1
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
2
|
Díaz-Puertas R, Adamek M, Mallavia R, Falco A. Fish Skin Mucus Extracts: An Underexplored Source of Antimicrobial Agents. Mar Drugs 2023; 21:350. [PMID: 37367675 DOI: 10.3390/md21060350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents.
Collapse
Affiliation(s)
- Rocío Díaz-Puertas
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| |
Collapse
|
3
|
Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture: a mini-review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The use of antibiotics for the control of infections has not only been banned by FDA for use in food-producing animals, but also several countries have prohibited their use in aquaculture because of several reasons such as the occurrence of antibiotic-tolerant microorganisms, accumulation of antibiotic residues in fish and shrimp flesh, and aquatic environmental effluence concerns. These issues have led researchers and aquaculture scientists to conduct several studies to find antibiotic alternatives. Numerous substitutes have been evaluated, such as probiotics, synbiotics, prebiotics, postbiotics, phytogenics, essential oils, and several others. Results show that these supplements demonstrate proven efficacy in enhancing immune responses, reducing mortalities resulting from experimental infections, and reducing antibiotic usage in medicated aquafeed. Nonetheless, using antimicrobial peptides (AMPs) to control fish diseases and be used as antibiotic alternatives is a promising and interesting research topic. AMPs are a vital class of small peptides that could stimulate the innate immune system against challenging pathogens and also possess significant potent defensive responses against a variety of infectious and non-infectious pathogenic agents, including bacteria, parasites, fungi, and viruses. Regarding their source origin, AMPs can be classified into six main types: mammalian-, amphibian-, insect-, aquatic-, plant-, and microorganism-derived AMPs. On account of their unique structure, they can display an essential function in therapeutic strategies against infectious diseases affecting fish and shrimp. Reports showed several kinds of AMPs had a wide spectrum of antimicrobial properties. These effects are besides their prominent immunostimulatory functions. Thus, they may be considered a functional alternative to antibiotics in aquaculture. This article provides information on the current knowledge about the modes of action, sources, classification, functions, and potential applications for the development of aquatic animal health. The information included in this context will be valuable to enhance the sustainability of aquaculture.
Collapse
|
4
|
Bischetti M, Alaimo N, Nardelli F, Punzi P, Amariei C, Ingenito R, Musco G, Gallo M, Cicero DO. Structural insights on the selective interaction of the histidine-rich piscidin antimicrobial peptide Of-Pis1 with membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184080. [PMID: 36328080 DOI: 10.1016/j.bbamem.2022.184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Of-Pis1 is a potent piscidin antimicrobial peptide (AMP), recently isolated from rock bream (Oplegnathus fasciatus). This rich in histidines and glycines 24-amino acid peptide displays high and broad antimicrobial activity and no significant hemolytic toxicity against human erythrocytes, suggesting low toxicity. To better understand the mechanism of action of Of-Pis1 and its potential selectivity, using NMR and CD spectroscopies, we studied the interaction with eukaryotic and procaryotic membranes and membrane models. Anionic sodium dodecyl sulfate (SDS) and lipopolysaccharide (LPS) micelles were used to mimic procaryotic membranes, while zwitterionic dodecyl phosphocholine (DPC) was used as eukaryotic membrane surrogate. In an aqueous environment, Of-Pis1 adopts a flexible random coil conformation. In DPC and SDS instead, the N-terminal region of Of-Pis1 forms an amphipathic α-helix with the non-polar face in close contact with the micelles. Slower solvent exchange and higher pKas of the histidine residues in SDS than in DPC suggest that Of-Pis1 interacts more tightly with SDS. Of-Pis1 also binds tightly and structurally perturbs LPS micelles. Of-Pis1 interacts with both Escherichia coli and mammalian cell membranes, but only in the presence of Escherichia coli membranes it populates the helical conformation. Furthermore, ligand-based NMR experiments support a tighter and more specific interaction with bacterial than with eukaryotic membranes. Overall, these data clearly show the selective interaction of this broadly active AMP with bacterial over eukaryotic membranes. The conformational information is discussed in terms of Of-Pis1 amino acid sequence and composition to provide insights useful to design more potent and selective AMPs.
Collapse
Affiliation(s)
- Martina Bischetti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Nadine Alaimo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Francesca Nardelli
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Pasqualina Punzi
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Cristi Amariei
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Raffaele Ingenito
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Giovana Musco
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Mariana Gallo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
5
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
6
|
Duan Y, Ouyang J, Mo G, Hao W, Zhang P, Yang H, Liu X, Wang R, Cao B, Wang Y, Yu H. Defensing role of novel piscidins from largemouth bass (Micropterus salmoides) with evidence of bactericidal activities and inducible expressional delineation. Microbiol Res 2021; 256:126953. [PMID: 34972023 DOI: 10.1016/j.micres.2021.126953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Micropterus salmoides is an economical important species of freshwater-cultured fish, the in-depth knowledge of its immune system is in urgent development to cope with serious infectious diseases. Piscidin is an important antimicrobial peptide (AMP) family existing in almost all teleosts. However, no piscidin has been reported in largemouth bass. In this study, three novel piscidins (MSPiscidin-1, -2, and -3) were firstly identified and characterized from the largemouth bass. The predicted mature peptides of MSPiscidin-1, -2, and -3 (consists of 24, 27, 25 amino acid residues, respectively) all adopted an amphipathic α-helical conformation representative of cationic AMPs that are important for membrane permeabilization and antibacterial activity. MSPiscidin-2 and -3 indeed displayed strong, broad-spectrum, and highly efficient antimicrobial activities in vitro against aquatic pathogens, but MSPiscidin-1 didn't show direct antimicrobial activity. MSPiscidin-2 and -3 killed bacteria mainly by inducing membrane permeabilization, in addition, they also can interact with bacterial genomic DNA, which might influence the DNA replication and transcription. Besides, MSPiscidin-2 and -3 could effectively inhibit the formation of the bacterial biofilm and eliminate the preformed biofilms. In vivo, MSPiscidin-1-3 genes showed an inducible expression pattern in the tested tissues upon Vibrio harveyi infection, which further indicated the key roles of piscidins in innate immunity in largemouth bass. Overall, this study will supplement the understanding of M. salmoides innate immune system and provide candidates for the design of novel peptide antibacterial agents used in aquaculture.
Collapse
Affiliation(s)
- Yuxin Duan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jianhong Ouyang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weijing Hao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Huaixin Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaowei Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Runying Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Biyin Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Haining Yu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
7
|
Qiao Y, Ma X, Zhang M, Zhong S. Cerocin, a novel piscidin-like antimicrobial peptide from black seabass, Centropristis striata. FISH & SHELLFISH IMMUNOLOGY 2021; 110:86-90. [PMID: 33348038 DOI: 10.1016/j.fsi.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides, which are crucial effectors of innate immunity, are a promising substitute for antibiotics. The piscidin family is a group of fish-derived antimicrobial peptides that have potent antimicrobial activity and participate in the innate immune response. Here we describe a novel piscidin-like peptide called cerocin from the black sea bass (Centropristis striata), which is a highly valued marine teleost in both commercial and recreational fisheries worldwide. The full-length cDNA of cerocin consists of 567 base pairs, including 5' and 3' untranslated regions of 61 and 209 base pairs, respectively. The active peptide consists of 20 amino acids that form an amphipathic α-helix structure. Cerocin showed highest identity with the cardinalfish (Ostorhinchus fasciatus) piscidin (52%). Phylogenetic tree demonstrated that the cerocin clustered with dicentracin of Liparis tanakae and Perca flavescens. It showed tissue-specific distribution patterns and was predominantly expressed in the gill. After challenge with Vibrio harveyi, C. striata showed time- and tissue-dependent expression of the cerocin gene. Finally, a cerocin peptide was synthesized, and it exerted broad-spectrum antimicrobial activity against a number of bacterial strains, especially Gram-positive pathogens. Analysis of the killing kinetics revealed that the cerocin peptide had a rapid bactericidal effect on the bacteria. Collectively, these data suggest that the piscidin-like cerocin might play a vital role in the immune response of C. striata, and further studies of this gene may provide insight into the innate immune system of this species.
Collapse
Affiliation(s)
- Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Xiaowan Ma
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.
| | - Man Zhang
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
8
|
Oh HY, Go HJ, Park NG. Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:480-490. [PMID: 32711152 DOI: 10.1016/j.fsi.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic freshwater fish like catfish, Silurus asotus, lives in microbe-rich environments, which enable this fish to develop necessary defense mechanisms. Antimicrobial peptides, along with other innate immune factors, are regarded as an important group in this defense. An antimicrobial peptide, which was isolated from the skin of S. asotus, was identified as a C-terminal fragment of 60S ribosomal protein L27 from S. asotus. The peptide was, then, designated Silurus asotus 60S ribosomal protein L27-derived antimicrobial peptide, SaRpAMP. Primary structure analyses and cDNA cloning revealed that SaRpAMP was 4185.36 Da and composed of 33 amino acids (AAs). Its precursor had a total of 136 AAs containing a pro-sequence of 103 AAs encoded by the nucleotide sequence of 512 bp that comprises a 5' untranslated region (UTR) of 32 bp, an open reading frame (ORF) of 411 bp, and a 3' UTR of 69 bp. Secondary structure analyses showed that SaRpAMP had two α-helices with turns and coils and an amphiphilic structure, a finding consistent with the 3D model of the peptide. SaRpAMP exhibited potent antibacterial activity comparable to piscidin 1, a powerful positive control. Its antimicrobial activity against fungus C. albicans was relatively weak. The antimicrobial activity of SaRpAMP was not diminished by heat treatment and changes in pH but was abolished by proteolytic enzyme digestion. Membrane permeability assays suggested that SaRpAMP interacts with both the outer and inner bacterial membranes. This was consistent with the results of lipid titration and quenching of Trp fluorescence that demonstrated SaRpAMP's interaction with acidic liposomes. Collectively, these findings suggest that the identified peptide, SaRpAMP, was the first antimicrobial peptide reported to be derived from the C-terminal region of 60S ribosomal protein L27. The findings also suggest that the action mechanism of SaRpAMP involved the interaction of the peptide with the bacterial membranes.
Collapse
Affiliation(s)
- Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea.
| |
Collapse
|
9
|
Barroso C, Carvalho P, Carvalho C, Santarém N, Gonçalves JFM, Rodrigues PNS, Neves JV. The Diverse Piscidin Repertoire of the European Sea Bass ( Dicentrarchus labrax): Molecular Characterization and Antimicrobial Activities. Int J Mol Sci 2020; 21:ijms21134613. [PMID: 32610543 PMCID: PMC7369796 DOI: 10.3390/ijms21134613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Fish rely on their innate immune responses to cope with the challenging aquatic environment, with antimicrobial peptides (AMPs) being one of the first line of defenses. Piscidins are a group of fish specific AMPs isolated in several species. However, in the European sea bass (Dicentrarchuslabrax), the piscidin family remains poorly understood. We identified six different piscidins in sea bass, performed an in-depth molecular characterization and evaluated their antimicrobial activities against several bacterial and parasitic pathogens. Sea bass piscidins present variable amino acid sequences and antimicrobial activities, and can be divided in different sub groups: group 1, formed by piscidins 1 and 4; group 2, constituted by piscidins 2 and 5, and group 3, formed by piscidins 6 and 7. Additionally, we demonstrate that piscidins 1 to 5 possess a broad effect on multiple microorganisms, including mammalian parasites, while piscidins 6 and 7 have poor antibacterial and antiparasitic activities. These results raise questions on the functions of these peptides, particularly piscidins 6 and 7. Considering their limited antimicrobial activity, these piscidins might have other functional roles, but further studies are necessary to better understand what roles might those be.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Pedro Carvalho
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - Carla Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Parasite Disease, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Santarém
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Parasite Disease, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José F. M. Gonçalves
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| |
Collapse
|
10
|
Stefi Raju V, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J. Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:368-378. [PMID: 32081807 DOI: 10.1016/j.fsi.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this study, we have evaluated bioinformatics characterization and antimicrobial role of two piscidin (Pi) peptide identified from the established transcriptome of striped murrel Channa striatus (Cs). The identified CsPi cDNA contains 256 nucleotides encode a protein with 70 amino acids in length which has two antimicrobial peptides and named CsRG12 and CsLC11. The gene expression analysis with various immune stimulants indicated an induced expression pattern of CsPi. Antibiogram showed that CsRG12 and CsLC11 was active against Staphylococcus aureus ATCC 33592, a major multi-drug resistant (MDR) bacterial pathogen and Bacillus cereus ATCC 2106. The minimum inhibitory concentration (MIC) and antibiofilm assays were conducted to observe the activity of pathogenic bacteria with these derived antimicrobial peptides. Flow cytometry analysis noticed that the CsRG12 and CsLC11 disrupt the membrane formation of S. aureus and B. cereus, which was further assured by scanning electron microscopic (SEM) images that bleb formation leads to disruption around the bacterial membrane. Overall, it is reported that CsPi is involved in innate immunity as the gene expression plays a remarkable role in up and down regulation during infection. In addition, the involvement of peptides in antibiofilm formation and bacterial membrane disruption support its immune character. This study leads to a possibility for the development of therapeutics in aquaculture biotechnology.
Collapse
Affiliation(s)
- V Stefi Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - R Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Hu H, Guo N, Chen S, Guo X, Liu X, Ye S, Chai Q, Wang Y, Liu B, He Q. Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo. Virol J 2019; 16:95. [PMID: 31366370 PMCID: PMC6670175 DOI: 10.1186/s12985-019-1199-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Swine-origin virus infection spreading widely could cause significant economic loss to porcine industry. Novel antiviral agents need to be developed to control this situation. Methods In this study, we evaluated the activities of five broad-spectrum antimicrobial peptides (AMPs) against several important swine-origin pathogenic viruses by TCID50 assay. Plaque reduction assay and cell apoptosis assay were also used to test the activity of the peptides. Protection effect of piscidin against pseudorabies virus (PRV) was also examined in mouse model. Results Piscidin (piscidin 1), caerin (caerin 1.1) and maculatin (maculatin 1.1) could inhibit PRV by direct interaction with the virus particles in a dose-dependent manner and they could also protect the cells from PRV-induced apoptosis. Among the peptides tested, piscidin showed the strongest activity against PRV. Moreover, in vivo assay showed that piscidin can reduce the mortality of mice infected with PRV. Conclusion In vitro and in vivo experiments indicate that piscidin has antiviral activity against PRV.
Collapse
Affiliation(s)
- Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Nan Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuhua Chen
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyi Ye
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Qingqing Chai
- Feinberg school of medicine, northwestern university, Boston, MA, USA
| | - Yang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Binlei Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Pig health substantial innovation center, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Shin Y, Jung M, Shin GH, Jung HJ, Baek SJ, Lee GY, Kang BC, Shim J, Hong JM, Park JY, An CM, Kim YO, Noh JK, Kim JW, Nam BH, Park CI. First draft genome sequence of the rock bream in the family Oplegnathidae. Sci Data 2018; 5:180234. [PMID: 30351299 PMCID: PMC6198749 DOI: 10.1038/sdata.2018.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The rock bream (Oplegnathus fasciatus) is one of the most economically valuable marine fish in East Asia, and due to various environmental factors, there is substantial revenue loss in the production sector. Therefore, knowledge of its genome is required to uncover the genetic factors and the solutions to these problems. In this study, we constructed the first draft genome of O. fasciatus as a reference for the family Oplegnathidae. The genome size is estimated to be 749 Mb, and it was assembled into 766 Mb by combining Illumina and PacBio sequences. A total of 24,053 transcripts (23,338 genes) are predicted, and among those transcripts, 23,362 (97%), are annotated with functional terms. Finally, the completeness of the genome assembly was assessed by CEGMA, which resulted in the complete mapping of 220 (88.7%) core genes in the genome. To the best of our knowledge, this is the first draft genome for the family Oplegnathidae.
Collapse
Affiliation(s)
- Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Myunghee Jung
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea.,Department of Forest Science, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Ho-Jin Jung
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Su-Jin Baek
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Gi-Yong Lee
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Byeong-Chul Kang
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Jaeyoung Shim
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Ji-Man Hong
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jae Koo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 53064, Republic of Korea
| |
Collapse
|
13
|
Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L. Recent updates of marine antimicrobial peptides. Saudi Pharm J 2018; 26:396-409. [PMID: 29556131 PMCID: PMC5856950 DOI: 10.1016/j.jsps.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.
Collapse
Affiliation(s)
- Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Shifaa Abdin
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajar Alkhazraji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leena Kamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saba Hammad
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Faten El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dima Waleed
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Layal Kourbaj
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Houyvet B, Bouchon-Navaro Y, Bouchon C, Goux D, Bernay B, Corre E, Zatylny-Gaudin C. Identification of a moronecidin-like antimicrobial peptide in the venomous fish Pterois volitans: Functional and structural study of pteroicidin-α. FISH & SHELLFISH IMMUNOLOGY 2018; 72:318-324. [PMID: 29108968 DOI: 10.1016/j.fsi.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The present study characterizes for the first time an antimicrobial peptide in lionfish (Pterois volitans), a venomous fish. Using a peptidomic approach, we identified a mature piscidin in lionfish and called it pteroicidin-α. We detected an amidated form (pteroicidin-α- CONH2) and a non-amidated form (pteroicidin-α-COOH), and then performed their functional and structural study. Interestingly, the two peptides displayed different antibacterial and hemolytic activity levels. Pteroicidin-α-CONH2 was bactericidal on human pathogens like Staphylococcus aureus or Escherichia coli, as well as on the fish pathogen Aeromonas salmonicida, while pteroicidin-α-COOH only inhibited their growth. Furthermore, the two peptides induced hemolysis of red blood cells from different vertebrates, namely humans, sea bass and lesser-spotted dogfish. Hemolysis occurred with low concentrations of pteroicidin-α-CONH2, indicating greater toxicity of the amidated form. Circular dichroism analysis showed that both peptides adopted a helical conformation, yet with a greater α-helix content in pteroicidin-α-CONH2. Overall, these results suggest that amidation strongly influences pteroicidin-α by modifying its structure and its physico-chemical characteristics and by increasing its hemolytic activity.
Collapse
Affiliation(s)
- Baptiste Houyvet
- Normandie Univ, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14032 Caen, France; SATMAR, Société ATlantique de MARiculture, 50760 Gatteville-Phare, France
| | - Yolande Bouchon-Navaro
- Université des Antilles, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UNICAEN, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Labex Corail, Campus de Fouillole, BP 592, 97159 Pointe-à-Pitre, Guadeloupe
| | - Claude Bouchon
- Université des Antilles, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UNICAEN, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Labex Corail, Campus de Fouillole, BP 592, 97159 Pointe-à-Pitre, Guadeloupe
| | - Didier Goux
- CMABio(3)FF 4206 ICORE, Normandie Université, UNICAEN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Benoît Bernay
- Plateforme Proteogen, FF 4206 ICORE, Normandie Université, UNICAEN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Erwan Corre
- Plateforme ABiMS, Station biologique de Roscoff (UPMC-CNRS), F-29688 Roscoff, France
| | - Céline Zatylny-Gaudin
- Normandie Univ, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), 14032 Caen, France.
| |
Collapse
|
15
|
Valenzuela CA, Zuloaga R, Poblete-Morales M, Vera-Tobar T, Mercado L, Avendaño-Herrera R, Valdés JA, Molina A. Fish skeletal muscle tissue is an important focus of immune reactions during pathogen infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:1-9. [PMID: 28279806 DOI: 10.1016/j.dci.2017.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Skeletal muscle in mammals can express and secrete immune-related molecules during pathogen infection. Despite in fish is known that classical immune tissues participate in innate immunity, the role of skeletal muscle in this function is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile fine flounder (Paralichthys adpersus) were challenged with Vibrio ordalii. Different Toll-like receptors, pro-inflammatory cytokines (TNFα, Il-1β, and IL-8), and immune-effector molecules (NKEF and the antimicrobial peptides hepcidin and LEAP-2) were analyzed. Infection initially triggered IL-1β upregulation and P38-MAPK/AP-1 pathway activation. Next, the NFĸB pathway was activated, together with an upregulation of intracellular Toll-like receptor expressions (tlr3, tlr8a tlr9, and tlr21), TNFα production, and leap-2 expression. Finally, transcriptions of il-1β, il-8, tnfα, nkef-a, and hepcidin were also upregulated. These results suggest that fish skeletal muscle is an immunologically active organ that could play an important role against pathogens.
Collapse
Affiliation(s)
- Cristián A Valenzuela
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| | - Matías Poblete-Morales
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, 2520000 Viña del Mar, Chile.
| | - Tamara Vera-Tobar
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile.
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile.
| | - Ruben Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, 2520000 Viña del Mar, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| |
Collapse
|
16
|
Park HJ, Jeong JM, Bae JS, Kim JW, An CM, Min BH, Kim SY, Myeong JI, Hwang HK, Park CI. Molecular cloning and expression analysis of a new lily-type lectin in the rock bream, Oplegnathus fasciatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:25-30. [PMID: 27345170 DOI: 10.1016/j.dci.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
A new lily-type lectin RbLTL was identified from rock bream (Oplegnathus fasciatus) and its expression analysed. In this study, a new lily-type lectin gene (RbLTL) was cloned from rock bream using expressed sequence tag (EST) analysis. The full-length RbLTL cDNA was encoding a 117-amino acid protein. The deduced amino acid sequence of RbLTL contained all of the conserved features crucial for its fundamental structure, including B-lectin domain and three d-mannose binding sites. RbLTL mRNA was predominately expressed in the gills, with reduced expression noted in intestine tissue. Expression analysis of time series sampled fertilized eggs revealed that expression gradually increased 1, 3, 12, and 24 h: However, expression decreased at 36 h. RbLTL expression was differentially up-regulated in rock bream gills challenged with Streptococcus iniae, Edwardsiella tarda and RSIV. Our results revealed that novel rock bream lily-type lectin may be an important molecule involved in pattern recognition and pathogen elimination in the innate immunity of rock bream.
Collapse
Affiliation(s)
- Hyung-Jun Park
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Cheul-Min An
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Byung-Hwa Min
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seong-Yeon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Jeong-In Myeong
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hyung-Kyu Hwang
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 53064, Republic of Korea.
| |
Collapse
|
17
|
Yang J, Lu XJ, Chai FC, Chen J. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker ( Larimichthys crocea). Zool Res 2016; 37:347-355. [PMID: 28105799 PMCID: PMC5359322 DOI: 10.13918/j.issn.2095-8137.2016.6.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/04/2022] Open
Abstract
The piscidin family, which includes potent antimicrobial peptides with broad-spectrum activity, plays an important role in the innate immune system of fish. In this study, we cloned piscidin-5-like type 3 (Lcpis5lt3) in large yellow croaker (Larimichthys crocea). Multiple alignments with other known piscidins revealed amino acid conservation throughout the fish, especially at the signal peptide (22 amino acids). The phylogenetic tree confirmed that Lcpis5lt3 and large yellow croaker piscidin-5-like proteins were grouped together to form a branch. Quantitative real-time PCR revealed that Lcpis5lt3 was expressed in a wide range of tissues, including the brain, muscle, gill, head kidney, intestine, kidney, liver, and spleen. The highest mRNA expression level of Lcpis5lt3 was found in the spleen. After Vibrio alginolyticus infection, mRNA expression was rapidly upregulated in the liver, head kidney, gill, kidney, and intestine at 4, 8, 12, and 24 h post infection (hpi), whereas there were no significant changes in the spleen. The antimicrobial spectrum showed that the synthetic mature peptide of Lcpis5lt3 exhibited different activity in vitro against various bacteria, such as Aeromonas hydrophila, V. anguillarum, V. alginolyticus, V. parahaemolyticus, Staphylococcus aureus, and Listeria monocytogenes. In addition, survival rates from the in vivo assay indicated that the synthetic peptide of Lcpis5lt3 increased the survival rate of large yellow croaker after V. alginolyticus challenge, resulting in a decline in bacterial burden and mRNA expression levels of interleukin-1β, interleukin-10, and tumor necrosis factor-α. These data suggest that Lcpis5lt3 plays an important role in innate immunity in large yellow croaker and might represent a potential therapeutic agent against pathogen invasion.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fang-Chao Chai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
18
|
Li ZP, Chen DW, Pan YQ, Deng L. Two isoforms of piscidin from Malabar grouper, Epinephelus malabaricus: Expression and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2016; 57:222-235. [PMID: 27554395 DOI: 10.1016/j.fsi.2016.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Two isoforms of piscidin from Malabar grouper (Epinephelus malabaricus), EmPis-1 and EmPis-2, were cloned and studied. EmPis-1 and EmPis-2 showed the different in the 3'UTR features of mRNA and gene expression patterns. AUUUA-motif-containing ARE was found in mRNA of EmPis-1, but not in that of EmPis-2. EmPis-1 and EmPis-2 expressed not only in the potential sites of pathogen entry, but also in grouper's immune-related tissues such as head kidney (HD), peripheral blood leukocytes (PBL) and spleen. The expression level of EmPis-1 was higher than that of EmPis-2 in most fish tissues. Expression of both EmPis-1 and EmPis-2 were upregulated by V. parahaemolyticus significantly in the PBL, HD and spleen. Besides, expression of EmPis-1 was upregulated in gills. The putative mature peptides of EmPis-1 and EmPis-2, which were predicted to adopt an amphipathic α-helical conformation, posessed excellent microbicidal activities against both gram-negative and -positive bacteria. The hemolytic activity of the putative mature peptides of EmPis-1 and EmPis-2 increased in a dose-dependent manner to both grouper erythrocytes and rabbit erythrocytes. Interestingly, grouper erythrocytes were less vulnerable than rabbit erythrocytes to the peptides. Grouper piscidins excluded the signal peptide were not the inactive precursors but possessed high microbicidal activity evidenced by minimum bactericidal concentration (MBC) assay and by the scanning electron microscope (SEM) observation. The present phylogenetic analysis did not support the suggestion that piscidins are ancient AMPs widespread across invertebrate and vertebrate taxa, and that piscidins are included in the cecropin superfamily. Collectively, the present data improve our understanding of the piscidin family, and give greater insights into EmPis-1 and EmPis-2 of the grouper immune system.
Collapse
Affiliation(s)
- Zhen-Ping Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, 518060, China
| | - Da-Wei Chen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, 518060, China
| | - Yan-Qiu Pan
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, 518060, China
| | - Li Deng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, 518060, China.
| |
Collapse
|