1
|
Burguera S, Sahu AK, Chávez Romero MJ, Biswal HS, Bauzá A. Manganese matere bonds in biological systems: PDB inspection and DFT calculations. Phys Chem Chem Phys 2024; 26:18606-18613. [PMID: 38919033 DOI: 10.1039/d4cp01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A Protein Data Bank (PDB) survey has revealed noncovalent contacts involving Mn centres and protein residues. Their geometrical features are in line with the interaction between low electron density sites located along the Mn-O/N coordination bonds (σ-holes) and the lone pairs belonging to TYR, SER or HIS residues, known as a matere bond (MaB). Calculations at the PBE0-D3/def2-TZVP level of theory were used to investigate the strength and shed light on the physical nature of the interaction. We expect the results presented herein will be useful for those scientists working in the fields of bioinorganic chemistry, particulary in protein-metal docking, by providing new insights into transition metal⋯Lewis base interactions as well as a retrospective point of view to further understand the structural and functional implications of this key transition metal ion.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, Khurda, 752050, Bhubaneswar, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Michael Jordan Chávez Romero
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, Khurda, 752050, Bhubaneswar, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
2
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
3
|
Qiu J, Yang Y, Wu J, Shen X. Effect of Nano-potassium Molybdate on the Copper Metabolism in Grazing the Pishan Red Sheep. Biol Trace Elem Res 2022; 200:4332-4338. [PMID: 34802114 DOI: 10.1007/s12011-021-03030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The aims of this study were to investigate the impact of different levels of nano-potassium molybdate (nano-K2MoO4) fertilization on the copper (Cu) metabolism in grazing the Pishan red sheep in the natural pasture. The fertilization and grazing experiments were conducted on the Pishan farm in Southern Xinjiang, China. The natural pastures of 16 hm2 were randomly divided into four groups (4 hm2/group), consisting of group C (no fertilized), group I, group II, and group III. The fertilizing amount of Mo from nano-K2MoO4 was 0, 7, 8, and 9 kg/hm2 for group C, group I, group II, and group III, respectively. The 40 Pishan red sheep were randomly distributed to the tested pastures for 90 days, and the 10 sheep/group. The results showed that the contents of Mo and N in forage from the fertilized pastures were extremely increased (P < 0.01). The yield and dry matter digestibility of forage in fertilized pastures were significantly higher than those in no fertilized pasture (P < 0.01). The values of crude protein (CP) and crude fat (EE) in forage from fertilized pastures were significantly increased (P < 0.01). The Mo contents in the blood and liver in the Pishan red sheep from fertilized pastures were greatly increased (P < 0.01). The Cu contents in the blood and liver in the Pishan red sheep from the fertilized pastures were greatly decreased (P < 0.01). The activities of serum superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in group I, group II, and group III were extremely lower than those in group C (P < 0.01), and the contents of serum malondialdehyde (MDA) in group I, group II, and group III were greatly higher than those from group C (P < 0.01). In summary, the application of nano-K2MoO4 improved the nutritive values and the yield of forage, but overuse will remarkably reduce the Cu contents of blood and greatly interfere with the Cu metabolism, leading to the Cu deficiency and low antioxidant capacity in grazing the ruminants.
Collapse
Affiliation(s)
- Jie Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yang Yang
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China
| | - Jiahai Wu
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China.
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, People's Republic of China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, People's Republic of China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
4
|
Soo TCC, Bhassu S. Biochemical indexes and gut microbiota testing as diagnostic methods for Penaeus monodon health and physiological changes during AHPND infection with food safety concerns. Food Sci Nutr 2022; 10:2694-2709. [PMID: 35959249 PMCID: PMC9361443 DOI: 10.1002/fsn3.2873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022] Open
Abstract
Severe shrimp disease outbreaks have a destructive impact on shrimp aquaculture and its associated downstream food processing industries. Thus, it is essential to develop proper methods for shrimp disease control, which emphasizes the importance of food safety. In this study, we performed biochemical tests and gut microbiome analysis using uninfected control and Vp AHPND-infected Penaeus monodon samples. Biochemical tests were performed to assess the phenoloxidase (PO) activity, respiratory Burst (RB) activity, nitrite concentration, superoxide dismutase (SOD) activity, total hemocyte count (THC), and total protein concentrations. Overall, upregulations were detected in these biochemical tests, which showed the activation of the immune response in P. monodon during acute hepatopancreatic necrosis disease (AHPND) infection, especially at 6 hpi and 12 hpi. Besides that, shrimp gut samples were collected and pooled (n = 3), followed by DNA extraction, PCR amplification targeting the V3/V4 16S ribosomal RNA (rRNA) region, next-generation sequencing (NGS), and bioinformatics analysis. Proteobacteria was the most abundant phylum in both samples. The Rhodobacteraceae family and Maritimibacter genus were proposed to be vital forshrimp health maintenance. Vp AHPND bacterial colonization and secondary Vibrio infections were postulated to have occurred based on the higher abundances of Vibrionaceae family and Vibrio genus in the Vp AHPND-infected sample. Firmicutes phylum together with Photobacterium and Aliiroseovarius genera were inferred to be pathogenic or related factors of AHPND infections. In conclusion, physiology (immune response activation) and gut microbiome changes of disease tolerant P. monodon during AHPND infection were identified. Both biochemical tests and 16S rRNA analysis are proposed as a combined strategy for shrimp health diagnosis for ensuring shrimp health maintenance, disease control, and food safety.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Laboratory (AGAGEL)Department of Genetics and MicrobiologyFaculty of ScienceInstitute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Laboratory (AGAGEL)Department of Genetics and MicrobiologyFaculty of ScienceInstitute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
- Terra Aqua LaboratoryCentre for Research in Biotechnology for Agriculture (CEBAR)Research Management and Innovation ComplexUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
5
|
Omeka WKM, Liyanage DS, Jeong T, Lee S, Lee J. Molecular characterization, immune responses, and functional activities of manganese superoxide dismutase in disk abalone (Haliotis discus discus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104299. [PMID: 34662686 DOI: 10.1016/j.dci.2021.104299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutases (SODs) are metalloenzymes that convert superoxide radicals to H2O2 and O2. Although SODs have been extensively studied in mammals and other species, comparative studies in invertebrates, such as abalones, are lacking. Here, we aimed to characterize manganese superoxide dismutase in disk abalone (Haliotis discus discus) (AbMnSOD) by assessing its transcriptional levels at different embryonic developmental stages. Additionally, the temporal expression of AbMnSOD in different abalone tissues in response to bacterial, viral, and pathogen-associated molecular pattern (PAMP) stimuli was investigated. SOD activity was measured at various recombinant protein concentrations via the xanthine oxidase/WST-1 system. Cell viability upon exposure to H2O2, wound healing ability, and subcellular localization were determined in AbMnSOD-transfected cells. AbMnSOD was 681 bp long and contained the SOD-A domain. AbMnSOD expression was higher at the trochophore stage than at the other stages. When challenged with immune stimulants, AbMnSOD showed the highest expression at 6 h post-injection (p.i.) for all stimulants except lipopolysaccharides. In the gills, the highest AbMnSOD expression was observed at 6 h p.i., except for the Vibrio parahaemolyticus challenge. Recombinant AbMnSOD showed concentration-dependent xanthine oxidase activity. Furthermore, AbMnSOD-transfected cells survived H2O2-induced apoptosis and exhibited significant wound gap closure. As expected, AbMnSOD was localized in the mitochondria of the cells. Our findings suggest that AbMnSOD is an essential antioxidant enzyme that participates in regulating developmental processes and defense mechanisms against oxidative stress in hosts.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
6
|
Li Y, Zhan F, Li F, Lu Z, Xu Z, Yang Y, Shi F, Zhao L, Qin Z, Lin L. Molecular and functional characterization of mitochondrial manganese superoxide dismutase from Macrobrachium rosenbergii during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 118:94-101. [PMID: 34450271 DOI: 10.1016/j.fsi.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutases (SODs) are the main antioxidant enzymes involved in alleviating oxidative stress. Although mitochondrial manganese SOD (mMnSOD) has been reported to be correlated with the immune response in crustaceans, its biological properties and role in the immune response remain unclear. Here, we cloned the Macrobrachium rosenbergii mMnSOD (MrmMnSOD), analyzed its activity and expression pattern under Staphylococcus aureus and Vibrio parahaemolyticus infection, and further explored its possible mechanism during antibacterial immune response. The results showed that both enzyme activity and the expression of MrmMnSOD were significantly up-regulated by bacterial infection. MrmMnSOD knockdown made the prawn susceptible to Vibrio infection, which increased the mortality rate and the number of bacteria in haemocytes. The bacterial agglutination assay confirmed that MrmMnSOD decreases bacterial abundance via agglutination. Overall, this work identified antibacterial function of MrmMnSOD in the immune response. In addition to contributing to immunological theory, these findings aid disease prevention and control in crustacean aquaculture.
Collapse
Affiliation(s)
- Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fenglin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zizheng Xu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Youcheng Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
7
|
Cloning of Mn-SOD gene and its mRNA expression difference and antioxidant enzyme activities under hypoxia stress of cobia Rachycentron canadum. Mol Biol Rep 2021; 48:6897-6909. [PMID: 34453674 DOI: 10.1007/s11033-021-06692-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Environmental hypoxia affects the survival and development of organisms. It is also an important environmental factor that leads to oxidative damage. Hypoxia is a condition in which tissues are deprived of oxygen; reoxygenation is the phenomenon in which hypoxic tissues are exposed to oxygen. Hypoxia-reoxygenation is vital in pathogenesis, where the production of reactive oxygen species and antioxidant disparity significantly contribute to disease progression, and it is one of the most common physiological stressors in the aquaculture industry. METHODS AND RESULTS In this study, the full length of complementary DNA (cDNA) of the manganese superoxide dismutase (Mn-SOD) gene of healthy cobia Rachycentron canadum was analysed using rapid amplification of cDNA ends. The real-time quantitative Polymerase Chain Reaction was used to measure the expression levels of Mn-SOD mRNAs in various tissues (heart, muscle, brain, liver, kidney, gill, intestine, and spleen). The 2-ΔΔCT method was used to performed the expression analysis. The experimental data were analysed using SPSS ver. 19.0 ( https://spss.software.informer.com/19.0/ ). P < 0.05 and P < 0.01 were set as significant differences. The values were articulated as mean ± standard deviation. The Mn-SOD gene cDNA sequence was 1209 bp long, including a 684 bp open reading frame, 42 bp 5'UTR and 483 bp 3'UTR, encoding 227 amino acids. Under hypoxia-reoxygen stress, the expression of Mn-SOD in brain tissue was significantly lower than in the control group after 8 h of reoxygenation and higher than the control group after 24 h. Hypoxia and subsequent reoxygenation triggered a disturbance in antioxidant homeostasis, displayed in the modification of GPx expression/activity in the liver: GPx was improved. CONCLUSIONS These results provide valuable information on the role of Mn-SOD regulation in oxidative stress caused by hypoxia.
Collapse
|
8
|
Chuang HC, Ding DS, Fan CH, Lin CH, Cheng CM. Effect of cell-permeable grouper Manganese Superoxide Dismutase on environmental stress in fish. Protein Expr Purif 2021; 187:105951. [PMID: 34358651 DOI: 10.1016/j.pep.2021.105951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Nitrite levels are generally high in high-density aquaculture. Nitrite is a potential stress-inducing factor and can cause oxidative stress because excessive reactive oxygen species (ROS) formation through nitrite induction cannot be scavenged by the endogenous antioxidant system, thus leading to cell damage or death. Manganese Superoxide Dismutase (MnSOD) is a highly efficient endogenous ROS scavenger that quenches mitochondrial ROS and protective against oxidative stress. To enhance the efficiency of MnSOD in removing ROS and reducing oxidative caused by nitrite, in this study, we cloned grouper MnSOD (gMnSOD) fused with a cell-penetrating peptide, TAT, to construct a TAT-gMnSOD fusion protein and assessed its potential to eliminate excess ROS induced by high nitrite concentrations and enhance the resistance of zebrafish to environmental stressors. Our results revealed that TAT-gMnSOD penetrated the grouper fin (GF-1) cells, scavenged nitrite-induced intracellular ROS, and enhanced cell viability on NaNO2 treatment. Furthermore, pretreatment of zebrafish with TAT-gMnSOD fusion protein reduced the MDA content and increased the survival rate. In addition, the TAT-gMnSOD fusion protein reduced 2-phenoxyethanol toxicity and attenuated excessive anesthesia among zebrafish. In conlusion, our cell-permeable TAT-gMnSOD fusion protein effectively counters oxidative stress, prevents environmental stress-induced damage, and increases aquaculture benefits.
Collapse
Affiliation(s)
- Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - De-Sing Ding
- Ph.D. Program of Aquatic Science and Technology in Industry, College of Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chih-Hsuan Fan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chia-Hua Lin
- Ph.D. Program of Aquatic Science and Technology in Industry, College of Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
10
|
Li C, Li Y, Qin G, Chen Z, Qu M, Zhang B, Han X, Wang X, Qian PY, Lin Q. Regulatory Role of Retinoic Acid in Male Pregnancy of the Seahorse. ACTA ACUST UNITED AC 2020; 1:100052. [PMID: 34557717 PMCID: PMC8454549 DOI: 10.1016/j.xinn.2020.100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 02/01/2023]
Abstract
Seahorses epitomize the exuberance of evolution. They have the unique characteristic of male pregnancy, which includes the carrying of many embryos in a brood pouch that incubates and nourishes the embryos, similar to the mammalian placenta. However, the regulatory networks underlying brood pouch formation and pregnancy remain largely unknown. In this study, comparative transcriptomic and metabolomic profiling on the lined seahorse Hippocampus erectus, with unformed, newly formed, and pregnant brood pouches identified a total of 141 and 2,533 differentially expressed genes together with 73 and 121 significantly differential metabolites related to brood pouch formation and pregnancy, respectively. Specifically, integrative omics analysis revealed that retinoic acid (RA) synthesis and signaling pathway played essential roles in the formation of the brood pouch and pregnancy. RA might function upstream of testosterone and progesterone, thereby directly influencing brood pouch formation by regulating the expression of fshr and cyp7a1. Our results also revealed that RA regulates antioxidant defenses, particularly during male pregnancy. Alternatively, pregnancy caused a consistent decrease in RA, canthaxanthin, astaxanthin, and glutathione synthetase, and an increase in susceptibility to oxidative stress, which may balance brood pouch development and reproduction in seahorses and pave the way to successful gestation.
Collapse
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yongxin Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.,Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Xue Han
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.,Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, 510301 Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| |
Collapse
|
11
|
Azimzadeh M, Jelodar G. Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E. J Anim Physiol Anim Nutr (Berl) 2020; 104:1568-1574. [PMID: 32279387 DOI: 10.1111/jpn.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Advances in telecommunication and their broad usage in the community have become a great concern from the health aspect. The object of the present study was to examine the effects of exposure to 900 MHz RFW on brain Iron (Fe), Copper (Cu), Zinc (Zn) and Manganese (Mn) concentration, and the protective role of pre-treatment of vitamin E on mentioned elements homoeostasis. Twenty adult male Sprague-Dawley rats (200 ± 20 g) randomly were divided into four groups. Control group (without any exposure, received distilled water), treatment control group (orally received 250 mg/kg BW/d vitamin E), treatment group (received 250 mg/kg BW/d vitamin E and exposed to 900 MHz RFW) and sham-exposed group (exposed to 900 MHz RFW). Animals (with freely moving in the cage) were exposed to RFW for 30 consecutive days (4 hr/day). The levels of the above mentioned elements in the brain tissue were determined on the last day using atomic absorption spectrophotometry. Exposure to 900 MHz RFW induced a significant increase in the Fe, Cu, Mn levels and Cu/Zn ratio accompanied by a significant decrease in Zn level in the sham-exposed group compare to control group. Vitamin E pre-treatment improved the level of Fe, Cu, Mn and Cu/Zn ratio, except in the Zn concentration. Exposure to 900 MHz RFW caused disrupted trace elements homoeostasis in the brain tissue and administration of vitamin E as an antioxidant and neuroprotective agent improved the situation.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 887] [Impact Index Per Article: 177.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694+10.3389/fphys.2020.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2024] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Molecular characterization of manganese superoxide dismutase (MnSOD) from sterlet Acipenser ruthenus and its responses to Aeromonas hydrophila challenge and hypoxia stress. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:68-76. [PMID: 30999108 DOI: 10.1016/j.cbpa.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023]
Abstract
A novel gene encoding the mitochondrial manganese superoxide dismutase from sterlet Acipenser ruthenus (Ar-MnSOD) was cloned. The full-length cDNA of MnSOD was of 1040 bp with a 672 bp open reading frame encoding 224 amino acids and the deduced amino acid sequence was located in mitochondria. Sequence comparison analysis showed that Ar-MnSOD was highly similar to MnSODs of invertebrates and vertebrates, especially those of freshwater Cyprinidae fishes and mammals. Phylogenetic analysis revealed that Ar-MnSOD was distant from MnSODs of other fishes and belonged to the family of mitochondrial MnSODs (mMnSOD). Consistently, Ar-MnSOD was located in mitochondria. The 3D structure of Ar-MnSOD was predicted and the overall structure was similar to that of MnSODs of humans and the bay scallop Argopecten irradians. In addition, mRNA of Ar-MnSOD was detected to extensively express in all tissues, with the highest level in brain and liver. Spleen and head kidney inoculation of Aeromonas hydrophila led to a significant up-regulation of Ar-MnSOD transcript levels. Also, hypoxia induced a transient increase in transcription of Ar-MnSOD in the gills, but not in the heart and brain, suggesting metabolic depression in these vital organs. The results also implied the anti-hypoxia properties of Ar-MnSOD in the related tissues and proved that Ar-MnSOD was involved in the stress response and (anti) oxidative processes triggered by hypoxia. The results indicated that Ar-MnSOD is induced upon A. hydrophila infection and hypoxia, consistent with its role in host immune and stress-induced anti-oxidative responses.
Collapse
|
16
|
Characteristics of a Novel Manganese Superoxide Dismutase of a Hadal Sea Cucumber ( Paelopatides sp.) from the Mariana Trench. Mar Drugs 2019; 17:md17020084. [PMID: 30717090 PMCID: PMC6410416 DOI: 10.3390/md17020084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
A novel, cold-adapted, and acid-base stable manganese superoxide dismutase (Ps-Mn-SOD) was cloned from hadal sea cucumber Paelopatides sp. The dimeric recombinant enzyme exhibited approximately 60 kDa in molecular weight, expressed activity from 0 °C to 70 °C with an optimal temperature of 0 °C, and resisted wide pH values from 2.2⁻13.0 with optimal activity (> 70%) at pH 5.0⁻12.0. The Km and Vmax of Ps-Mn-SOD were 0.0329 ± 0.0040 mM and 9112 ± 248 U/mg, respectively. At tested conditions, Ps-Mn-SOD was relatively stable in divalent metal ion and other chemicals, such as β-mercaptoethanol, dithiothreitol, Tween 20, Triton X-100, and Chaps. Furthermore, the enzyme showed striking stability in 5 M urea or 4 M guanidine hydrochloride, resisted digestion by proteases, and tolerated a high hydrostatic pressure of 100 MPa. The resistance of Ps-Mn-SOD against low temperature, extreme acidity and alkalinity, chemicals, proteases, and high pressure make it a potential candidate in biopharmaceutical and nutraceutical fields.
Collapse
|
17
|
Wang T, Wang G, Zhang Y, Zhang J, Cao W, Chen X. Effect of lentivirus-mediated overexpression or silencing of MnSOD on apoptosis of resveratrol-treated fibroblast-like synoviocytes in rheumatoid arthritis. Eur J Pharmacol 2019; 844:65-72. [DOI: 10.1016/j.ejphar.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
|
18
|
Sirisena DMKP, Perera NCN, Godahewa GI, Kwon H, Yang H, Nam BH, Lee J. A manganese superoxide dismutase (MnSOD) from red lip mullet, Liza haematocheila: Evaluation of molecular structure, immune response, and antioxidant function. FISH & SHELLFISH IMMUNOLOGY 2019; 84:73-82. [PMID: 30266606 DOI: 10.1016/j.fsi.2018.09.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant metalloenzyme. The main function of this enzyme is to dismutase the toxic superoxide anion (O2-) into less toxic hydrogen peroxide (H2O2) and oxygen (O2). Structural analysis of mullet MnSOD (MuMnSOD) was performed using different bioinformatics tools. Pairwise alignment revealed that the protein sequence matched to that derived from Larimichthys crocea with a 95.2% sequence identity. Phylogenetic tree analysis showed that the MuMnSOD was included in the category of teleosts. Multiple sequence alignment showed that a SOD Fe-N domain, SOD Fe-C domain, and Mn/Fe SOD signature were highly conserved among the other examined MnSOD orthologs. Quantitative real-time PCR showed that the highest MuMnSOD mRNA expression level was in blood cells. The highest expression level of MuMnSOD was observed in response to treatment with both Lactococcus garvieae and lipopolysaccharide (LPS) at 6 h post treatment in the head kidney and blood. Potential ROS-scavenging ability of the purified recombinant protein (rMuMnSOD) was examined by the xanthine oxidase assay (XOD assay). The optimum temperature and pH for XOD activity were found to be 25 °C and pH 7, respectively. Relative XOD activity was significantly increased with the dose of rMuMnSOD, revealing its dose dependency. Activity of rMuMnSOD was inhibited by potassium cyanide (KCN) and N-N'-diethyl-dithiocarbamate (DDC). Moreover, expression of MuMnSOD resulted in considerable growth retardation of both gram-positive and gram-negative bacteria. Results of the current study suggest that MuMnSOD acts as an antioxidant enzyme and participates in the immune response in mullet.
Collapse
Affiliation(s)
- D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
19
|
Perera NCN, Godahewa GI, Nam BH, Park JY, Lee J. Two metalloenzymes from rockfish (Sebastes schligellii): Deciphering their potential involvement in redox homeostasis against oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2018; 80:31-45. [PMID: 29859306 DOI: 10.1016/j.fsi.2018.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Disturbance in the balance between pro-oxidants and anti-oxidants result oxidative stress in aerobic organisms. However, oxidative stress can be inhibited by enzymatic and non-enzymatic defense mechanisms. Superoxide dismutases (SODs) are well-known scavengers of superoxide radicals, and they protect cells by detoxifying hazardous reactive oxygen species. Here, we have identified and characterized two different SODs, CuZnSOD and MnSOD, from black rockfish (RfCuZnSOD and RfMnSOD, respectively). In silico analysis revealed the well-conserved molecular structures comprising all essential properties of CuZnSOD and MnSOD. Phylogenetic analysis revealed that both RfCuZnSOD and RfMnSOD cladded with their fish counterparts. The recombinant RfSOD proteins demonstrated their potential superoxide scavenging abilities through a xanthine oxidase assay. The optimum temperature and pH conditions for both rRfSODs were 25 °C and pH 8, respectively. Moreover, the potential peroxidation function of rRfCuZnSOD was observed in the presence of HCO3-. The highest peroxidation activity was observed at 100 μg/mL of rRfCuZnSOD using the MTT cell viability assay and flow cytometry. The analogous tissue-specific expression profile indicated ubiquitous expression of both RfCuZnSOD and RfMnSOD in selected tissues of healthy juvenile rockfish. An immune challenge experiment illustrated the altered expression profiles of both RfCuZnSOD and RfMnSOD against lipopolysaccharide, Streptococcus iniae, and polyinosinic-polycytidylic acid (poly I:C). Collectively, these results strengthen the general understanding of the structural and functional characteristics of SODs within the host defense system.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
20
|
Azadmanesh J, Borgstahl GEO. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants (Basel) 2018; 7:antiox7020025. [PMID: 29385710 PMCID: PMC5836015 DOI: 10.3390/antiox7020025] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/13/2018] [Accepted: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
Superoxide dismutases (SODs) are necessary antioxidant enzymes that protect cells from reactive oxygen species (ROS). Decreased levels of SODs or mutations that affect their catalytic activity have serious phenotypic consequences. SODs perform their bio-protective role by converting superoxide into oxygen and hydrogen peroxide by cyclic oxidation and reduction reactions with the active site metal. Mutations of SODs can cause cancer of the lung, colon, and lymphatic system, as well as neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. While SODs have proven to be of significant biological importance since their discovery in 1968, the mechanistic nature of their catalytic function remains elusive. Extensive investigations with a multitude of approaches have tried to unveil the catalytic workings of SODs, but experimental limitations have impeded direct observations of the mechanism. Here, we focus on human MnSOD, the most significant enzyme in protecting against ROS in the human body. Human MnSOD resides in the mitochondrial matrix, the location of up to 90% of cellular ROS generation. We review the current knowledge of the MnSOD enzymatic mechanism and ongoing studies into solving the remaining mysteries.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Gloria E O Borgstahl
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA.
- Eppley Institute for Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
21
|
Wang M, Wang B, Jiang K, Liu M, Shi X, Wang L. A mitochondrial manganese superoxide dismutase involved in innate immunity is essential for the survival of Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2018; 72:282-290. [PMID: 29127027 DOI: 10.1016/j.fsi.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Superoxide dismutase (SOD) ubiquitously found in both prokaryotes and eukaryotes functions as the first and essential enzyme in the antioxidant system. In the present study, a manganese SOD (designated as CfmtMnSOD) was cloned from Zhikong scallop Chlamys farreri. The complete cDNA sequence of CfmtMnSOD contained a 681 bp open reading frame (ORF), encoding a peptide of 226 amino acids. A SOD_Fe_N domain and a SOD_Fe_C domain were found in the deduced amino acid sequence of CfmtMnSOD. The mRNA transcripts of CfmtMnSOD were constitutively expressed in all the tested tissues, including gill, gonad, hepatopancreas, hemocytes, mantle and muscle, with the highest expression level in hemocytes. After the stimulation of Vibrio splendidus, Staphylococcus aureus and Yarrowia lipolytica, the mRNA transcripts of CfmtMnSOD in hemocytes all significantly increased. The purified rCfmtMnSOD protein exhibited Mn2+ dependent specific and low stable enzymatic activities. After Vibrio challenge, the cumulative mortality of CfmtMnSOD-suppressed scallops was significantly higher than those of control groups and the semi-lethal time for CfmtMnSOD-suppressed scallops was rather shorter than those of control groups either. Moreover, the final mortality rate of CfmtMnSOD-suppressed group was significant higher than those of control groups, even without Vibrio challenge. All these results indicated that CfmtMnSOD was efficient antioxidant enzyme involved in the innate immunity, and also essential for the survival of C. farreri.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baojie Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Keyong Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaowei Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Linyi University, Linyi 276000, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Lei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|