1
|
Virtanen MI, Iversen MH, Patel DM, Brinchmann MF. Daily crowding stress has limited, yet detectable effects on skin and head kidney gene expression in surgically tagged atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109794. [PMID: 39089638 DOI: 10.1016/j.fsi.2024.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
To ensure welfare-friendly and effective internal tagging, the tagging process should not cause a long-term burden on individuals given that tagged fish serve as representatives for the entire population in telemetry applications. To some extent, stress is inevitable within regular aquaculture practices, and thus, the consequences of long-term stress should be described in terms of their effects on internal tagging. In fish, stressors activate the Hypothalamus-Pituitary-Interrenal (HPI) and Brain-Sympathetic-Chromaffin Cell (BSC) axes, leading to neuroimmunoendocrine communication and paracrine interactions among stress hormones. The interrelation between wound healing and stress is complex, owing to their shared components, pathways, and energy demands. This study assessed 14 genes (mmp9, mmp13, il-2, il-4, il-8a, il-10, il-12, il-17d, il-1b, tnfa, ifng, leg-3, igm, and crh) in the skin (1.5 cm from the wound) and head kidney over eight weeks. These genes, associated with cell signaling in immunity, wound healing, and stress, have previously been identified as influenced and regulated by these processes. Half of a group of Atlantic salmon (n = 90) with surgically implanted dummy smart-tags were exposed to daily crowding stress. The goal was to investigate how this gene panel responds to a wound alone and then to the combined effects of wounding and daily crowding stress. Our observations indicate that chronic stress impacts inflammation and impedes wound healing, as seen through the expression of matrix metalloproteinases genes in the skin but not in the head kidney. This difference is likely due to the ongoing internal wound repair, in contrast to the externally healed wound incision. Cytokine expression, when significant in the skin, was mainly downregulated in both treatments compared to control values, particularly in the study's first half. Conversely, the head kidney showed initial cytokine downregulation followed by upregulation. Across all weeks observed and combining both tissues, the significantly expressed gene differences were 12 % between the Wound and Stress+ groups, 28 % between Wound and Control, and 25 % between Stress+ and Control. Despite significant fluctuations in cytokines, sustained variations across multiple weeks are only evident in a few select genes. Furthermore, Stress+ individuals demonstrated the most cytokine correlations within the head kidney, which may suggest that chronic stress affects cytokine expression. This investigation unveils that the presence of stress and prolonged activation of the HPI axis in an eight weeklong study has limited yet detectable effects on the selected gene expression within immunity, wound healing, and stress, with notable tissue-specific differences.
Collapse
|
2
|
Bjørgen H, Brimsholm M, Lund M, Dahle MK, Rimstad E, Koppang EO. Red and melanized focal changes in the white skeletal muscle of farmed rainbow trout Oncorhynchus mykiss. DISEASES OF AQUATIC ORGANISMS 2024; 158:201-213. [PMID: 38934260 DOI: 10.3354/dao03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Fillet discoloration by red and melanized focal changes (RFCs and MFCs) is common in farmed Atlantic salmon Salmo salar. In farmed rainbow trout Oncorhynchus mykiss, similar changes have been noted, but their prevalence and histological characteristics have not been investigated. Thus, we conducted a study encompassing 1293 rainbow trout from 3 different farm sites in Norway, all examined at the time of slaughter. Both macroscopic and histological assessments of the changes were performed. Reverse transcription (RT)-qPCR analyses and in situ hybridization (ISH) were used to detect the presence and location, respectively, of potential viruses. Only 1 RFC was detected in a single fillet, while the prevalence of MFCs ranged from 1.46 to 6.47% between populations. The changes were predominantly localized in the cranioventral region of the fillet. Histological examinations unveiled necrotic myocytes, fibrosis, and regeneration of myocytes. Melano-macrophages were found in the affected areas and in myoseptal adipose tissue. Organized granulomas were observed in only 1 fish. Notably, the presence of inflammatory cells, including melano-macrophages, appeared lower compared to what has been previously documented in Atlantic salmon MFCs. Instead, fibrosis and regeneration dominated. RT-qPCR and ISH revealed the presence of piscine orthoreovirus 1 (PRV-1) and salmonid alphavirus (SAV) in skeletal muscle. However, these viruses were not consistently associated with lesioned areas, contrasting previous findings in Atlantic salmon. In conclusion, rainbow trout develop MFCs of a different character than farmed Atlantic salmon, and we speculate whether the observed pathological differences are contributing to their reduced occurrence in farmed rainbow trout.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Morten Lund
- Pure Salmon Kaldnes, 3241 Sandefjord, Norway
| | | | - Espen Rimstad
- Unit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Virtanen MI, Brinchmann MF, Patel DM, Iversen MH. Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon (Salmo salar). Front Physiol 2023; 14:1147235. [PMID: 37078022 PMCID: PMC10106625 DOI: 10.3389/fphys.2023.1147235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The desire to understand fish welfare better has led to the development of live monitoring sensor tags embedded within individuals for long periods. Improving and understanding welfare must not come at the cost of impaired welfare due to a tag’s presence and implantation process. When welfare is compromised, the individual will experience negative emotions such as fear, pain, and distress, impacting the stress response. In this study, Atlantic salmon (Salmo salar) underwent surgical implantation of a dummy tag. Additionally, half of this group was introduced to daily crowding stress. Both groups and an untagged group were followed for 8 weeks using triplicate tanks per group. Sampling took place once a week, and where stress was given, it was conducted 24 h before sampling. Stress-related measurements were taken to understand if tagging caused chronic stress and explore the chronic stress response and its impact on wound healing. Primary stress response hormones measured included CRH, dopamine, adrenocorticotropic hormone, and cortisol. Secondary stress response parameters measured included glucose, lactate, magnesium, calcium, chloride, and osmolality. Tertiary stress response parameters measured included weight, length, and five fins for fin erosion. Wound healing was calculated by taking the incision length and width, the inflammation length and width, and the inside wound length and width. The wound healing process showed that stressed fish have a larger and longer-lasting inflammation period and a slower wound healing process, as seen from the inside wound. The tagging of Atlantic salmon did not cause chronic stress. In contrast, daily stress led to an allostatic overload type two response. ACTH was elevated in the plasma after 4 weeks, and cortisol followed elevation after 6 weeks, highlighting a breakdown of the stress regulation. Fin erosion was elevated alongside cortisol increase in the stressed group. This data suggests that tagging previously unstressed fish in a controlled environment does not negatively affect welfare regarding stress responses. It also indicates that stress delays wound healing and increases the inflammatory response, highlighting how continued stress causes a breakdown in some stress responses. Ultimately, the tagging of Atlantic salmon can be successful under certain conditions where proper healing is observed, tag retention is high, and chronic stress is not present, which could allow for the possible measurement of welfare indicators via smart-tags.
Collapse
|
4
|
Bayat M, Sarojini H, Chien S. The role of cluster of differentiation 163-positive macrophages in wound healing: a preliminary study and a systematic review. Arch Dermatol Res 2023; 315:359-370. [PMID: 36283990 DOI: 10.1007/s00403-022-02407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/13/2022] [Indexed: 02/01/2023]
Abstract
This is a literature assessment of essential information and current knowledge that pertains to the potential role for cluster of differentiation (CD) 163+ macrophages in different wound healing models, including extremely rapid tissue regeneration for regenerative medicine purposes. We intend to focus on the beneficial strategies that activate macrophage performance in order to advance the CD163+ macrophage-based therapy approaches to accelerate wound healing. We conducted an extensive literature search of peer reviewed articles obtained from the PubMed, Google Scholar, Scopus, Web of Science, and Cochrane databases by using the keywords "wound healing, CD163+ macrophages, diabetes mellitus, and burn." There were no limitations in terms of publication date. Our search resulted in 300 papers from which 17 articles were screened according to the inclusion criteria. We divided the selected articles into four distinct groups: healthy humans (n = 5); healthy animals (n = 7); humans with diabetes (n = 2); and animals with diabetes (n = 3). CD163 is a biomarker of the M2c macrophage subtype in mammals. Functions of M2c macrophages include angiogenesis, matrix maturation, and phagocytosis, and they activate prior to wounding. M2c produces many cytokines and growth factors, and also contains receptors for numerous cytokines and growth factors. Induction of M2c macrophages from tissue-resident macrophages in the wound bed by a suitable agent, such as delivery of intracellular ATP, appears to induce rapid granulation tissue formation without hypertrophic scarring and significantly reduces the lag time of the wound healing process.
Collapse
Affiliation(s)
- Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Harshini Sarojini
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
5
|
Jiang YR, Yoshida A, Sun XM, Higashitani H, Yamada K, Miyazaki R, Noguchi E, Kuwahara K, Osatomi K. Identification of a Tissue Inhibitor of Metalloproteinase-2: An Endogenous Inhibitor of Modori-Inducing Insoluble Metalloproteinase from Yellowtail Seriola quinqueradiata Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3414-3423. [PMID: 36753295 DOI: 10.1021/acs.jafc.2c07803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The existence of an endogenous protease inhibitor (EPI) was expected from the comparison of the gel properties between washed and nonwashed yellowtail surimi gels. A possible candidate, tissue inhibitor of metalloproteinase-2 (TIMP-2), was partially purified from the soluble fraction of yellowtail muscle, and an 18 kDa protein band was detected by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions and western blot analysis. Its N-terminal amino acid sequence was determined as XSXSPAHPQQAF, with high homology to TIMP-2 from other fish species, suggesting that it was identified as yellowtail TIMP-2. Subsequently, full-length cDNA of two isoforms (TIMP-2a and TIMP-2b) was successfully cloned from yellowtail muscle. The N-terminal sequence of purified TIMP-2 completely corresponded to TIMP-2b. When the surimi gel quality decreased after spawning, the mRNA expression of TIMP-2b also decreased. Human TIMP-2 could inhibit autolysis of myofibrillar proteins from yellowtail muscle. Thus, TIMP-2b was considered the major EPI of the modori-inducing insoluble metalloproteinase in yellowtail muscle.
Collapse
Affiliation(s)
- Yan-Rong Jiang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Xiao-Mi Sun
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | | | - Kairi Yamada
- Nagasaki Prefectural Institute of Fisheries, Nagasaki 851-2213, Japan
| | - Riho Miyazaki
- Nagasaki Prefectural Institute of Fisheries, Nagasaki 851-2213, Japan
| | - Erika Noguchi
- Nagasaki Prefectural Institute of Fisheries, Nagasaki 851-2213, Japan
| | - Koichi Kuwahara
- Nagasaki Prefectural Institute of Fisheries, Nagasaki 851-2213, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Zhang S, Wang C, Liu S, Wang Y, Lu S, Han S, Jiang H, Liu H, Yang Y. Effect of dietary phenylalanine on growth performance and intestinal health of triploid rainbow trout ( Oncorhynchus mykiss) in low fishmeal diets. Front Nutr 2023; 10:1008822. [PMID: 36960199 PMCID: PMC10028192 DOI: 10.3389/fnut.2023.1008822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to investigate the effects of phenylalanine on the growth, digestive capacity, antioxidant capability, and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) fed a low fish meal diet (15%). Five isonitrogenous and isoenergetic diets with different dietary phenylalanine levels (1.82, 2.03, 2.29, 2.64, and 3.01%) were fed to triplicate groups of 20 fish (initial mean body weight of 36.76 ± 3.13 g). The weight gain rate and specific growth rate were significantly lower (p < 0.05) in the 3.01% group. The trypsin activity in the 2.03% group was significantly higher than that in the control group (p < 0.05). Amylase activity peaked in the 2.64% treatment group. Serum superoxide dismutase, catalase, and lysozyme had the highest values in the 2.03% treatment group. Liver superoxide dismutase and catalase reached their maximum values in the 2.03% treatment group, and lysozyme had the highest value in the 2.29% treatment group. Malondialdehyde levels in both the liver and serum were at their lowest in the 2.29% treatment group. Interleukin factors IL-1β and IL-6 both reached a minimum in the 2.03% group and were significantly lower than in the control group, while IL-10 reached a maximum in the 2.03% group (p < 0.05). The tight junction protein-related genes occludin, claudin-1, and ZO-1 all attained their highest levels in the 2.03% treatment group and were significantly higher compared to the control group (p < 0.05). The intestinal villi length and muscle layer thickness were also improved in the 2.03% group (p < 0.05). In conclusion, dietary phenylalanine effectively improved the growth, digestion, absorption capacity, antioxidant capacity, and intestinal health of O. mykiss. Using a quadratic curve model analysis based on WGR, the dietary phenylalanine requirement of triploid O. mykiss fed a low fish meal diet (15%) was 2.13%.
Collapse
Affiliation(s)
- Shuze Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chang’an Wang,
| | - Siyuan Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Life Science, Dalian Ocean University, Dalian, China
| | - Yaling Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Hongbai Liu,
| | - Yuhong Yang
- College of Animal Science, Northeast Agricultural University, Harbin, China
- Yuhong Yang,
| |
Collapse
|
8
|
Perelló-Amorós M, Otero-Tarrazón A, Jorge-Pedraza V, García-Pérez I, Sánchez-Moya A, Gabillard JC, Moshayedi F, Navarro I, Capilla E, Fernández-Borràs J, Blasco J, Chillarón J, García de la serrana D, Gutiérrez J. Myomaker and Myomixer Characterization in Gilthead Sea Bream under Different Myogenesis Conditions. Int J Mol Sci 2022; 23:ijms232314639. [PMID: 36498967 PMCID: PMC9737248 DOI: 10.3390/ijms232314639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Aitor Otero-Tarrazón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Violeta Jorge-Pedraza
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isabel García-Pérez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Sánchez-Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Fatemeh Moshayedi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josep Chillarón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel García de la serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-532
| |
Collapse
|
9
|
Machuca C, Méndez-Martínez Y, Reyes-Becerril M, Angulo C. Yeast β-Glucans as Fish Immunomodulators: A Review. Animals (Basel) 2022; 12:ani12162154. [PMID: 36009745 PMCID: PMC9405025 DOI: 10.3390/ani12162154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The β-glucan obtained from yeast—a very important molecule for fish production—activates the immune system of fish by different mechanisms and induces protection against pathogens. However, most previous related studies have focused on the use of commercial β-glucan from the yeast Saccharomyces cerevisiae to understand the activation pathways. Experimental β-glucans extracted from other yeasts show other interesting biological activities even at lower doses. This review article analyzes the current information and suggests perspectives on yeast β-glucans. Abstract Administration of immunostimulants in fish is a preventive method to combat infections. A wide variety of these biological molecules exist, among which one of the yeast wall compounds stands out for its different biological activities. The β-glucan that forms the structural part of yeast is capable of generating immune activity in fish by cell receptor recognition. The most frequently used β-glucans for the study of mechanisms of action are those of commercial origin, with doses recommended by the manufacturer. Nevertheless, their immune activity is inefficient in some fish species, and increasing the dose may show adverse effects, including immunosuppression. Conversely, experimental β-glucans from other yeast species show different activities, such as antibacterial, antioxidant, healing, and stress tolerance properties. Therefore, this review analyses the most recent scientific reports on the use of yeast β-glucans in freshwater and marine fish.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Yuniel Méndez-Martínez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo 120301, Ecuador
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-8484; Fax: +52-612-125-3625
| |
Collapse
|
10
|
Chen SY, Zhan XL, Jiang R, Dai YW, Lu JF, Yang GJ, Chen J, Lu XJ. Matrix metalloproteinase-25 from Japanese sea bass (Lateolabrax japonicus) is involved in pro-inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104348. [PMID: 35026231 DOI: 10.1016/j.dci.2022.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are highly expressed in leukocytes and macrophages, which play a role in the innate immune response. Here, the cDNA sequence of MMP25 from Japanese sea bass (Lateolabrax japonicus) (LjMMP25) was identified. Phylogenetic analysis revealed that LjMMP25 was most closely related to large yellow croaker MMP25. Multiple sequence alignment of LjMMP25 with MMP25 sequences from other teleosts revealed that regions of known functional importance were highly conserved. Expression analysis revealed that LjMMP25 was highly expressed in the head kidney and widely expressed in other tissues including gill, spleen, and liver. LjMMP25 was found to regulate inflammatory cytokine production and promote phagocytosis and bacterial killing in monocytes/macrophages (MO/MФ). Furthermore, LjMMP25 regulated the inflammatory response by modulating NF-κB signaling. These findings reveal new information about the role of LjMMP25 in regulating pro-inflammatory responses in this species.
Collapse
Affiliation(s)
- Si-Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Wu Dai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
11
|
Stahl LL, Snyder BD, McCarty HB, Cohen TR, Miller KM, Fernandez MB, Healey JC. An Evaluation of Fish Tissue Monitoring Alternatives for Mercury and Selenium: Fish Muscle Biopsy Samples Versus Homogenized Whole Fillets. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:236-254. [PMID: 34331106 PMCID: PMC8342331 DOI: 10.1007/s00244-021-00872-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Fish contaminant studies with human health protection objectives typically focus on muscle tissue, recognizing that fillets are the commonly consumed tissue fraction. Muscle biopsy punch sampling for mercury analysis has recently been used as an alternative to harvesting fish for fillets; however, there is limited information comparing fillet plug results to whole fillet results. This study was conducted to address that data gap and to test the applicability of plugs for monitoring associated with United States Environmental Protection Agency's fish tissue-based mercury and selenium water quality criteria. The mercury phase included 300 fillet homogenates and 300 field-extracted plug samples from 60 fish, and the selenium phase included 120 fillet homogenates and 120 plugs from 30 fish. Both phases showed that there were no statistically significant differences between fillet plug and homogenized fillet results at the community level; however, a selenium plug monitoring alternative must employ a sufficiently sensitive analytical method and consider total solids. Plug and fillet sampling alternatives have inherent advantages and disadvantages. Fillet sampling provides sufficient mass to consider multiple contaminants but requires fish to be harvested. Plug sampling only provides adequate mass for a single analyte but may allow fish survival, although additional research is needed on survival following plug removal.
Collapse
Affiliation(s)
- Leanne L. Stahl
- OW/Office of Science and Technology, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460 USA
| | - Blaine D. Snyder
- Center for Ecological Sciences, Tetra Tech, Inc., 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117 USA
| | - Harry B. McCarty
- A General Dynamics Information Technology Company, CSRA, LLC, 6361 Walker Lane, Alexandria, VA 22310 USA
| | - Tara R. Cohen
- Center for Ecological Sciences, Tetra Tech, Inc., 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117 USA
| | - Kenneth M. Miller
- A General Dynamics Information Technology Company, CSRA, LLC, 6361 Walker Lane, Alexandria, VA 22310 USA
| | - Mark B. Fernandez
- Center for Ecological Sciences, Tetra Tech, Inc., 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117 USA
| | - John C. Healey
- OW/Office of Science and Technology, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460 USA
| |
Collapse
|
12
|
Edirisinghe SL, Rajapaksha DC, Nikapitiya C, Oh C, Lee KA, Kang DH, De Zoysa M. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 107:414-425. [PMID: 33038507 DOI: 10.1016/j.fsi.2020.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Purified bioactive components of marine algae have shown great pharmaceutical and biomedical potential, including wound healing activity. However, the activity of Spirulina maxima is the least documented with regard to wound healing potential. In the present study, we investigated the regenerative and wound healing activities of a Spirulina (Arthrospira) maxima based pectin (SmP) using in vitro human dermal fibroblasts (HDFs) and in vivo zebrafish model. SmP treated (12.5-50 μg/mL) HDFs showed increased cell proliferation by 20-40% compared to the untreated HDFs. Moreover, in vitro wound healing results in HDFs demonstrated that SmP decreased the open wound area % in concentration-dependent manner at 12.5 (32%) and 25 μg/mL (12%) compared to the control (44%). Further, zebrafish larvae displayed a greater fin regenerated area in the SmP exposed group at 25 (0.48 mm2) and 50 μg/mL (0.51 mm2), whereas the untreated group had the lowest regenerated area (0.40 mm2) at 3 days post amputation. However, fin regeneration was significantly (P < 0.001) higher only in the SmP treated group at 50 μg/mL. Furthermore, the open skin wound healing % in adult zebrafish was significantly higher (P < 0.05) after topical application (600 μg/fish) of SmP (46%) compared to the control (38%). Upregulation of genes such as tgfβ1, timp2b, mmp9, tnf-α, and il-1β, and chemokines such as cxcl18b, ccl34a.4, and ccl34b.4, in the muscle and kidney tissues of SmP treated fish compared to the respective control group was demonstrated using qRT-PCR. Histological analysis results further supported the rapid epidermal growth and tissue remodeling in SmP treated fish, suggesting that SmP exerts positive effects associated with wound healing. Therefore, SmP can be considered a potential regenerative and wound healing agent.
Collapse
Affiliation(s)
- S L Edirisinghe
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - D C Rajapaksha
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea
| | - Kyoung-Ah Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea
| | - Do-Hyung Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
14
|
Liu YY, Wu JQ, Fan RY, He ZH, Li CY, He MF. Isoliquiritin promote angiogenesis by recruiting macrophages to improve the healing of zebrafish wounds. FISH & SHELLFISH IMMUNOLOGY 2020; 100:238-245. [PMID: 32135341 DOI: 10.1016/j.fsi.2020.02.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Licorice is a widely used herbal medicine for the treatment of various diseases in southern Europe and parts of Asia. It has been reported that the isoliquiritin (ISL) from Glycyrrhiza root has the activity of promoting angiogenesis. The purpose of this study was to investigate the effect of ISL on the wound healing activity of zebrafish and its mechanism. 6-month-old zebrafish were injured in the skin (2 mm in diameter) and then treated with ISL. By measuring wound size and by histological examination, we found that ISL improved wound healing. In addition, 4-day-old zebrafish embryos of double transgenic line [Tg(fli-1:EGFP)]/[Tg(mpeg:mCherry)] were suffered from tissue traumas and then treated with ISL. Through fluorescent microscopy, we found that ISL promoted macrophage recruitment and angiogenesis in the wound area. Through qPCR analysis, we found that ISL up-regulated the expression of genes related to inflammation and angiogenesis in zebrafish embryos. These results showed that ISL could promote inflammatory response and angiogenesis, which played key roles in promoting wound healing. Therefore, ISL can be used as a promising candidate to promote wound healing.
Collapse
Affiliation(s)
- Yu-Yang Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jia-Qi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ruo-Yue Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, China.
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, China.
| |
Collapse
|
15
|
Hjelmstedt P, Sundh H, Brijs J, Ekström A, Sundell KS, Berg C, Sandblom E, Bowman J, Morgenroth D, Gräns A. Effects of prophylactic antibiotic-treatment on post-surgical recovery following intraperitoneal bio-logger implantation in rainbow trout. Sci Rep 2020; 10:5583. [PMID: 32221366 PMCID: PMC7101407 DOI: 10.1038/s41598-020-62558-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Bio-logging devices can provide unique insights on the life of freely moving animals. However, implanting these devices often requires invasive surgery that causes stress and physiological side-effects. While certain medications in connection to surgeries have therapeutic capacity, others may have aversive effects. Here, we hypothesized that the commonly prescribed prophylactic treatment with enrofloxacin would increase the physiological recovery rate and reduce the presence of systemic inflammation following the intraperitoneal implantation of a heart rate bio-logger in rainbow trout (Oncorhynchus mykiss). To assess post-surgical recovery, heart rate was recorded for 21 days in trout with or without enrofloxacin treatment. Contrary to our hypothesis, treated trout exhibited a prolonged recovery time and elevated resting heart rates during the first week of post-surgical recovery compared to untreated trout. In addition, an upregulated mRNA expression of TNFα in treated trout indicate a possible inflammatory response 21 days post-surgery. Interestingly, the experience level of the surgeon was observed to have a long-lasting impact on heart rate. In conclusion, our study showed no favorable effects of enrofloxacin treatment. Our findings highlight the importance of adequate post-surgical recovery times and surgical training with regards to improving the welfare of experimental animals and reliability of research outcomes.
Collapse
Affiliation(s)
- Per Hjelmstedt
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, SE-532 31, Sweden.
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405-30, Sweden.,Swedish Mariculture Research Center, Centre for Sea and Society at University of Gothenburg, Gothenburg, SE-405-30, Sweden
| | - Jeroen Brijs
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, SE-532 31, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405-30, Sweden
| | - Kristina Snuttan Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405-30, Sweden.,Swedish Mariculture Research Center, Centre for Sea and Society at University of Gothenburg, Gothenburg, SE-405-30, Sweden
| | - Charlotte Berg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, SE-532 31, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405-30, Sweden
| | - Jennifer Bowman
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, SE-532 31, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405-30, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, SE-532 31, Sweden
| |
Collapse
|
16
|
Zhong C, Cao MJ, Shu M, Sun LC, Yang HH, Wu GP. Tissue inhibitor of metalloproteinase-2 (TIMP-2) from red seabream (Pagrus major): Molecular cloning and biochemical characterization of highly expressed recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2019; 95:556-563. [PMID: 31693944 DOI: 10.1016/j.fsi.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The tissue inhibitor of metalloproteinase-2 (TIMP-2) is originally characterized as an endogenous inhibitor of matrix metalloproteinases (MMPs) to response collagenolysis associated with immune challenge. In this study, the cDNA encoding TIMP-2a gene from red seabream (Pagrus major) muscle was cloned. It was 585 bp encoding a putative protein of 194 amino acids, which comprised all recognized functional domains and showed the high identity to TIMP-2as from other teleost fishes, revealing it belongs to TIMP-2a family. Soluble rTIMP-2a was efficiently expressed using a new constructed pPIC9K-rTIMP-2a vector with high inhibitory activity against to MMP-2 and MMP-9. The recombinant TIMP-2a tagged with 6 histidine residues showed the molecular mass of 23 kDa and isoelectric point of 6.50. Furthermore, the 6 disulfide bonds formed by 12 conserved cysteine residues were identified as functional motifs for its structural stability. In addition, rTIMP-2a possessed the high inhibitory activity against gelatinolytic hydrolysis and degradation of type I collagen which induced by endogenous MMPs in muscle. The results revealed the properties and inhibitory function of rTIMP-2a, which may be a pivotal role in regulation gelatinolytic MMPs metabolization during defense mechanism.
Collapse
Affiliation(s)
- Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Le Chang Sun
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Huan Huan Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guo Ping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Dos Santos Voloski AP, de Figueiredo Soveral L, Dazzi CC, Sutili F, Frandoloso R, Kreutz LC. β-Glucan improves wound healing in silver catfish (Rhamdia quelen). FISH & SHELLFISH IMMUNOLOGY 2019; 93:575-579. [PMID: 31398396 DOI: 10.1016/j.fsi.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The immune modulating activity of β-glucan on aquatic species has been a matter of intense investigation. Here, we aimed to investigate the effect of β-glucan on wound healing of silver catfish, a Neotropical South American scale-free fish. Small sections of skin and muscle (3 mm in diameter) were removed and fish were bathed daily with β-glucan (0.1% and 0.5%) up to 28 days when cicatrization was complete. A group of fish similarly injured and non-exposed to β-glucan was used as control. Wound closure and healing was monitored visually and by histopathological analysis. In fish bathed with 0.5% β-glucan we found reduced blood cortisol levels at day one post-wounding and, by day 7 post wounding, the deposition of granulation tissue was higher compared to non-exposed fish. In addition, from day 7 forward, wound size was significantly lower in fish bathed with 0.5% β-glucan. Histopathological analysis of the wounded site indicated a thin layer of immature epidermal cells at day one post wounding. A discrete inflammation with mixed inflammatory cell infiltrate was observed on wounded muscle and was lower by day 7 post wounding on fish bathed with 0.5% β-glucan. By day 14 post wounding, the deposition of collagen fibers and the presence of fibroblast and new muscle fibers were higher in fish exposed to 0.5% β-glucan, and dermis restoration was complete. Thus, our results indicate that in silver catfish wound healing occurs rapidly and improves greatly by daily bathing with β-glucan.
Collapse
Affiliation(s)
- Ana Paula Dos Santos Voloski
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil
| | - Lucas de Figueiredo Soveral
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil
| | - Cláudia Cerutti Dazzi
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil
| | - Fernando Sutili
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil
| | - Rafael Frandoloso
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil
| | - Luiz Carlos Kreutz
- Universidade de Passo Fundo (UPF), Faculdade de Agronomia e Medicina Veterinária (FAMV), Programa de Pós-Graduação em Bioexperimentação, Laboratório de Microbiologia e Imunologia Avançada - Prédio G3. Campus I, Bairro São José, BR 282, km 292, CEP 99052-900, Passo Fundo, RS, Brazil.
| |
Collapse
|
18
|
Coutant T, Vergneau-Grosset C, Lair S. Effect of a Misoprostol/Phenytoin Gel on Experimentally Induced Wounds in Brook Trout-A Preliminary Study. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:214-221. [PMID: 30980421 DOI: 10.1002/aah.10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Topical treatment for wound management in fish is challenging due to their aquatic life. The objective of the present study was to assess the effect of a topical gel containing misoprostol and phenytoin on the healing of skin wounds in Brook Trout Salvelinus fontinalis. Four 16- × 8-mm, full-thickness wounds were created in each trout. Fish were randomly assigned either to the misoprostol/phenytoin group (14 fish) or to the untreated control group (5 fish). In fish from the misoprostol/phenytoin group, two randomly selected wounds were topically treated with a misoprostol/phenytoin gel, while the other two wounds were left without topical treatment. Follow-up and treatment were performed every 5 d for 120 d. Different macroscopic healing indexes were recorded over time, and histological characteristics of each wound were scored at the end of the study. Treatment with misoprostol/phenytoin was associated with delayed epithelialization and wound maturation in comparison with contralateral untreated wounds. The treatment was also associated with lower histological inflammation scores and increased dermal neovascularization. The untreated wounds of fish in the misoprostol/phenytoin group showed delayed maturation and decreased healing speed and had lower inflammation scores and increased neovascularization compared to untreated control wounds. Topical treatment of wounds in Brook Trout with misoprostol/phenytoin gel at the concentration used had a local and systemic deleterious effect on wound healing. The results of the present study do not support the use of this gel at this dosage for the treatment of wounds in Brook Trout.
Collapse
Affiliation(s)
- Thomas Coutant
- Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Québec, J2S2M2, Canada
- Aquarium du Québec, Société des Établissements de Plein air du Québec, 1675 Avenue des Hôtels, Québec, Québec, G1W 4S3, Canada
| | - Claire Vergneau-Grosset
- Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Québec, J2S2M2, Canada
- Aquarium du Québec, Société des Établissements de Plein air du Québec, 1675 Avenue des Hôtels, Québec, Québec, G1W 4S3, Canada
| | - Stéphane Lair
- Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Québec, J2S2M2, Canada
- Aquarium du Québec, Société des Établissements de Plein air du Québec, 1675 Avenue des Hôtels, Québec, Québec, G1W 4S3, Canada
| |
Collapse
|
19
|
Sveen LR, Timmerhaus G, Krasnov A, Takle H, Handeland S, Ytteborg E. Wound healing in post-smolt Atlantic salmon (Salmo salar L.). Sci Rep 2019; 9:3565. [PMID: 30837496 PMCID: PMC6400935 DOI: 10.1038/s41598-019-39080-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Skin biopsies (5 mm) taken from behind the dorsal fin on Atlantic salmon post-smolts were followed over a 2 month period. The healing process was dominated by hemostasis, acute inflammation, and epidermal repair the first 14 days post wounding (dpw), as shown through imaging, histological evaluation, and transcriptomics. Most of the immune genes showed decreased expression after two weeks, approaching the levels of intact skin, as also reflected in sections where reduced inflammation in the wound bed was observed. Transcriptional events suggest recruitment of lymphocytes to the wound site during the acute phase, with activation of humoral responses from 14 dpw and onward. From the histology, a more adherent mucus was observed that correlated with altered transcription of glycosyltransferases. This may indicate different properties and functions of the mucus during the wound healing process. Wound contraction started between 14 and 36 dpw. The occurrence of these events was concurrent with granulation tissue formation, melanocyte migration and up-regulation of genes involved in extracellular matrix formation. The presented description of the wound healing processes in Atlantic salmon gives insight into comparative ulcerative biology in mammals and fish and provides both novel and updated knowledge that can be applied for improved best operational practices for fish welfare in aquaculture.
Collapse
Affiliation(s)
- Lene Rydal Sveen
- University of Bergen, Postboks 7800, 5020, Bergen, Norway. .,Nofima, Osloveien 1, 1430, Ås, Norway.
| | | | | | - Harald Takle
- Cermaq Group AS, Dronning Eufemias gate 16,0102, Oslo, Norway
| | | | | |
Collapse
|
20
|
High fish density delays wound healing in Atlantic salmon (Salmo salar). Sci Rep 2018; 8:16907. [PMID: 30443022 PMCID: PMC6237775 DOI: 10.1038/s41598-018-35002-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we look closer at how high fish densities influence wound repair mechanisms in post-smolt Atlantic salmon. The fish were wounded with a 5 mm skin punch biopsy needle and stocked at two different densities, a high fish density (100 kg/m3) treatment and a low fish density treatment (20 kg/m3) serving as the control. The healing wounds were followed for 57 days with samples taken 1, 3, 7, 14, 36, 43 and 57 days post wounding. The transcriptomic analysis suggests that high fish density enhance inflammation and represses cell proliferation, tissue secretion and collagen synthesis in the healing wounds. The histological analysis further showed delayed epidermal and dermal repair in the high fish density treatment compared to control. The overall wound contraction was also altered by the treatment. In conclusion, high fish density enhances immune responses and delay tissue repair, which ultimately results in delayed wound healing.
Collapse
|
21
|
Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA. Macro- and micromechanical remodelling in the fish atrium is associated with regulation of collagen 1 alpha 3 chain expression. Pflugers Arch 2018; 470:1205-1219. [PMID: 29594338 PMCID: PMC6060776 DOI: 10.1007/s00424-018-2140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial remodelling response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Andrew J Fenna
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - James C McConnell
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Centre for Tissue Injury and Repair, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Chatigny F, Groman DB, Martinson SA, Stevens ED. Evaluation of tissue changes following intramuscular infiltration of lidocaine in rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2018; 92:888-900. [PMID: 29363141 DOI: 10.1111/jfb.13539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Rainbow trout Oncorhynchus mykiss were infiltrated with either saline or lidocaine adjacent to the dorsal fin to assess histopathological changes. Infiltration was done as if it were being used as a local anaesthetic. Tissue lesions and associated tissue healing were examined over a period of 30 days. Most changes occurred at the cranial site of where the solution was first infiltrated. The infiltration of a dose of 10 mg kg-1 of lidocaine appears to have damaged the skeletal muscle and connective tissues more than a similar volume of saline, especially during the first 15 days. The primary changes included haemorrhage, inflammation and muscle degeneration and necrosis. By day 30 post-infiltration inflammatory lesions were either nearly or completely absent, signs of myofibre regeneration were noted in only one fish. This experiment shows local anaesthetics and saline can produce localized tissue damage, especially during the first 2 weeks post infiltration. Care should be taken to allow the fish to heal for at least 30 days and probably more, no matter the solution administered, especially if giving repeated injections or infiltrations at the same site.
Collapse
Affiliation(s)
- F Chatigny
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - D B Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - S A Martinson
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - E D Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
23
|
Majtan J, Jesenak M. β-Glucans: Multi-Functional Modulator of Wound Healing. Molecules 2018; 23:molecules23040806. [PMID: 29614757 PMCID: PMC6017669 DOI: 10.3390/molecules23040806] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
β-glucans are derived from a variety of sources including yeast, grain and fungus and belong to the class of drugs known as biological response modifiers. They possess a broad spectrum of biological activities that enhance immunity in humans. One promising area for β-glucans’ application is dermatology, including wound care. Topical applications of β-glucans are increasing, especially due to their pluripotent properties. Macrophages, keratinocytes and fibroblasts are considered the main target cells of β-glucans during wound healing. β-glucans enhance wound repair by increasing the infiltration of macrophages, which stimulates tissue granulation, collagen deposition and reepithelialization. β-glucan wound dressings represent a suitable wound healing agent, with great stability and resistance to wound proteases. This review summarizes the current knowledge and progress made on characterizing β-glucans’ wound healing properties in vitro and in vivo and their safety and efficacy in managing non-healing wounds or other chronic dermatological conditions and diseases.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovakia.
| |
Collapse
|
24
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
25
|
Bailey C, Segner H, Wahli T. What goes around comes around: an investigation of resistance to proliferative kidney disease in rainbow trout Oncorhynchus mykiss (Walbaum) following experimental re-exposure. JOURNAL OF FISH DISEASES 2017; 40:1599-1612. [PMID: 28429822 DOI: 10.1111/jfd.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/07/2023]
Abstract
Rainbow trout Oncorhynchus mykiss surviving proliferative kidney disease (PKD) are reported not to develop the disease upon re-exposure. However, the mechanisms involved in the immune response to re-exposure are unknown. We examined disease susceptibility and the immune response of naive 1+ rainbow trout when first exposed to Tetracapsuloides bryosalmonae in comparison with that of 1+ rainbow trout re-exposed to T. bryosalmonae. PKD pathogenesis, parasite burden and transcriptional signatures of the host immune response were assessed at 10, 25 and 40 d.p.e (days post-exposure). In addition, we evaluated the presence of IgM+ B cells in the blood and the posterior kidney. The exposure of 1+ rainbow trout to T. bryosalmonae for the first time resulted in 100% infection prevalence, high parasite burdens and severe clinical PKD, while re-exposed fish were either able to avoid reinfection completely or mount an earlier and more efficient adaptive-type immune response. This response was characterized by a greater amount of IgM+ B cells in the blood and elevated mRNA levels of secretory IgM in the posterior kidney which minimized pathogen burden and kidney inflammation. Our findings suggest that rainbow trout is able to develop immune protection against T. bryosalmonae.
Collapse
Affiliation(s)
- C Bailey
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Berne, Berne, Switzerland
| | - H Segner
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Berne, Berne, Switzerland
| | - T Wahli
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Berne, Berne, Switzerland
| |
Collapse
|
26
|
Seo SB, Dananjaya SHS, Nikapitiya C, Park BK, Gooneratne R, Kim TY, Lee J, Kim CH, De Zoysa M. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2017; 68:536-545. [PMID: 28757200 DOI: 10.1016/j.fsi.2017.07.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish.
Collapse
Affiliation(s)
- Seung Beom Seo
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bae Keun Park
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, New Zealand
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|