1
|
El Gamal SA, Adawy RS, Zaki VH, Zahran E. Host-pathogen interaction unveiled by immune, oxidative stress, and cytokine expression analysis to experimental Saprolegnia parasitica infection in Nile tilapia. Sci Rep 2023; 13:9888. [PMID: 37337042 PMCID: PMC10279727 DOI: 10.1038/s41598-023-36892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The present study evaluated the pathogenicity, immunological, and oxidant/antioxidant responses against Saprolegnia parasitica (S. parasitica) infection in Nile tilapia (Oreochromis niloticus). Three groups of Nile tilapia were assigned as the control group (no zoospores exposure). The other two groups were challenged by Saprolegnia zoospores; one was used for sampling, and the other for mortality monitoring. The study lasted 3 weeks and was sampled at three point times at 1, 2, and 3 weeks. Results showed that S. parasitica zoospores were pathogenic to Nile tilapia, causing a cumulative mortality rate of 86.6%. Immunoglobulin M and C- reactive protein (IgM and CRP) levels showed a similar trend being significantly (P < 0.05, P < 0.001) higher in the infected group at weeks 1, 2, and 3, respectively, compared to the control group. Oxidant and antioxidant parameters in gills revealed that Malondialdehyde (MDA) level was significantly higher in the infected group compared to the control group. While catalase, glutathione peroxidase, and superoxide dismutase (CAT, GSH, and SOD) levels were significantly decreased in the infected group compared to the control group. Compared to the control, the tumor necrosis factor-α (TNF-α) gene was firmly upregulated in gill tissue at all-time points, particularly at day 14 post-infection. Meanwhile, Interleukin 1-β (IL-1 β) gene was significantly upregulated only at days 7 and 14 post-infection compared to control. Histopathological examination revealed destructive and degenerative changes in both skin and gills of experimentally infected Nile tilapia. Our findings suggest that Nile tilapia-S. parasitica infection model was successful in better understanding of pathogenicity and host (fish)-pathogen (oomycete) interactions, where the induced oxidative stress and upregulation of particular immune biomarkers in response to S. parasitica infection may play a crucial role in fish defense against oomycetes in fish.
Collapse
Affiliation(s)
- Samar A El Gamal
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Viola Hassan Zaki
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Hoque F, Abraham TJ, Joardar S, Paria P, Behera BK, Das BK. Effects of dietary supplementation of Pseudomonas aeruginosa FARP72 on the immunomodulation and resistance to Edwardsiella tarda in Pangasius pangasius. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100071. [PMID: 36419609 PMCID: PMC9680098 DOI: 10.1016/j.fsirep.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa FARP72 (PA) supplemented diet impacts the innate immunity. Innate immune responses of P. pangasius are differentially stimulated by PA diet. It improved the resistance of P. pangasius against E. tarda infection significantly. IL-1β & C3 genes upregulated significantly in kidney of PA diet-fed challenged fish. Highest upregulation of transferrin seen in liver of PA diet-fed challenged fish.
Edwardsiella tarda is one of the serious bacterial pathogens infecting both cultured and wild catfish urging an immediate need for effective protection strategies. This study assessed the effects of dietary supplementation of Pseudomonas aeruginosa FARP72 at 108 cells/g feed (PA diet) for 30 days on the innate immunity parameters, viz., respiratory oxidative burst (ROB) activity, lysozyme, ceruloplasmin, myeloperoxidase, in-vitro nitric oxide (NO) production in addition to the expression of immune genes encoding interleukin-1β, C3 and transferrin in yellowtail catfish Pangasius pangasius and their resistance to Edwardsiella tarda challenge at a sub-lethal dose of 1.50 × 107 cells/fish. A significant increase in the innate immunity parameters was noted in PA diet-fed catfish on 30 dpf compared to the control. Post E. tarda challenge, the levels of immune parameters increased significantly and peaked at 5 dpi irrespective of feeding to confer protection against E. tarda. Their levels, however, decreased on and from 10 dpi. The results on the expression of immune genes encoding interleukin-1β, C3 and transferrin in the kidney and liver tissue samples of PA diet-fed P. pangasius upon challenge with E. tarda further confirmed the ability of P. aeruginosa to stimulate primary immune organs at the gene level. The effects of feeding P. aeruginosa FARP72 on the immune functions of catfish as examined by the functional immune assays, thus, demonstrating the innate immune responses of catfish that are differentially stimulated by the PA diet. The findings of our study would help evolve management strategies to confer protection against E. tarda infection in commercial catfish aquaculture.
Collapse
|
3
|
Chandrapalan T, Kwong RWM. Functional significance and physiological regulation of essential trace metals in fish. J Exp Biol 2021; 224:273675. [PMID: 34882772 DOI: 10.1242/jeb.238790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace metals such as iron, copper, zinc and manganese play essential roles in various biological processes in fish, including development, energy metabolism and immune response. At embryonic stages, fish obtain essential metals primarily from the yolk, whereas in later life stages (i.e. juvenile and adult), the gastrointestine and the gill are the major sites for the acquisition of trace metals. On a molecular level, the absorption of metals is thought to occur at least in part via specific metal ion transporters, including the divalent metal transporter-1 (DMT1), copper transporter-1 (CTR1), and Zrt- and Irt-like proteins (ZIP). A variety of other proteins are also involved in maintaining cellular and systemic metal homeostasis. Interestingly, the expression and function of these metal transport- and metabolism-related proteins can be influenced by a range of trace metals and major ions. Increasing evidence also demonstrates an interplay between the gastrointestine and the gill for the regulation of trace metal absorption. Therefore, there is a complex network of regulatory and compensatory mechanisms involved in maintaining trace metal balance. Yet, an array of factors is known to influence metal metabolism in fish, such as hormonal status and environmental changes. In this Review, we summarize the physiological significance of iron, copper, zinc and manganese, and discuss the current state of knowledge on the mechanisms underlying transepithelial metal ion transport, metal-metal interactions, and cellular and systemic handling of these metals in fish. Finally, we identify knowledge gaps in the regulation of metal homeostasis and discuss potential future research directions.
Collapse
Affiliation(s)
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
4
|
Costa JZ, Del Pozo J, McLean K, Inglis N, Sourd P, Bordeianu A, Thompson KD. Proteomic characterization of serum proteins from Atlantic salmon (Salmo salar L.) from an outbreak with cardiomyopathy syndrome. JOURNAL OF FISH DISEASES 2021; 44:1697-1709. [PMID: 34224170 DOI: 10.1111/jfd.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cardiomyopathy syndrome (CMS), caused by piscine myocarditis virus (PMCV), is a serious challenge to Atlantic salmon (Salmo salar L.) aquaculture. Regrettably, husbandry techniques are the only tool to manage CMS outbreaks, and no prophylactic measures are available at present. Early diagnosis of CMS is therefore desirable, preferably with non-lethal diagnostic methods, such as serum biomarkers. To identify candidate biomarkers for CMS, the protein content of pools of sera (4 fish/pool) from salmon with a CMS outbreak (3 pools) and from clinically healthy salmon (3 pools) was compared using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Overall, seven proteins were uniquely identified in the sera of clinically healthy fish, while 27 proteins were unique to the sera of CMS fish. Of the latter, 24 have been associated with cardiac disease in humans. These were grouped as leakage enzymes (creatine kinase, lactate dehydrogenase, glycogen phosphorylase and carbonic anhydrase); host reaction proteins (acute-phase response proteins-haptoglobin, fibrinogen, α2-macroglobulin and ceruloplasmin; and complement-related proteins); and regeneration/remodelling proteins (fibronectin, lumican and retinol). Clinical evaluation of the suitability of these proteins as biomarkers of CMS, either individually or as part of a panel, is a logical next step for the development of early diagnostic tools for CMS.
Collapse
Affiliation(s)
- Janina Z Costa
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Jorge Del Pozo
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Kevin McLean
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Neil Inglis
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Philippe Sourd
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Andrei Bordeianu
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| |
Collapse
|
5
|
Pajdak-Czaus J, Schulz P, Terech-Majewska E, Szweda W, Siwicki AK, Platt-Samoraj A. Influence of Infectious Pancreatic Necrosis Virus and Yersinia ruckeri Co-Infection on a Non-Specific Immune System in Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2021; 11:ani11071974. [PMID: 34359116 PMCID: PMC8300417 DOI: 10.3390/ani11071974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although the intensification of fish production allows for better economic results, it also increases the risk of infections depending on fish density. Frequently occurring co-infections are difficult to diagnose because the isolated microorganisms are opportunistic, and their role in the development of disease is uncertain. The infectious pancreatic necrosis virus (IPNV) and bacteria Yersinia ruckeri are widespread pathogens of rainbow trout, causing economic losses in fish culture. The influence of the studied pathogens on non-specific immunity in both single and co-infections was determined. Results imply that IPNV infection may contribute to secondary bacterial infections. Abstract Background: The IPNV is one of the most common viral pathogens of rainbow trout (Oncorhynchus mykiss), while Y. ruckeri infections are widespread among bacterial agents. The current study aimed to determine the influence of IPNV and Y. ruckeri co-infection on a non-specific immune response. Methods: Two experiments were conducted. The first experiment determined the changes in non-specific immunity parameters upon the simultaneous occurrence of IPNV and Y. ruckeri infection. In the second experiment, infection with the IPNV was performed two weeks before Y. ruckeri infection. The level of total protein, gamma globulins, the activity of lysozyme and ceruloplasmin, as well as the metabolic activity and potential killing activity of phagocytes were measured: 0, 24 h, 72 h, 7 days, 14 days, and 21 days after co-infection. Results: A differentiated effect on the parameters of the non-specific immune response was shown between single infections with the IPNV and Y. ruckeri as well as co-infection with these pathogens. Conclusions: The immune response in the course of a co-infection depended on the time between infections. IPNV infection causes lysozyme activity suppression, which may lead to secondary bacterial infections.
Collapse
Affiliation(s)
- Joanna Pajdak-Czaus
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
- Correspondence:
| | - Patrycja Schulz
- Department of Ichthyopathology and Fish Health Prevention, S. Sakowicz Inland Fisheries Institute, Główna 48, 05-500 Żabieniec, Poland;
| | - Elżbieta Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| | - Aleksandra Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (E.T.-M.); (W.S.); (A.P.-S.)
| |
Collapse
|
6
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
7
|
Yang J, Tian T, Xiao K, Zeng Q, Tan C, Du H. Pathogenic infection and immune-related gene expression of Chinese sturgeon (Acipenser sinensis) challenged by Citrobacter freundii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103872. [PMID: 32949686 DOI: 10.1016/j.dci.2020.103872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Citrobacter freundii is one of the important bacterial diseases responsible for disease outbreaks to wild and cultured fishes globally. However, no known empirical research has focused on exploring relationships between immune response after C. freundii infection in sturgeons. In this study, C. freundii was isolated and identified from artificially breeding Chinese sturgeon, and global measurement of transcriptome response to C. freundii infection in head-kidney and spleen of A. sinensis were conducted to the acknowledgement of the potential mechanisms of pathogen-host interaction triggered by the bacterial infection. In total, differentially expressed genes which significantly associated with immune responses were found to be participated in antigen processing and presentation (MHC I, MHC II, HspA1, Hsp90A, Hsp70, CTSL, and CTSE), and acute phase response (serotransferrin and CP), as well as changing of other immune-related cytokine, such as chemokine and interferon, which proving their reacting and regulatory role during the response of thehost against C. freundii infection in fish. C. freundii can cause serious disease in sturgeon species was first reported in this study, and innate immune responses to C. freundii infection in this study will be conducive to understand the defense mechanisms and making appropriate prevention strategies in A. sinensis aquaculture operations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Tian Tian
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Kan Xiao
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Qingkai Zeng
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Chun Tan
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Hejun Du
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| |
Collapse
|
8
|
Schulz P, Terech-Majewska E, Siwicki AK, Kazuń B, Demska-Zakęś K, Rożyński M, Zakęś Z. Effect of Different Routes of Vaccination against Aeromonas salmonicida on Rearing Indicators and Survival after an Experimental Challenge of Pikeperch ( Sander lucioperca) in Controlled Rearing. Vaccines (Basel) 2020; 8:vaccines8030476. [PMID: 32858831 PMCID: PMC7565658 DOI: 10.3390/vaccines8030476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial diseases are a significant problem in the controlled rearing of fish. Furunculosis (Aeromonas sp.), flavobacteriosis (Flavobacterium sp.), and pseudomonadosis (Pseudomonas sp.) are currently the most frequently identified diseases in recirculating aquaculture systems of various fish species. Such a situation is also observed in pikeperch rearing. Due to the emerging difficulties of effective prophylaxis using commercial vaccines, interest in the use of autovaccinations is increasing, not only in ichthyopathology but also in other veterinary fields. Our research aimed to assess the effect of the vaccination method on the overall condition of the fish and survival after the experimental infection with Aeromonas salmonicida. Pikeperch were vaccinated by (1) bath, (2) a single i.p. injection, or (3) feed. The fish were measured and weighed on day 0 and after 28 and 56 days of the experiment. Specific growth rate, daily growth rate, condition factor, and feed conversion ratio were calculated. On days 7, 14, 21, and 28 of the experiment, ceruloplasmin and lysozyme levels were rated. In addition, a challenge test was performed. The obtained results showed that the method of vaccination is important and affects the growth of fish, the overall condition of fish, and survival after experimental infection.
Collapse
Affiliation(s)
- Patrycja Schulz
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Elżbieta Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Barbara Kazuń
- Department of Fish Pathology and Immunology, Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland;
| | - Krystyna Demska-Zakęś
- Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Maciej Rożyński
- Department of Aquaculture, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland; (M.R.); (Z.Z.)
| | - Zdzisław Zakęś
- Department of Aquaculture, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland; (M.R.); (Z.Z.)
| |
Collapse
|
9
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
10
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
Affiliation(s)
- L Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - S Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Sankar
- ICAR-Central Marine Research Institute, Mandapam Regional Centre, Tamil Nadu, India
| | - S Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M A Rather
- Division of Fish genetics and Biotechnology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - J K Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Secretory Proteins in the Skin Mucus of Nile Tilapia (Oreochromis niloticus) are Modulated Temporally by Photoperiod and Bacterial Endotoxin Cues. FISHES 2019. [DOI: 10.3390/fishes4040057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although it is well known that the biological and physical characteristics of skin mucus in fishes are strongly affected by changes in environmental conditions, the influence of photoperiod and time-dependent bacterial endotoxin stimulation is not well documented. In the present study, we determined the diel variations in the basal activities of secretory proteins with known defense functions in the skin mucus of Nile tilapia (Oreochromis niloticus) maintained under two photic environments: equal length of day and night (12L:12D, LD) or total darkness (0L:24D, DD). A second experiment was conducted to determine how time-dependent (i.e., day versus night) lipopolysaccharide (LPS) challenge could influence these skin mucosal defenses. The results revealed that LD signal differentially modulated the activities of mucosal immune molecules. Fish subjected to LD regime showed significantly higher levels of skin mucus lysozyme and protease at nighttime than at daytime. This distinct feature was not observed in fish under DD. There was no general mucosal response patterns to time-dependent LPS challenge. Nonetheless, protease and lysozyme, which were identified to be at elevated levels at night, were significantly modulated when the endotoxin was administered at nighttime. Ceruloplasmin was the only molecule that responded to LPS challenge at daytime, where its activity significantly increased at 8 h post-stimulation. Collectively, the results revealed that photoperiod cues influenced the activities of mucosal defenses and this may play, at least in part, in the temporal sensitivity to bacterial endotoxin.
Collapse
|
12
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
13
|
Schulz P, Robak S, Dastych J, Siwicki AK. Influence of bacteriophages cocktail on European eel (Anguilla anguilla) immunity and survival after experimental challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 84:28-37. [PMID: 30248403 DOI: 10.1016/j.fsi.2018.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Inland fishery belongs to those branches of animal production that use very large amounts of chemotherapeutics, in particular antibiotics. The accumulation of chemotherapeutic agents in bottom sediments is a direct threat to the aquatic environment and directly affects the condition and health of the fish. Finding a preparation that could be used both prophylactically to increase the resistance of fish and therapeutically in case of infection with pathogenic bacteria, without side effects for fish and aquatic environment could be a great solution to this problem. Our aim was to determine influence of BAFADOR® the new bacteriophage-based preparation on European eel immunity and survival after experimental challenge. Application of BAFADOR® increased total protein level, immunoglobulin level, lysozyme activity and ceruloplasmin level in European eel serum. Potential killing activity and metabolic activity of spleen phagocytes as well as pronephros lymphocyte proliferation of was higher compared to control. The preparation also reduced mortality after experimental infections with the pathogenic bacteria Aeromonas hydrophila and Pseudomonas fluorescens. Our results showed that preparation BAFADOR® is well tolerated by the fish organism causing stimulation of cellular and humoral immunity parameters and reduces the mortality of the European eel after experimental challenge.
Collapse
Affiliation(s)
- Patrycja Schulz
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland.
| | - Stanisław Robak
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, The Stanislaw Sakowicz Inland Fisheries Institute in Olsztyn, Poland
| | | | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
14
|
Das S, Sahoo PK. Ceruloplasmin, a moonlighting protein in fish. FISH & SHELLFISH IMMUNOLOGY 2018; 82:460-468. [PMID: 30144565 DOI: 10.1016/j.fsi.2018.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Ceruloplasmin is an ancient multicopper oxidase evolved to insure a safe handling of oxygen in some metabolic pathways of vertebrates. The current knowledge of its structure provides a glimpse of its plasticity, revealing a multitude of binding sites that point to an elaborate mechanism of multifunctional activity. Ceruloplasmin is highly conserved throughout the vertebrate evolution. Cupredoxin, a multi-cupper blue protein is believed to be the evolutionary precursor of ceruloplasmin with three trinuclear and three mononuclear copper binding sites. There are 20 copper-binding residues in ceruloplasmin gene out of which 16 residues are conserved in fish. This ceruloplasmin gene is being characterized in zebrafish (Danio rerio), rohu (Labeo rohita), Indian medaka (Oryzias melastigama), catfish (Ictalurus punctatus), icefish (Chionodraco rastrospinosus), goldfish (Carassius auratus) and yellow perch (Perca flaviscens). The complete coding sequence of fish ceruloplasmin gene is around 3.2 kb which codes for 1000 to 1100 amino acid residues. The size of ceruloplasmin gene sequence in fish ranges around 13 kb containing 20 exons and 19 introns. Liver is the major site of synthesis in fish. Increased expression of this gene during bacterial infection in channel catfish and rohu suggested its potential involvement in bacterial disease response in fish. It has been found to serve as an indirect marker for selection against Aeromonas hydrophila resistance in rohu carp. Ceruloplasmin expression is also evident during parasitic infection in few fish species. The role of this gene is well studied during inflammatory response to hormonal, drug and heavy metal mediated toxicity in fish. Overall, ceruloplasmin represents an example of a 'moonlighting' protein that overcomes the one gene-one structure-one function concept to follow the changes of the organism in its physiological and pathological conditions.
Collapse
Affiliation(s)
- Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi 682 018, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India.
| |
Collapse
|
15
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|
16
|
Henry MA, Gasco L, Chatzifotis S, Piccolo G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:204-209. [PMID: 29229441 DOI: 10.1016/j.dci.2017.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Feeding small European sea bass, Dicentrarchus labrax, for 6 weeks with Tenebrio molitor larval meal showed significant anti-inflammatory responses (ceruloplasmin, myeloperoxidase and nitric oxide). Serum bacteriolytic activity against a Gram negative bacterium was not significantly affected by dietary Tenebrio, while both lysozyme antibacterial activity and serum trypsin inhibition usually linked to the anti-parasite activity of the fish, were significantly enhanced. The latter may be due to the similarities in the composition of the exoskeleton of parasites and insects that may therefore act as an immunostimulant potentially increasing the anti-parasitic activity. The addition of exogenous proteases significantly decreased both trypsin-inhibition and serum bacteriolytic activity probably through direct inhibition of the proteins responsible for these immune functions. Further investigation involving bacterial or parasitic challenges will be necessary to assess if the effects of dietary mealworm meal on the immune system observed in the present study are translated into an improved resistance to diseases.
Collapse
Affiliation(s)
- M A Henry
- Laboratory of Fish Nutrition and Pathology, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Aghios Kosmas, 16777 Elliniko, Greece.
| | - L Gasco
- Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, 10095 Turin, Italy
| | - S Chatzifotis
- Aqualabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O.Box 2214, Iraklion, Crete 71003, Greece
| | - G Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|
17
|
Kutyrev I, Cleveland B, Leeds T, Wiens GD. Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2016; 58:542-553. [PMID: 27693200 DOI: 10.1016/j.fsi.2016.09.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Flavobacterium psychrophilum (Fp) is the causative agent of bacterial cold water disease (BCWD) which causes appreciable economic losses in rainbow trout aquaculture. We previously reported development of a genetic line, designated ARS-Fp-R that exhibits higher survival relative to a susceptible line, designated ARS-Fp-S, following either laboratory or natural on-farm challenge. The objectives of this study were to determine the temporal kinetics of gene expression between experimentally-challenged ARS-Fp-R and ARS-Fp-S fish and the correlation between gene expression and pathogen load. We developed a GeXP multiplex RT-PCR assay to simultaneously examine expression of immune-relevant genes, concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. Spleen tissue was sampled at 6 h, 24 h, 48 h and 144 h post-challenge and pathogen load quantified by qPCR. Transcript abundance of cytokine genes tnfa1, tnfa2, tnfa3, il1b1, il1b2, il11a; acute phase response genes saa and drtp1; and putative cytokine receptors il1r1-like-b, il1r2, tnfrsf1a, tnfrsf9, tnfrsf1a-like-b increased following challenge while the transcript abundance of il1r-like-1 and tnfrsf1a-like-a decreased compared to PBS-injected line-matched control fish. Principal component analysis identified transcript levels of genes il1r-like-1 and tnfrsf1a-like-a as exhibiting differential expression between genetic lines. In summary, Fp i.p. injection challenge elicited a proinflammatory cytokine gene expression response in the spleen, with ARS-Fp-R line fish exhibiting modestly higher basal expression levels of several putative cytokine receptors. This study furthers the understanding of the immune response following Fp challenge and differences in gene expression associated with selective breeding for disease resistance.
Collapse
Affiliation(s)
- Ivan Kutyrev
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA; Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia.
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA
| | - Timothy Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA.
| |
Collapse
|
18
|
Sahoo P, Swaminathan TR, Abraham TJ, Kumar R, Pattanayak S, Mohapatra A, Rath S, Patra A, Adikesavalu H, Sood N, Pradhan P, Das B, Jayasankar P, Jena J. Detection of goldfish haematopoietic necrosis herpes virus (Cyprinid herpesvirus-2) with multi-drug resistant Aeromonas hydrophila infection in goldfish: First evidence of any viral disease outbreak in ornamental freshwater aquaculture farms in India. Acta Trop 2016; 161:8-17. [PMID: 27172876 DOI: 10.1016/j.actatropica.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/04/2023]
Abstract
This outbreak report details of a mortality event where Cyprinid herpes virus-2 (CyHV-2) was detected in association with multidrug-resistant Aeromonas hydrophila infection in goldfish, Carassius auratus, from commercial farms. The goldfish exhibited large scale haemorrhages on the body, fins and gills, lepidorthosis, necrosed gills, protruded anus and shrunken eyes. White nodular necrotic foci in spleen and kidneys were noticed, along with necrosis and fusion of gill lamellae. Transmission electron microscopy of affected tissues revealed the presence of mature virus particles. Involvement of CyHV-2 was confirmed by PCR, sequencing and observed cytopathic effect in koi carp fin cell line along with experimental infection study. A bacterium isolated from the internal organs of affected fish was found to be pathogenic Aeromonas hydrophila having resistance to more than 10 classes of antibiotics. We postulate that CyHV-2 was the primary etiological agent responsible for this outbreak with secondary infection by A. hydrophila. The experimental infection trials in Labeo rohita and koi carp by intraperitoneal challenge with CyHV-2 tissue homogenates failed to reproduce the disease in those co-cultured fish species. This is the first report of a viral disease outbreak in organised earthen ornamental fish farms in India and bears further investigation.
Collapse
|
19
|
Li H, Huang X, Zeng Z, Peng XX, Peng B. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection. Int J Biochem Cell Biol 2016; 78:260-267. [PMID: 27458055 DOI: 10.1016/j.biocel.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Xiaoyan Huang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Zaohai Zeng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou 510006, Peoples Republic of China.
| |
Collapse
|
20
|
Das S, Mohapatra A, Kar B, Sahoo PK. Molecular characterization of interleukin 15 mRNA from rohu, Labeo rohita (Hamilton): Its prominent role during parasitic infection as indicated from infection studies. FISH & SHELLFISH IMMUNOLOGY 2015; 43:25-35. [PMID: 25514374 DOI: 10.1016/j.fsi.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/01/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
Interleukin 15 (IL-15) is an important cytokine of fish immune system. Sequence characterization of IL-15 from rohu, Labeo rohita revealed a mRNA sequence of 1064 bp with coding sequence of 567 bp and signal peptide of 16 amino acids. There are four characteristic sequence features viz., presence of four out-of-frame AUG initiation codons, four highly conserved cysteine residues, constitutive expression in all tissues and evolutionary similarity. The ontogeny study revealed maternal transfer of this molecule and higher expression up to 3 h post-fertilization in fertilized embryos. Its expression was down-regulated in anterior and posterior kidneys, intestine and liver tissues of rohu infected with Aeromonas hydrophila. Mild up-regulation in liver and higher expression in spleen was noticed in rohu stimulated with poly I:C (poly ionosinic:cytidylic), whereas down-regulation was observed in intestine and kidney tissues. However, a consistent higher expression was noticed in kidney and skin tissues during Argulus siamensis infection. Therefore, rohu IL-15 might possess more defensive role during early development and parasitic infection.
Collapse
Affiliation(s)
- Sweta Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
| | - Amruta Mohapatra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
| | - Banya Kar
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
| | - P K Sahoo
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India.
| |
Collapse
|
21
|
Chhotaray C, Mishra J, Sahoo P, Das S, Mahapatra KD, Saha JN, Baranski M, Robinson N, Das P. Development of twenty-seven genic SSR markers and screening for their association with resistance to Aeromonas hydrophila infection in rohu (Labeo rohita, Hamilton). BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Yadav MK, Pradhan PK, Sood N, Chaudhary DK, Verma DK, Debnath C, Sahoo L, Chauhan UK, Punia P, Jena JK. Innate immune response of Indian major carp, Labeo rohita infected with oomycete pathogen Aphanomyces invadans. FISH & SHELLFISH IMMUNOLOGY 2014; 39:524-531. [PMID: 24945572 DOI: 10.1016/j.fsi.2014.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
The fish pathogenic oomycete Aphanomyces invadans is the causative agent of epizootic ulcerative syndrome (EUS), a fish disease of international significance and reportable to the World Organisation for Animal Health. In spite of the current and potential impact of A. invadans infection on fisheries and aquaculture sectors of the world, very little is known about the host-A. invadans interactions. In the present study, following experimental infection with A. invadans in one of the Indian major carps, Labeo rohita, sequential changes in various innate immune parameters were monitored. The results indicated that at early stages of infection, no significant changes in any of the studied innate immune parameters were observed. However, at the advanced stages of infection from 6 to 12 days post infection (dpi), the respiratory burst and alternate complement activity were significantly higher whereas lysozyme, antiproteases and α-2 macroglobulin values were significantly lower than the control group and also from the infected group at earlier stages of infection. Since, the possibility of vaccination of fish against A. invadans appears remote due to difficulties in eliciting a specific antibody response, the information generated in the present study could be useful for developing strategies for improving resistance to A. invadans infection by stimulating the innate immunity through immunomodulation.
Collapse
Affiliation(s)
- Manoj K Yadav
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Pravata K Pradhan
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India.
| | - Neeraj Sood
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Dharmendra K Chaudhary
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Dev K Verma
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Chandan Debnath
- ICAR Research Complex for North Eastern Hill Region, Lambucherra 799 210, Tripura, India
| | - Lopamudra Sahoo
- ICAR Research Complex for North Eastern Hill Region, Lambucherra 799 210, Tripura, India
| | - U K Chauhan
- School of Environmental Biology, Awadesh Pratap Singh University, Rewa 486 003, Madhya Pradesh, India
| | - Peyush Punia
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Joy K Jena
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
23
|
Robinson N, Baranski M, Mahapatra KD, Saha JN, Das S, Mishra J, Das P, Kent M, Arnyasi M, Sahoo PK. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila. BMC Genomics 2014; 15:541. [PMID: 24984705 PMCID: PMC4226992 DOI: 10.1186/1471-2164-15-541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Production of carp dominates world aquaculture. More than 1.1 million tonnes of rohu carp, Labeo rohita (Hamilton), were produced in 2010. Aeromonas hydrophila is a bacterial pathogen causing aeromoniasis in rohu, and is a major problem for carp production worldwide. There is a need to better understand the genetic mechanisms affecting resistance to this disease, and to develop tools that can be used with selective breeding to improve resistance. Here we use a 6 K SNP array to genotype 21 full-sibling families of L. rohita that were experimentally challenged intra-peritoneally with a virulent strain of A. hydrophila to scan the genome for quantitative trait loci associated with disease resistance. RESULTS In all, 3193 SNPs were found to be informative and were used to create a linkage map and to scan for QTL affecting resistance to A. hydrophila. The linkage map consisted of 25 linkage groups, corresponding to the number of haploid chromosomes in L. rohita. Male and female linkage maps were similar in terms of order, coverage (1384 and 1393 cM, respectively) and average interval distances (1.32 and 1.35 cM, respectively). Forty-one percent of the SNPs were annotated with gene identity using BLAST (cut off E-score of 0.001). Twenty-one SNPs mapping to ten linkage groups showed significant associations with the traits hours of survival and dead or alive (P <0.05 after Bonferroni correction). Of the SNPs showing significant or suggestive associations with the traits, several were homologous to genes of known immune function or were in close linkage to such genes. Genes of interest included heat shock proteins (70, 60, 105 and "small heat shock proteins"), mucin (5b precursor and 2), lectin (receptor and CD22), tributyltin-binding protein, major histocompatibility loci (I and II), complement protein component c7-1, perforin 1, ubiquitin (ligase, factor e4b isoform 2 and conjugation enzyme e2 c), proteasome subunit, T-cell antigen receptor and lymphocyte specific protein tyrosine kinase. CONCLUSIONS A panel of markers has been identified that will be validated for use with both genomic and marker-assisted selection to improve resistance of L. rohita to A. hydrophila.
Collapse
Affiliation(s)
- Nicholas Robinson
- Breeding and Genetics, Nofima, PO Box 5010, 1432 Ås, Norway
- Biological Sciences, Flinders University, Bedford Park, Australia
| | | | - Kanta Das Mahapatra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Jatindra Nath Saha
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Sweta Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Jashobanta Mishra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Paramananda Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Matthew Kent
- Centre for Integrative Genetics, University of Life Sciences, Ås, Norway
| | - Mariann Arnyasi
- Centre for Integrative Genetics, University of Life Sciences, Ås, Norway
| | - Pramoda Kumar Sahoo
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| |
Collapse
|
24
|
Henry M, Fountoulaki E. Optimal dietary protein/lipid ratio for improved immune status of a newly cultivated Mediterranean fish species, the shi drum Umbrina cirrosa, L. FISH & SHELLFISH IMMUNOLOGY 2014; 37:215-219. [PMID: 24560682 DOI: 10.1016/j.fsi.2014.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Shi drum is a new fish species recently cultivated in Greek fish farms. Its feeding requirements and health status must be determined in order to optimize its culture conditions. The present study looked at the effects of different dietary protein levels (47 or 52%) in combination with 3 lipid levels (10, 15 or 20%) on the immune system of juvenile shi drums. Most immune parameters assessed were affected by the dietary treatment. The ceruloplasmin activity, the whole blood respiratory burst activity, the serum myeloperoxidase activity, the antibacterial activity of serum lysozyme and the serum antiprotease activity all varied with the dietary protein/lipid ratio. In view of these results, the lowest dietary lipid level tested (10%) was optimal for the immune system of shi drum but a clear determination of the optimal dietary protein levels was not obtained as 47% reduced stress but also increased the ceruloplasmin response of the fish. A dietary lipid level of 10% lipids was recommended for optimal immune status of the fish. Dietary protein level of 47% seemed to give better immune responses but further study is needed to refine protein requirements.
Collapse
Affiliation(s)
- Morgane Henry
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Aghios Kosmas, 16777 Helliniko, Greece.
| | - Eleni Fountoulaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Aghios Kosmas, 16777 Helliniko, Greece.
| |
Collapse
|