumarate hydratase (FH), were up-regulated, while pyruvate dehydrogenase kinase (PDK) and enolase (ENO) were down-regulated at 24 h poi, suggesting that ISKNV enhanced glucose metabolism in CPB cells in early-stage infection. Simultaneously, expression of apoptosis-related proteins including Caspase 8, phosphoinositide 3-kinases (PI3Ks), and regulatory-associated protein of mTOR-like isoform X3 changed upon ISKNV infection, indicating that ISKNV induced apoptosis of CPB cells. Autophagy-related proteins including LC3 and PI3Ks were up-regulated at 24 h poi, indicating that ISKNV induced autophagy of CPB cells in early-stage infection. These findings may improve the understanding of ISKNV and host interaction and help clarify its pathogenesis mechanisms.
Collapse
Affiliation(s)
- Shiwei Wu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Lujun Yu
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Xi Yan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China.
| |
Collapse
|
17
|
Development of cross-priming amplification coupled with vertical flow visualization for rapid detection of infectious spleen and kidney necrosis virus (ISKNV) in mandarin fish, Siniperca chuatsi. J Virol Methods 2017; 253:38-42. [PMID: 29288074 DOI: 10.1016/j.jviromet.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 01/30/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has been recognized as the causative agent of the most serious disease in cultured mandarin fish, Siniperca chuatsi, in China. Disease outbreaks have resulted in substantial losses to the aquaculture industry. Currently, reliable laboratory detection and identification methods are available for this virus. However, rapid detection methods applicable for on-site diagnosis of this infectious agent are unavailable. To address this need, a nearly instrument-free, cost-effective and simple detection method was developed and optimized and incorporates cross priming amplification coupled with vertical flow visualization for rapid identification of ISKNV (ISKNV-CPA-VF). Results show that cross circulation amplification targeting the conserved region of the major capsid protein (MCP) regiment of the ISKNV genome had a sensitivity 10 times greater than traditional PCR at 64 °C within 60 min. The optimized concentration of dNTPs and the concentration for Mg2+ were 1.0 mmol/L and 10 mmol/L, respectively. No cross-reactions with other viruses or bacteria were observed. When combined with the nucleic acid strip detection technology, visual detection of ISKNV amplified products was realized within 3-5 min following amplification. The simplicity and nearly instrument-free method for this ISKNV-CPA-VF assay shows great potential for on-site diagnostics of ISKNV infection in Siniperca chuatsi.
Collapse
|
18
|
Dong HT, Jitrakorn S, Kayansamruaj P, Pirarat N, Rodkhum C, Rattanarojpong T, Senapin S, Saksmerprome V. Infectious spleen and kidney necrosis disease (ISKND) outbreaks in farmed barramundi (Lates calcarifer) in Vietnam. FISH & SHELLFISH IMMUNOLOGY 2017; 68:65-73. [PMID: 28663128 DOI: 10.1016/j.fsi.2017.06.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Emergence of a disease with clinical signs resembling megalocytivirus infection seriously affected large-scale barramundi farms in Vietnam in 2012-2014 with estimated losses reaching $435,810 per year. An oil-based, inactivated vaccine against red sea bream iridovirus (RSIV) was applied in one farm for disease prevention without analysis of the causative agent, and the farmer reported inadequate protection. Here we describe histological and molecular analysis of the diseased fish. PCR targeting the major capsid protein (MCP) of megalocytiviruses yielded an amplicon with high sequence identity to infectious spleen and kidney necrosis virus (ISKNV) genotype II previously reported from other marine fish but not barramundi. Detection of the virus was confirmed by positive in situ hybridization results with fish tissue lesions of the kidney, liver, pancreas, and brain of the PCR-positive samples. Based on the complete sequence of the MCP gene, the isolate showed 95.2% nucleotide sequence identity and 98.7% amino acid sequence identity (6 residue differences) with the MCP of RSIV. Prediction of antigenic determinants for MCP antigens indicated that the 6 residue differences would result in a significant difference in antigenicity of the two proteins. This was confirmed by automated homology modeling in which structure superimpositioning revealed several unique epitopes in the barramundi isolate. This probably accounted for the low efficiency of the RSIV vaccine when tested by the farmer.
Collapse
Affiliation(s)
- H T Dong
- Aquaculture Vaccine Platform, Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, 10400, Thailand.
| | - S Jitrakorn
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - P Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - N Pirarat
- Wildlife, Exotic and Aquatic Pathology- Special Task Force for Activating Research, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - C Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - T Rattanarojpong
- Aquaculture Vaccine Platform, Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - S Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - V Saksmerprome
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.
| |
Collapse
|
19
|
Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N. Display of ISKNV orf086 protein on the surface of Aeromonas hydrophila and its immunogenicity in Chinese perch (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2016; 56:286-293. [PMID: 27436517 DOI: 10.1016/j.fsi.2016.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Co-infection with infectious spleen and kidney necrosis virus (ISKNV) and Aeromonas hydrophila is becoming ever more widespread in Chinese perch (Siniperca chuatsi) aquaculture industry, so that it's necessary to develop the combined vaccine against ISKNV and A. hydrophila disease. The surface display of heterologous on bacteria using anchoring motifs from outer membranes proteins has already been explored as an effective delivery system of viral antigens. In present study, the ISKNV orf086 gene, which is verified as a protective antigen, was inserted into ompA gene cassette of A. hydrophila GYK1 strain by homologous recombination. And an ompA-orf086 fusion A. hydrophila mutant strain K28 was constructed. Then the ISKNV orf086 was verified to express on the surface of A. hydrophila K28 by RT-PCR, western blot and indirect immunofluorescence assay. Next, Chinese perch were intraperitoneally inoculated with formalin inactivated A. hydrophila k28 emulsified with ISA763 adjuvant with a dose of 9 × 10(8) CFU per fish. Transcriptional analysis of non-specific and specific immune related genes revealed that the expression levels of IRF-7, IRAK1, Mx, Viperin, Lysozyme and IgM were strongly up-regulated in Chinese perch post-inoculation. In addition, specific antibodies were detected by ELISA, and the results showed that antibody titer against ISKNV or A. hydrophila reached the highest with 1:800 or 1:1200 on 14dpv, respectively. Lymphocyte proliferation were detected by MTT methods, and the results showed that the SI values of AH-K28 vaccinated group to three different stimulators were significantly higher than those of control group. At last, protective efficacy were determined by challenge trials. The cumulative mortality rates of vaccinated groups were significantly lower than the control one (P < 0.05) after ISKNV or A. hydrophila challenge, and the relative percentage survival (RPS) value was 73.3% and 60%, respectively. This system provides a novel approach to the surface display of heterologous antigenic proteins on A. hydrophila and suggests the possibility to use the recombinant K28 strain as a combined vaccine against ISKNV and A. hydrophila infection.
Collapse
Affiliation(s)
- Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Zhibin Huang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
20
|
Zhou Y, Jiang N, Ma J, Fan Y, Zhang L, Xu J, Zeng L. Protective immunity in gibel carp, Carassius gibelio of the truncated proteins of cyprinid herpesvirus 2 expressed in Pichia pastoris. FISH & SHELLFISH IMMUNOLOGY 2015; 47:1024-1031. [PMID: 26564473 DOI: 10.1016/j.fsi.2015.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infection is a newly emerged infectious disease of farmed gibel carp (Carassius gibelio) in China and causes huge economic losses to the aquaculture industry. In this study, the three membrane proteins encoded by genes ORF25, ORF25C, and ORF25D of CyHV-2 were truncated and expressed in yeast, Pichia pastoris. Screening of the recombinant yeasts was done by detecting the truncated proteins using Western blot. Through immunogold labeling, it was shown that proteins binding the colloidal gold were presented on the surface of cells. In the experiment of inhibition of virus binding by the recombinant truncated proteins, the TCID50 of the tORF25 group (10(4.1)/ml) was lower than that of tORF25C (10(4.6)/ml) or tORF25D groups (10(5)/ml). These results suggested that the proteins may be involved in attachment of the virus to the cell surface. Healthy gibel carp were immunized with 20 μg of tORF25, tORF25C, and tORF25D proteins, and the control group received PBS. Interleukin 11 (IL-11) expression in the spleens of the immunized fish peaked at day 4 and the complement component C3 (C3) genes were significantly up-regulated at day 7 post-immunization. Specific antibodies were measured in the three immunized groups and the titer detected in the tORF25 group reached 327, that was significantly higher than the tORF25C (247) or tORF25D (228) groups. When the immunized fish were challenged with live CyHV-2 by intraperitoneal injection the relative percent survival (RPS) of the tORF25, tORF25C, and tORF25D immunized groups was 75%, 63%, and 54%, respectively. The feasibility of the P. pastoris yeast expression system for the production of the recombinant truncated proteins and their apparent bioactivity suggests that tORF25, tORF25C, and tORF25D are potential candidate vaccines against Cyprinid herpesvirus 2 infection in gibel carp.
Collapse
Affiliation(s)
- Yong Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430071, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Linlin Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430071, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430071, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
21
|
Fu X, Li N, Lin Q, Guo H, Liu L, Huang Z, Wu S. Early protein ORF086 is an effective vaccine candidate for infectious spleen and kidney necrosis virus in mandarin fish Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2015; 46:200-205. [PMID: 26099219 DOI: 10.1016/j.fsi.2015.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has caused significant loss in the Mandarin fish (Siniperca chuatsi) aquaculture industry. Vaccination is an important measure to prevent fatal ISKNV infection. In this study, the ORF086 gene encoding an early protein helicase of ISKNV was cloned into the prokaryotic pET32a (+) and eukaryotic pcDNA3.1 (+) expression vectors and designated as pET086 and pcDNA086, respectively. A recombinant 36 kDa protein was detected in Escherichia coli BL21 (harboring pET086) after isopropyl β-d-1-thiogalactopyranoside (IPTG) induction. Polyclonal antibodies against the purified ORF086 protein were raised in rabbits. The antibody reaction and the pcDNA086 expression in muscle tissues of vaccinated fish were confirmed using Western blot analysis. The protective efficacy of ORF086 was also investigated. The cumulative mortality rates of Mandarin fish were significantly different between immune and control groups (P < 0.05) after ISKNV challenge. The relative percentage survival (RPS) values of the recombinant ORF086 protein emulsified with ISA763A adjuvant and pcDNA086 added with QCDC adjuvant were 73% and 63%, respectively. Transcriptional analysis of non-specific and specific immune related genes revealed that the expression levels of IRF-7, IRAK1, Mx, Viperin, and IgM were strongly up-regulated in the vaccinated groups post-immunization. In particular, the expression levels in the QCDC + pcDNA086 group was higher than those in the control groups (P < 0.05). These results indicated that the early protein ORF086 could be an effective antigen candidate for controlling ISKNV disease in Mandarin fish.
Collapse
Affiliation(s)
- Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huizhi Guo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhibin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China
| | - Shuqin Wu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
22
|
Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus. Vaccine 2015; 33:5662-5669. [DOI: 10.1016/j.vaccine.2015.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 01/12/2023]
|
23
|
A Novel Virus Causes Scale Drop Disease in Lates calcarifer. PLoS Pathog 2015; 11:e1005074. [PMID: 26252390 PMCID: PMC4529248 DOI: 10.1371/journal.ppat.1005074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.
Collapse
|
24
|
Hu X, Fu X, Li N, Dong X, Zhao L, Lan J, Ji W, Zhou W, Ai T, Wu S, Lin L. Transcriptomic analysis of Mandarin fish brain cells infected with infectious spleen and kidney necrosis virus with an emphasis on retinoic acid-inducible gene 1-like receptors and apoptosis pathways. FISH & SHELLFISH IMMUNOLOGY 2015; 45:619-29. [PMID: 25982401 DOI: 10.1016/j.fsi.2015.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 05/07/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has caused significant economic losses in the cultured Mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie the pathogenesis of the viral infection remain poorly understood. In this study, deep RNA sequencing technique was used to analyze the transcriptomic profiles of Mandarin fish brain cells (CPB) at progressive time points after ISKNV infection. A total of 96,206,040 clean data from 98,235,240 sequence reads were obtained. These raw data were assembled into 66,787 unigenes. Among these unigenes, 33,225 and 29,210 had significant hit the Nr and SwissProt databases where they matched 27,537and 19,638 unique protein accessions, respectively. In the samples harvested at 24 or 72 h post of the infection, a total of 10,834 or 7584 genes were differentially expressed in infected CPB cells compared to non-infected cells, including 5445 or 3766 up-regulated genes and 5389 or 3818 down-regulated genes, respectively. In addition, 12 differentially expressed genes (DEGs) were validated by quantitative PCR. These DEGs were involved in many pathways of viral pathogenesis. Further analysis of the major DEGs genes involved in the RLRs and apoptosis pathways revealed some interesting findings. In the RLRs pathway, ISKNV infection inhibited the activation of NF-κB via over expression of the IKKB-α and IKKB-β and lessened expression of interleukin-1 receptor-associated kinase 4 (IRAK4). In the apoptosis pathway, ISKNV infection could induce apoptosis mainly via tumor necrosis factor (TNF) mediated extrinsic pathway. The cellular apoptosis induced by ISKNV infection was confirmed using annexinV-FITC/PI and DAPI staining methods.
Collapse
Affiliation(s)
- Xianqin Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; School of Animal Sciences and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, Guangdong, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, Guangdong, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xingxing Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weidong Zhou
- Wuhan Fishery Research Institute, Wuhan, Hubei, 430207, China
| | - Taoshan Ai
- Wuhan Fishery Research Institute, Wuhan, Hubei, 430207, China
| | - Shuqin Wu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, Guangdong, 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, 430207, China.
| |
Collapse
|
25
|
Zhang J, Li MF. ORF75 of megalocytivirus RBIV-C1: A global transcription regulator and an effective vaccine candidate. FISH & SHELLFISH IMMUNOLOGY 2015; 45:486-494. [PMID: 25982404 DOI: 10.1016/j.fsi.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Megalocytivirus, a DNA virus belonging to the Iridoviridae family, is a severe pathogen to a wide range of marine and freshwater fish. In this study, using turbot (Scophthalmus maximus) as a host model, we examined the immunoprotective property of one megalocytivirus gene, ORF75, in the form of DNA vaccine (named pORF75). Immunofluorescence microscopy and RT-PCR analysis showed that P444, the protein encoded by ORF75, was naturally produced in the tissues of turbot during megalocytivirus infection, and that the vaccine gene in pORF75 was expressed in fish cells transfected with pORF75 and in the tissues of turbot immunized with pORF75. Following vaccination of turbot with pORF75, a high level of survival (73%) was observed against a lethal megalocytivirus challenge. Consistently, viral replication in the vaccinated fish was significantly inhibited. Immune response analysis showed that pORF75-vaccinated fish (i) exhibited upregulated expression of the genes involved in innate and adaptive immunity, (ii) possessed specific memory immune cells that showed significant response to secondary antigen stimulation, and (iii) produced specific serum antibodies which, when co-introduced into turbot with megalocytivirus, blocked viral replication. Furthermore, whole-genome transcriptome analysis revealed that ORF75 knockdown altered the transcription of 43 viral genes. Taken together, these results indicate that ORF75 encoded a highly protective immunogen that is also a global transcription regulator of megalocytivirus.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
26
|
Li N, Fu X, Guo H, Lin Q, Liu L, Zhang D, Fang X, Wu S. Protein encoded by ORF093 is an effective vaccine candidate for infectious spleen and kidney necrosis virus in Chinese perch Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2015; 42:88-90. [PMID: 25462463 DOI: 10.1016/j.fsi.2014.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of a disease causing high mortality and economic losses in Chinese perch, Siniperca chuatsi in China. Little information about the antigenicity of ISKNV proteins is available. In this study the ORF093 gene of ISKNV was cloned into the prokaryotic expression vector pET32a(+) and eukaryotic expression vector pcDNA3.1(+), and designated as pET-093 and pcDNA-093, respectively. A recombinant 51-kDa protein was detected in Escherichia coli BL21 (harboring pET-093) after IPTG inducement. Polyclonal antibodies were raised in rabbits against the purified ORF093 protein and the reaction of the antibodies was confirmed by western blotting using the purified recombinant protein. Expression of the pcDNA-093 in muscle tissue of vaccinated fish was confirmed by western blotting. The protection efficacy of ORF093 was investigated and results showed that cumulative mortality of Chinese perch was significant differences between immune groups and control (P<0.05) after ISKNV challenge, and the RPS value of 093 recombinant protein, pcDNA093 and pcDNA093+MCP was 47%, 50% and 57%. The results suggested that ORF093 is an effective vaccine candidate for ISKNV and it can be used in the control of ISKNV disease in Chinese perch.
Collapse
Affiliation(s)
- Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Huizhi Guo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Defeng Zhang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xiang Fang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Shuqin Wu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
27
|
Shin GW, White SL, Dahms HU, Jeong HD, Kim JH. Disease resistance and immune-relevant gene expression in golden mandarin fish, Siniperca scherzeri Steindachner, infected with infectious spleen and kidney necrosis virus-like agent. JOURNAL OF FISH DISEASES 2014; 37:1041-1054. [PMID: 24111797 DOI: 10.1111/jfd.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), family Iridoviridae, genus Megalocytivirus, may cause high mortality rates such as those seen in mandarin fish, Siniperca chuatsi. ISKNV has attracted much attention due to the possible environmental threat and economic losses it poses on both cultured and wild populations. We have investigated the pathogenicity of ISKNV-like agent Megalocytivirus, isolated from infected pearl gourami, in golden mandarin fish, Siniperca scherzeri - a member of the Percichthyidae family - and in another Percichthyidae species, S. chuatsi. Fish were challenged with four different doses of ISKNV-like agent Megalocytivirus (1, 10, 100 or 1000 μg per fish) over a 30-day period, and cumulative fish mortalities were calculated for each group. No significant mortality was observed for fish challenged with the lowest dose (1 μg per fish) relative to a control group. However, all other challenged groups showed 100% mortality over a 30-day period in proportion to the challenge dose. Quantitative real-time PCR was performed to measure mRNA expression levels for six immune-related genes in golden mandarin fish following ISKNV-like agent challenge. mRNA expression levels for IRF1, Mx, viperin and interleukin 8 significantly increased, while mRNA levels for IRF2 and IRF7 remained constant or declined during the challenge period.
Collapse
Affiliation(s)
- G W Shin
- Fundamental Research Department, National Fisheries Research and Development Institute, Busan, Korea
| | | | | | | | | |
Collapse
|
28
|
Fu X, Li N, Lin Q, Guo H, Zhang D, Liu L, Wu S. Protective immunity against infectious spleen and kidney necrosis virus induced by immunization with DNA plasmid containing mcp gene in Chinese perch Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2014; 40:259-266. [PMID: 25038286 DOI: 10.1016/j.fsi.2014.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of a disease leading to high mortality and economic losses in Chinese perch, Siniperca chuatsi. There is an urgent need to develop an effective vaccine against this fatal disease. In this study, the mcp gene encoding the major capsid protein, the predominant structural component of the iridovirus particles, was cloned into a eukaryotic expression vector pcDNA3.1+, and the recombinant plasmid, designated as pcMCP, was constructed. Expression of the mcp gene was confirmed in transfected cells and muscle tissues of vaccinated fish by RT-PCR, immunodot blot and western blot. Immune response was induced by intramuscular injection of Chinese perch with pcMCP added QCDC adjuvant. The expression levels of type I IFN system genes including IRF-7, IRAK1, Mx and Viperin were up-regulated at 6 h, and reached a peak at 48 h. In addition, there was a second peak of the expression levels of IRF-7 and Mx gene on the 21st day post-vaccination. Before the 21st day post-vaccination, the levels of IgM did not show a significant difference among all groups, but there was a remarkable increase on the 28th day post-vaccination. The relative percent survival (RPS) of Chinese perch vaccinated with pcMCP added QCDC adjuvant was 80% in a challenge trial on the 28th day post-vaccination. Moreover, real-time PCR demonstrated that the levels of viral load in the dead fish of the vaccinated group were significantly higher than those in mock-vaccinated fish. Together, these results indicate that pcMCP is a potential candidate DNA vaccine against ISKNV disease.
Collapse
Affiliation(s)
- Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Huizhi Guo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China
| | - Defeng Zhang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Shuqin Wu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
29
|
Development and application of a monoclonal antibody against grouper iridovirus (GIV) major capsid protein. J Virol Methods 2014; 205:31-7. [DOI: 10.1016/j.jviromet.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/27/2022]
|