1
|
Guo S, Yang Q, Fan Y, Ran M, Shi Q, Song Z. Characterization and expression profiles of toll-like receptor genes (TLR2 and TLR5) in immune tissues of hybrid yellow catfish under bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109627. [PMID: 38754649 DOI: 10.1016/j.fsi.2024.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Renukdas NN, Kelly AM, Zinta G, Sinha AK. Hepatic transcriptome profiling of largemouth bass (Micropterus salmoides Lacépède) injected with Flavobacterium covae or lipopolysaccharide. JOURNAL OF FISH DISEASES 2024:e13948. [PMID: 38558407 DOI: 10.1111/jfd.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Flavobacterium covae (columnaris) is the most detrimental bacterial disease affecting the largemouth bass (Micropterus salmoides Lacépède) aquaculture industry. In the current study, fish received an intraperitoneal injection of either 1× PBS (100 μL), LPS in PBS (100 μL, 10 μg/mL), or F. covae (100 μL, 2.85 × 1011 CFU/mL) to simulate immunological challenges. After 24 h post-injection, liver tissue from the control and treated groups were then collected for transcriptome analysis. Results of the Gene Ontology (GO) and KEGG pathway analyses for the F. covae and LPS-injected groups found differentially expressed genes (DEGs) enriched primarily in toll-like receptors (TLRs), cytokine-cytokine receptors, complement and coagulation cascades, and the PPAR signalling pathways. This suggests that the liver immune system is enhanced by these five combined pathways. Additionally, the DEGs TLR5, MYD88, and IL-1 were significantly upregulated in F. covae and LPS-injected fish compared to the controls, whereas IL-8 was downregulated. The upregulation of TLR5 was unexpected as F. covae lacks flagellin, the protein that binds to TLR5. Additionally, it is unknown whether the TLR5 is upregulated by LPS. Further research into the upregulation of TLR5 is warranted. These results provide insight into immune responses and associated pathways contributing to the immune system in the liver during columnaris infection and induced response to LPS in largemouth bass.
Collapse
Affiliation(s)
- Nilima N Renukdas
- Aquaculture Laboratory, Arkansas Department of Agriculture, Little Rock, Arkansas, USA
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
- Alabama Fish Farming Center, Auburn University, Greensboro, Alabama, USA
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| |
Collapse
|
3
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
4
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Li Y, Hu J, Zhang Y, Yan K, Zhang M, Li Y, Huang X, Tang J, Yao T, Wang D, Xu S, Wang X, Zhou S, Yan X, Wang Y. Identification and characterization of toll-like receptor genes in silver pomfret (Pampus argenteus) and their involvement in the host immune response to Photobacterium damselae subsp. Damselae and Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109071. [PMID: 37703936 DOI: 10.1016/j.fsi.2023.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.
Collapse
Affiliation(s)
- Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiang Huang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jie Tang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Tingyan Yao
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Danli Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xubo Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Suming Zhou
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
Vijayaram S, Sun YZ, Zuorro A, Ghafarifarsani H, Van Doan H, Hoseinifar SH. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2022; 130:294-308. [PMID: 36100067 DOI: 10.1016/j.fsi.2022.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Bioactive immunostimulants could be derived from different sources like plants, animals, microbes, algae, yeast, etc. Bioactive immunostimulants are the most significant role to enhance aquatic production, as well as the cost of this method, which is effective, non-toxic, and environment-friendly. These immunostimulants are supportive to increase the immune system, growth, antioxidant, anti-inflammatory, and disease resistance of aquatic animals' health and also improve aquatic animal feed. Diseases are mainly targeted to the immune system of aquatic organisms in such a way that different processes of bioactive immunostimulants progress are considered imperative techniques for the development of aquaculture production. Communicable infections are the main problem for aquaculture, while the mortality and morbidity connected with some outbreaks significantly limit the productivity of some sectors. Aquaculture is considered the mainly developing food production sector globally. Protein insists is an important issue in human nutrition. Aquaculture has been an exercise for thousands of years, and it has now surpassed capture fisheries as the most vital source of seafood in the world. Limited study reports are available to focal point on bioactive immunostimulants in aquaculture applications. This review report provides information on the nutritional administration of bioactive immunostimulants, their types, functions, and beneficial impacts on aquatic animals' health as well as for the feed quality development in the aquaculture industry. The scope of this review combined to afford various kinds of natural derived bioactive molecules utilization and their beneficial effects in aquaculture applications.
Collapse
Affiliation(s)
- Seerengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; Department of Environmental Studies, School of Energy Environment and Natural Resources, Madurai Kamaraj University, Madurai, India
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184, Rome, Italy
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand; Science and Technology Research Institute, Chiang Mai University, Suthep, Muang, Chiang Mai, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
7
|
Genome-Wide Identification and Characterization of Toll-like Receptors (TLRs) in Diaphorina citri and Their Expression Patterns Induced by the Endophyte Beauveria bassiana. J Fungi (Basel) 2022; 8:jof8080888. [PMID: 36012876 PMCID: PMC9409752 DOI: 10.3390/jof8080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors (PRRs), which play key roles in helping the host immune system fight pathogen invasions. Systematic information on TLRs at the genome-wide level and expression profiling in response to endophytic colonization is very important to understand their functions but is currently lacking in this field. Here, a total of two TLR genes were identified and characterized in Diaphorina citri. The TLR genes of D. citri were clustered into five families according to the phylogenetic analysis of different species' TLRs. The domain organization analyses suggested that the TLRs were constituted of three important parts: a leucine-rich repeat (LRR) domain, a transmembrane region (TR) and a Toll/interleukin-1 receptor (TIR) domain. The mRNA expression levels of the two TLR genes (DcTOLL and DcTLR7) were highly regulated in both nymphs and adults of D. citri. These results elucidated the potentiated TLR gene expression in response to endophytically colonized plants. Furthermore, the 3D structures of the TIR domain were highly conserved during evolution. Collectively, these findings elucidate the crucial roles of TLRs in the immune response of D. citri to entomopathogens systematically established as endophytes, and provide fundamental knowledge for further understanding of the innate immunity of D. citri.
Collapse
|
8
|
Islam SI, Mou MJ, Sanjida S. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol 2022; 20:118. [PMID: 35939149 PMCID: PMC9358925 DOI: 10.1186/s43141-022-00391-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
9
|
Gao F, Pang J, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. TLR5 recognizes Aeromonas hydrophila flagellin and interacts with MyD88 in Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104409. [PMID: 35405183 DOI: 10.1016/j.dci.2022.104409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Toll-like receptor 5 (TLR5) is responsible for bacterial flagellin recognition in vertebrates. In the present study, TLR5M was identified in the Nile tilapia Oreochromis niloticus (OnTLR5), containing a conserved LRR domain, a transmembrane region and a C-terminal TIR domain, similar to that of other fishes and mammals. OnTLR5 was broadly expressed in all the tissues examined, presenting the highest expression levels in the blood and the lowest in the kidney. OnTLR5 was detected from 2 d postfertilization (dpf) to 8 dpf during embryonic development. Moreover, expression levels of OnTLR5 were clearly altered in all five tissues examined in response to Streptococcus agalactiae infection in vivo. Overexpression of OnTLR5 in HEK293T cells revealed that OnTLR5 was distributed in the cytoplasm and significantly increased NF-κB activation. In response to cotransfection with OnMyd88, OnTLR5 significantly upregulated OnMyd88-induced NF-κB activation. Pulldown assays showed that OnTLR5 interacts with OnMyd88 and revealed an interaction between TLR5 and Aeromonas hydrophila flagellin. Taken together, these findings suggest that OnTLR5 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Jicai Pang
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261021, Shandong Province, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
10
|
Li XP, Sun JQ, Sui ZH, Zhang J, Feng JX. Membrane orthologs of TLR5 of tongue sole Cynoglossus semilaevis: Expression patterns, signaling pathway and antibacterial property. FISH & SHELLFISH IMMUNOLOGY 2022; 126:131-140. [PMID: 35618170 DOI: 10.1016/j.fsi.2022.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Mammalian toll-like receptor 5 (TLR5) is crucial for recognizing bacterial flagellin and initiating the inflammatory signaling cascades via myeloid differentiation factor 88 (MyD88) signaling pathway, which plays vital roles in innate immune against pathogenic bacteria. Herein, we reported the signaling pathway and antibacterial property of tongue sole (Cynoglossus semilaevis) membrane forms of TLR5 (i.e. CsTLR5M1and CsTLR5M2). CsTLR5M1/M2 contain 936 and 885 amino acid residues respectively. CsTLR5M1 shares 86.7% overall sequence identities with CsTLR5M2. CsTLR5M1/M2 possess the same extracellular domain (ECD) and transmembrane domain (TMD), but the different toll-interleukin-1 receptor (TIR) domain. CsTLR5M1/M2 expression occurred constitutively in multiple tissues and regulated by bacterial stimulation. Recombinant CsTLR5M1/M2 (rCsTLR5M) could bind to flagellin and Gram-negative/positive bacteria, which could suppress bacterial growth. Stimulation of the CsTLR5M pathway by flagellin resulted in increased expression of MyD88-dependent signaling molecules and inflammatory cytokines. Blocking rCsTLR5M by antibody markedly reduced the phagocytosis and ROS production of peripheral blood leukocytes (PBLs), which in turn in vivo promoted the dissemination of bacteria. Overall, these observations add new insights into the signaling pathway and immune function of teleost TLR5M.
Collapse
Affiliation(s)
- Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Zhi-Hai Sui
- School of Life Science, Linyi University, Linyi, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
11
|
Monteiro M, Perdiguero P, Couto A, Serra CR, Pereiro P, Novoa B, Figueras A, Ribeiro L, Pousão-Ferreira P, Tafalla C, Oliva-Teles A, Enes P, Secombes CJ, Díaz-Rosales P. Comprehensive transcriptome profiling and functional analysis of the meagre (Argyrosomus regius) immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:506-520. [PMID: 35351613 DOI: 10.1016/j.fsi.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Meagre (Argyrosomus regius) belongs to the family Sciaenidae and is a promising candidate for Mediterranean aquaculture diversification. As a relatively recent species in aquaculture, the physiological consequences of the immune system activation in meagre are understudied. Spleen, as a primary lymphoid organ has an essential role in meagre immune and inflammatory responses. In this study, we have evaluated the in vivo effects of lipopolysaccharide (LPS) on the spleen transcriptome of meagre by RNA-seq analysis at 4 and 24 h after injection.
Collapse
Affiliation(s)
- M Monteiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
| | - P Perdiguero
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain; Departamento de Genética, Fisiología y Microbiología. Universidad Complutense de Madrid, Ciudad universitaria s/n, 28040, Madrid, Spain
| | - A Couto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Pereiro
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - L Ribeiro
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - P Pousão-Ferreira
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - C Tafalla
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain
| | - A Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, AB24 2TZ Aberdeen, UK
| | - P Díaz-Rosales
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
12
|
Application of reverse vaccinology for designing of an mRNA vaccine against re-emerging marine birnavirus affecting fish species. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Zhang Y, Hu J, Li Y, Zhang M, Jacques KJ, Gu W, Sun Y, Sun J, Yang Y, Xu S, Wang Y, Yan X. Immune response of silver pomfret (Pampus argenteus) to Amyloodinium ocellatum infection. JOURNAL OF FISH DISEASES 2021; 44:2111-2123. [PMID: 34585397 DOI: 10.1111/jfd.13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Amyloodinium ocellatum (AO) infection in silver pomfret (Pampus argenteus) causes extensive mortality. Insufficient information exists on the molecular immune response of silver pomfret to AO infestation, so herein we simulated the process of silver pomfret being infected by AO. Translucent trophosomes were observed on the gills of AO-infected fish. Transcriptome profiling was performed to investigate the effects of AO infection on the gill, kidney complex and spleen. Overall, 404,412,298 clean reads were obtained, assembling into 96,341 unigenes, which were annotated against public databases. In total, 2730 differentially expressed genes were detected, and few energy- and immune-related genes were further assessed using RT-qPCR. Moreover, activities of three immune-related (SOD, AKP and ACP) and three energy-related (PKM, LDH and GCK) enzymes were determined. AO infection activated the immune system and increased interleukin-1 beta and immunoglobulin M heavy chain levels. Besides, the PPAR signalling pathway was highly enriched, which played a role in improving immunity and maintaining homeostasis. AO infection also caused dyspnoea, leading to extensive lactic acid accumulation, potentially contributing towards a strong immune response in the host. Our data improved our understanding regarding the immune response mechanisms through which fish coped with parasitic infections and may help prevent high fish mortality in aquaculture.
Collapse
Affiliation(s)
- Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Kimran Jean Jacques
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Weiwei Gu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yibo Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiachu Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Gao F, Liu J, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. Nile tilapia Toll-like receptor 7 subfamily: Intracellular TLRs that recruit MyD88 as an adaptor and activate the NF-κB pathway in the immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104173. [PMID: 34144119 DOI: 10.1016/j.dci.2021.104173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Toll-like receptor 7 (TLR7) subfamily members are important pattern recognition receptors that participate in the recognition of pathogen-associated molecular patterns. In the present study, three TLR family members, OnTLR7, OnTLR8 and OnTLR9, were identified in the Nile tilapia Oreochromis niloticus. TLR7-, TLR8-and TLR9-deduced proteins have typical structural characteristics of TLRs, including Toll/interleukin-1 receptor (TIR), leucine-rich repeat (LRR) and transmembrane region (TM). OnTLR7, OnTLR8 and OnTLR9 were broadly expressed in all of the tissues tested, with the highest expression levels in the brain (TLR7) and spleen (TLR8 and TLR9). Moreover, the expression levels of OnTLR7, OnTLR8 and OnTLR9 were significantly increased in most tested tissues after Streptococcus agalactiae infection in vivo. After LPS stimulation, OnTLR7 and OnTLR9 mRNA expression levels were downregulated in the intestine and upregulated in the liver, spleen and kidney; however, OnTLR8 mRNA expression levels were upregulated in the kidney only after LPS stimulation for 5 d. After Poly I:C stimulation, OnTLR7 and OnTLR9 mRNA expression levels were upregulated in the intestine, liver, spleen and kidney, and the highest expression was found in the liver, while OnTLR8 mRNA expression levels were upregulated in the intestine, liver and kidney and downregulated in the spleen. Subcellular localization of OnTLR7, OnTLR8, and OnTLR9 in 293T cells showed that OnTLR9 was distributed in both the cytoplasm and nucleus while OnTLR8 and OnTLR7 were distributed mainly in the cytoplasm. Overexpression of OnTLR7, OnTLR8 and OnTLR9 in 293T cells had no significant effect on the activity of NF-κB, but they could significantly enhance MyD88-mediated NF-κB activity after cotransfection with MyD88. Pulldown assays showed that OnTLR7, OnTLR8, and OnTLR9 could interact with OnMyD88. Taken together, these results indicate that TLR7 subfamily genes play a role in the immune response to pathogen invasion of Nile tilapia.
Collapse
Affiliation(s)
- Fengying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Jie Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China; College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
15
|
In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. ACTA ACUST UNITED AC 2021; 10:37. [PMID: 34094807 PMCID: PMC8165136 DOI: 10.1007/s13721-021-00315-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Neural necrosis virus (NNV) of family Nodaviridae affect wide range of fish species with viral encephalopathy and retinopathy causing mass mortality up to 100%. Currently there is no effective treatment and depopulation is only suggested recommendation. New avenues and approach are required to control this harmful malady. In this study we developed an epitope-based vaccine (EBV), against NNV using computation approach. We have selected two conserved proteins RNA-dependent RNA polymerase (RdRP) and capsid proteins. Based on more than ~ 1000 epitopes we selected six antigenic epitopes. These were conjugated to adjuvant and linker peptides to generate a full-length vaccine candidate. Biochemical structural properties were analyzed by Phyre2 server. ProtParam, Molprobity. Ramachandran plot results indicate that 98.7% residues are in a favorable region and 93.4% residues in the favored region. The engineered EBV binds to toll like receptor-5 (TLR5) an important elicitor of immune response. Further molecular docking by PatchDock server reveals the atomic contact energy (i.e. − 267.08) for the best docked model of EBV and TLR5 receptor. The molecular simulation results suggest a stable interaction; the RMSD and RMSF values are 1–4 Ǻ and 1–12Ǻ, respectively. Further we have suggested the best possible codon optimized sequence for its cloning and subsequent purification of the protein. Overall, this is a first report to suggest an in-silico method for generation of an EBV candidate against NNV. We surmise that the method and approach suggested could be used as a promising cure for NNVs.
Collapse
|
16
|
Gao Q, Tang Q, Xia Z, Yi S, Cai M, Du H, Yang J, Li J, Xing Q, Luo J, Yang G. Molecular identification and functional analysis of MyD88 in giant freshwater prawn (Macrobrachium rosenbergii) and expression changes in response to bacterial challenge. Int J Biol Macromol 2021; 178:492-503. [PMID: 33647335 DOI: 10.1016/j.ijbiomac.2021.02.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/25/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein for Toll-like receptor (TLR)-mediated signaling pathways and plays an important role in immune response. In this study, the full-length cDNA of MyD88 from Macrobrachium rosenbergii (MRMyD88) was cloned. The MRMyD88 cDNA is 1758 bp long and contains a 1398-bp open reading frame. Multiple sequence alignment and phylogenetic analysis revealed that the amino acid sequence of MRMyD88 shared high identity with the known MyD88 proteins. The MRMyD88 mRNA was widely expressed in all examined tissues, with highest level in intestine, followed by gonad and pleopod. Furthermore, the MRMyD88 promoter region, spanning 1622 bp, contains several transcription factor-binding sites, including nine GATA-1 box motifs. Electrophoretic mobility shift assay showed that Gfi-1, SRF, and Oct-1 bind to the upstream region of MRMyD88. Additionally, the results showed that the expression levels of TLR1, TLR2 and TLR3 were different in response to Vibrio anguillarum, Lactobacillus plantarum and Aeromonas hydrophila infections. However, these bacteria significantly increased the expression levels of MyD88 and prophenoloxidase. These data suggest that the TLR-mediated signaling pathway is MyD88-dependent in response to pathogenic and probiotic bacteria in M. rosenbergii.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Qiongying Tang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225654, PR China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225654, PR China
| | - Houkuan Du
- Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225654, PR China
| | - Jie Yang
- Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225654, PR China
| | - Jingfen Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Guoliang Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development; Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences; Huzhou Cent Hosp, Huzhou University; College of Life Science, Huzhou University, Huzhou 313000, PR China; Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225654, PR China.
| |
Collapse
|
17
|
Luo J, Monroig Ó, Liao K, Ribes-Navarro A, Navarro JC, Zhu T, Li J, Xue L, Zhou Q, Jin M. Biosynthesis of LC-PUFAs and VLC-PUFAs in Pampus argenteus: Characterization of Elovl4 Elongases and Regulation under Acute Salinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:932-944. [PMID: 33430591 DOI: 10.1021/acs.jafc.0c06277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity has been demonstrated to influence the biosynthesis of long-chain (C20-24) polyunsaturated fatty acids (LC-PUFAs) in teleost fish. Since LC-PUFAs are essential nutrients for vertebrates, it is central to understand how fish cope with an acute change in salinity associated with natural events. We herein report on the cloning and functional characterization of two elongation of very-long-chain fatty acid (Elovl)4 proteins, namely, Elovl4a and Elovl4b, and study the roles that these enzymes play in the biosynthesis of LC-PUFAs and very-long-chain (>C24) polyunsaturated fatty acids (VLC-PUFAs) in marine teleost Pampus argenteus. The P. argenteus Elovl4 displayed all of the typical features of Elovl-like enzymes and have eyes and brain as major sites through which they exert their functions. Moreover, functional studies showed that the P. argenteus Elovl4 can effectively elongate C18-22 substrates to C36 VLC-PUFA. Because both P. argenteus Elovl4 are able to produce 24:5n - 3 from shorter precursors, we tested whether the previously reported Δ6 Fads2 from P. argenteus was able to desaturate 24:5n - 3 to 24:6n - 3, a key step for docosahexaenoic acid (DHA) synthesis. Our results showed that P. argenteus can indeed bioconvert 24:5n - 3 into 24:6n - 3, suggesting that P. argenteus has the enzymatic capacity required for DHA biosynthesis through the coordinated action of both Elovl4 and Fads2. Furthermore, an acute salinity test indicated that low-salinity stress (12 ppt) upregulated genes involved in LC-PUFA biosynthesis, with 12 ppt salinity treatment showing the highest hepatic LC-PUFA content. Overall, our results unveiled that the newly characterized Elovl4 enzymes have indispensable functions in LC- and VLC-PUFA biosynthesis. Moreover, acute salinity change influenced the biosynthesis of LC-PUFA in P. argenteus. This study provided new insight into the biosynthesis of LC- and VLC-PUFAs in vertebrates and the physiological responses that teleosts have under acute salinity stress.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Alberto Ribes-Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes 12595, Castellón, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Juan Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Liangli Xue
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
18
|
Hu L, Zhang S, Zhou Y, Liao K, Xu S, Wang D. Cloning and expression of Hoxc6 gene from Pampus argenteus and its relationship with pelvic fin absence. Gene Expr Patterns 2020; 39:119161. [PMID: 33309862 DOI: 10.1016/j.gep.2020.119161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Hoxc6 gene can be described as having roles in axial patterning in early embryogenesis, and in at least some species, having a contribution to limb positioning. In this study, we cloned and characterised Pampus argenteus Hoxc6. The highly conserved HOXC6 protein sequence contains a homeodomain and a low-complexity region. Expression of Hoxc6 mRNA was measured at different developmental stages and in different tissues by real-time PCR (p < 0.05), and was high during eye capsule and brain differentiation stages, but low in 7 and 13-day-old larvae. Hoxc6 mRNA was more abundant in fin tissue than brain and eye tissues. Western blotting showed that HOXC6 protein levels were high at embryonic stages, but decreased significantly in 7, 13, 16 and 19-day-old larvae, and levels were essentially consistent with those of mRNA measured by real-time PCR in different tissues. In situ hybridisation showed that the Hoxc6 transcript was strongly expressed in the whole brain and anterior part of the body axis in 1-day-old larvae, but in the hindbrain, pectoral fin, mandible and hypothetical pelvic fin region in 7, 13, 16 and 19-day-old organisms. These results clarify the expression and localisation characteristics of Hoxc6 gene in P. argenteus, and provide a theoretical basis for the molecular mechanism of pelvic fin loss in silver pomfret.
Collapse
Affiliation(s)
- Lingzhu Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yu Zhou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China.
| | - Danli Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Toll-Like Receptor 5 of Golden Pompano Trachinotus ovatus (Linnaeus 1758): Characterization, Promoter Activity and Functional Analysis. Int J Mol Sci 2020; 21:ijms21165916. [PMID: 32824641 PMCID: PMC7460618 DOI: 10.3390/ijms21165916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs), as important pattern recognition receptors, represent a significant component of fish immune systems and play an important role in resisting the invasion of pathogenic microorganisms. The TLR5 subfamily contains two types of TLR5, the membrane form of TLR5 (TLR5M) and the soluble form of TLR5 (TLR5S), whose detailed functions have not been completely elucidated. In the present study, we first identified two genes, TLR5M (ToTLR5M) and TLR5S (ToTLR5S), from golden pompano (Trachinotus ovatus). The full-length ToTLR5M and ToTLR5S cDNA are 3644 bp and 2329 bp, respectively, comprising an open reading frame (ORF) of 2673 bp, encoding 890 amino acids, and an ORF of 1935 bp, encoding 644 amino acids. Both the ToTLR5s possess representative TLR domains; however, only ToTLR5M has transmembrane and intracellular TIR domains. Moreover, the transcription of two ToTLR5s was significantly upregulated after stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and flagellin in both immune-related tissues (liver, intestine, blood, kidney, and skin) and nonimmune-related tissue (muscle). Furthermore, the results of bioinformatic and promoter analysis show that the transcription factors GATA-1 (GATA Binding Protein 1), C/EBPalpha (CCAAT Enhancer Binding Protein Alpha), and ICSBP (Interferon (IFN) consensus sequence binding protein) may play a positive role in moderating the expression of two ToTLR5s. Overexpression of ToTLR5M and ToTLR5S notably increases NF-κB (nuclear factor kappa-B) activity. Additionally, the binding assay revealed that two rToTLR5s can bind specifically to bacteria and pathogen-associated molecular patterns (PAMPs) containing Vibrio harveyi, Vibrio anguillarum, Vibrio vulnificus, Escherichia coli, Photobacterium damselae, Staphylococcus aureus, Aeromonas hydrophila, LPS, poly(I:C), flagellin, and peptidoglycan (PGN). In conclusion, the present study may help to elucidate the function of ToTLR5M/S and clarify their possible roles in the fish immune response to bacterial infection.
Collapse
|
20
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Molecular characterization of TLR3 and TRIL in silvery pomfret (Pampus argenteus) and their expression profiles in response to bacterial components. Int J Biol Macromol 2020; 155:805-813. [DOI: 10.1016/j.ijbiomac.2020.03.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 01/14/2023]
|
22
|
Du X, Li D, Li Y, Wu J, Huang A, Bu G, Meng F, Kong F, Cao X, Han X, Pan X, Yu G, Yang S, Zeng X. Clone, identification and functional character of two toll-like receptor 5 molecules in Schizothorax prenanti. FISH & SHELLFISH IMMUNOLOGY 2019; 95:81-92. [PMID: 31610291 DOI: 10.1016/j.fsi.2019.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Mammal Toll-like receptor 5 (TLR5) can directly recognize bacterial flagellin, initiate the inflammatory signaling cascades and trigger body immune system to clear the "non-self" substances. In teleosts, TLR5 has presented more complexes not only in increasing the molecular types, but also in elevating the functional diversity. In this study, we identified two TLR5 family members in Schizothorax prenanti, named as spTLR5-1 and spTLR5-2. The complete coding sequence (CDS) of spTLR5-1 is 2622 bp, encoding 873 amino acids, while the complete CDS of spTLR5-2 is 2640 bp, encoding 879 amino acids. Phylogenetic analysis showed that spTLR5-1 and spTLR5-2 were clustered to the TLR5 of schizothorax richardsonii and Cyprinus carpio respectively. The 3D structure analysis exhibited that the α-helix, β-sheet, and the ligand binding site of spTLR5-1, spTLR5-2 and human TLR5 have large differences. The spTLR5-1 and spTLR5-2 had extensively expressed in various tissues, including the higher expression in liver, spleen and head kidney. Both the expression levels of spTLR5-1 and spTLR5-2 were significantly up-regulated after Aeromonas hydrophila (A. hydrophila) challenge. And, the downstream genes, such as AP-1, IKK-α, NF-kB, IL-1β, IL-8 and TNF-α, were also significantly up-regulated after A. hydrophila challenge. Apart from that, the luciferase reporter assay demonstrated that the co-transfection of spTLR5-1 or spTLR5-2 into HEK293T cells showed the significantly increased NF-kB luciferase activity after flagellin stimulation. In conclusion, our results reveal that both two molecular types of fish TLR5 may commonly mediate the recognition of flagellin and the activation of the downstream inflammatory signaling molecules.
Collapse
Affiliation(s)
- Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| | - Dong Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Jiayu Wu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Anqi Huang
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Guixian Bu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fengyan Meng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fanli Kong
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaohan Cao
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xingfa Han
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China
| | - Guozhi Yu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, 625014, Sichuan, PR China
| | - Xianyin Zeng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| |
Collapse
|
23
|
Dual RNA-Seq Unveils the Role of the Pseudomonas plecoglossicida fliA Gene in Pathogen-Host Interaction with Larimichthys crocea. Microorganisms 2019; 7:microorganisms7100443. [PMID: 31614635 PMCID: PMC6843279 DOI: 10.3390/microorganisms7100443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study, Larimichthys crocea and Pseudomonas plecoglossicida were selected as a host-pathogen interaction model for teleosts and prokaryotic pathogens. Five shRNAs were designed and synthesized to silence the fliA gene, all of which resulted in pronounced reductions in fliA mRNA; the mutant strain with the best silencing efficiency of 92.16% was chosen for subsequent analysis. A significant decrease in motility, intracellular survival and escape was observed for the fliA-RNAi strain of P. plecoglossicida, whereby silencing of the fliA gene led to a 30% decrease in mortality and a four-day delay in the onset of infection in L. crocea. Moreover, silencing of P. plecoglossicida fliA resulted in a significant change in both the pathogen and host transcriptome in the spleens of infected L. crocea. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of pathogen transcriptome data showed that silencing fliA resulted in downregulation of 18 flagellum-related genes; KEGG analysis of host transcriptome data revealed that infection with the fliA-RNAi strain caused upregulation of 47 and downregulation of 106 immune-related genes. These pathogen-host interactions might facilitate clearance of P. plecoglossicida by L. crocea, with a significant decrease in fliA-RNAi P. plecoglossicida strain virulence in L. crocea.
Collapse
|
24
|
Li J, Jia P, Chen X, Lai M, Jin F, Liu W, Yi M, Jia K. Establishment and characterization of a fin tissue cell line derived from silver pomfret, Pampus argenteus. JOURNAL OF FISH DISEASES 2019; 42:1391-1399. [PMID: 31381181 DOI: 10.1111/jfd.13059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
A cell line (PaF) derived from the fin tissue of silver pomfret (Pampus argenteus) was established and characterized in this study. The cell line has been subcultured for more than 50 times in Dulbecco's modified Eagle's medium (DMEM) containing 15% foetal bovine serum (FBS) since the initial primary culture. PaF cells grew well at temperatures from 24°C to 28°C in DMEM supplemented with 15% FBS. Partial amplification and sequence analysis of the cytochrome B gene indicated that PaF originated from silver pomfret. Cytogenetic analysis demonstrated that the modal chromosome number was 48. A significant cytopathic effect was observed in PaF cells during viral haemorrhagic septicaemia virus (VHSV) infection, and the VHSV replication was confirmed by qRT-PCR and viral titre assays. In contrast, PaF cells were resistant to red-spotted grouper nervous necrosis virus infection. Moreover, PaF cells could respond to VHSV and lipopolysaccharide treatments, as indicated by the expression of immune-related genes, TLR5 and TLR9. In conclusion, the establishment of PaF cell line will provide an appropriate in vitro tool for the study of mechanisms of pathogen-silver pomfret interaction.
Collapse
Affiliation(s)
- Jianhuan Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Mingyan Lai
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fanming Jin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|