1
|
Liu Y, Bai Y, Chen S, Pu F, Li Y, Chi H, Zheng Z, Xu P, Zhou T. Molecular characterization, expression pattern and immunologic function of CD82a in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1301877. [PMID: 38370405 PMCID: PMC10869527 DOI: 10.3389/fimmu.2024.1301877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Visceral white spot disease (VWND) caused by Pseudomonas plecoglossicida poses a major threat to the sustainable development of large yellow croaker (Larimichthys crocea) aquaculture. Genome-wide association analysis (GWAS) and RNA-seq research indicated that LcCD82a play an important role in resistance to visceral white spot disease in L. crocea, but the molecular mechanism of LcCD82a response to P. plecoglossicida infection is still unclear. In this study, we cloned and validated the Open Reading Frame (ORF) sequence of LcCD82a and explored the expression profile of LcCD82a in various tissues of L.crocea. In addition, two different transcript variants (LcCD82a-L and LcCD82a-S) of LcCD82a were identified that exhibit alternative splicing patterns after P. plecoglossicida infection, which may be closely related to the immune regulation during pathogenetic process of VWND. In order to explore the function of LcCD82a, we purified the recombinant protein of LcCD82a-L and LcCD82a-S. The bacterial agglutination and apoptosis function analysis showed that LcCD82a may involve in extracellular bacterial recognition, agglutination, and at the same time participate in the process of antigen presentation and induction of cell apoptosis. Collectively, our studies demonstrate that LcCD82a plays a crucial role in regulating apoptosis and antimicrobial immunity.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Sijing Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yaxian Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zaiyu Zheng
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Yan W, Liu X, Wang X. The heat shock protein 20 gene family in large yellow croaker (Larimichthys crocea): Identification, phylogenetic relationships, expression analyses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106700. [PMID: 37837866 DOI: 10.1016/j.aquatox.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economically important fish in China, but its aquaculture industry has been threatened by both biotic and abiotic stressors such as hypoxia and pathogens. In the current study, hsp20 genes were identified and analyzed systematically for the first time from the genome of large yellow croaker, and their roles in hypoxia response and Aeromonas hydrophila, Pseudomonas plecoglossicida infection were investigated. Herein, 11 hsp20 genes were identified and annotated, phylogenetic analysis and selection pressure analysis showed that the hsp20 genes were evolutionarily-constrained and their function was conserved among fishes. Besides, we observed the expression patterns of the hsp20 genes under hypoxia and two pathogens' stress. In brief, seven, four, seven genes responded to hypoxia stress, A. hydrophila infection and P. plecoglossicida challenge, respectively, which indicated that they were involved in hypoxia and disease responses. Furthermore, pathogen- and time-specific pattern was observed after A. hydrophila and P. plecoglossicida infection whereas tissue-specific pattern was observed after hypoxia exposure, revealing that hsp20 genes showed differential functions in response to hypoxia and immune stress. Taken together, these results provided preliminary information for future analysis of the roles of hsp20 genes in both biotic and abiotic stress response in fish.
Collapse
Affiliation(s)
- Weijie Yan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, China.
| |
Collapse
|
3
|
Wang Y, Jin Y, Sun F, Zhang Y, Liu Q, Wang Q, Yang D, Zhang Y. The c-di-GMP signalling component YfiR regulates multiple bacterial phenotypes and virulence in Pseudomonas plecoglossicida. J Appl Microbiol 2023; 134:lxad157. [PMID: 37500265 DOI: 10.1093/jambio/lxad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIMS Pseudomonas plecoglossicida (P. plecoglossicida) is the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea) and it causes severe economic loss to its industry. Biofilm formation, related to intracellular cyclic bis (3'-5') diguanylic acid (c-di-GMP) levels, is essential for the lifestyle of P. plecoglossicida. This research aims to investigate the role of YfiR-a key regulator of the diguanylate cyclase YfiN to regulate c-di-GMP levels and reveal its regulatory function of bacterial virulence expression in P. plecoglossicida. METHODS AND RESULTS A genetic analysis was carried out to identify the yfiBNR operon for c-di-GMP regulation in P. plecoglossicida. Then, we constructed a yfiR mutant and observed increased c-di-GMP levels, enhanced biofilm formation, increased exopolysaccharides, and diminished swimming and swarming motility in this strain. Moreover, through establishing a yolk sac microinjection infection model in zebrafish larvae, an attenuated phenotype of yfiR mutant that manifested as restored survival and lower bacterial colonization was found. CONCLUSIONS YfiR is the key regulator of virulence in P. plecoglossicida, which contributes to c-di-GMP level, biofilm formation, exopolysaccharides production, swimming, swarming motility, and bacterial colonization in zebrafish model.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yinhua Jin
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Sun
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
4
|
Fang Y, Jin S, Xu XY, Shen Y, Wang Q, Li J. miR-130a targets CiGadd45bb to modulate the inflammatory response to bacterial infection in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108633. [PMID: 36822380 DOI: 10.1016/j.fsi.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Septicemia is a systemic inflammatory response to bacterial infection that results in a hyper-inflammatory state, which could lead to septic shock and death in grass carp (Ctenopharyngodon idella). The aim of this study was to determine the underlying mechanism of microRNA (miR-130a) in bacteria-infected grass carp. Expression levels of miR-130a against Aeromonas hydrophila (A. hydrophila) infection in Ctenopharyngodon idella kidney cells (CIK) were analyzed. Luciferase reporter assay, quantitative reverse transcription-polymerase chain reaction were performed to explore whether Ctenopharyngodon idella growth arrest and DNA damage-inducible 45 (CiGadd45bb) was a target of miR-130a. MiR-130a mimic, inhibitor and miR-control were transfected to CIK respectively. After transfection, the expression levels of proinflammatory genes were determined. Here we show that CiGadd45bb as a target of miR-130a. We also confirmed that miR-130a levels were significantly higher after being stimulated for 4 h and lower after 12 h (P < 0.01). Overexpressing miR-130a strikingly inhibited p38, JNK, ERK and TNF-a genes (P < 0.01) and silencing miR-130a activated p38, JNK, ERK, TNF-a, IFN and IL-8 (P < 0.01). Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by miR-130a in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China; College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
| | - Shengzhen Jin
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Quan Wang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Qin G, Ai X, Xu J, Yang Y. Dual RNA-seq of spleens extracted from channel catfish infected with Aeromonas veronii reveals novel insights into host-pathogen interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114609. [PMID: 36739739 DOI: 10.1016/j.ecoenv.2023.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Interactions between host and pathogen are involving various dynamic changes in transcript expression and critical for understanding host immunity against infections and its associated pathogenesis. Herein, we established a model of channel catfish infected with Aeromonas veronii. The infected fish had prominent body surface bleeding, and the spleen showed hyperemia and swelling. Then, the spleen of channel catfish infected with A. veronii was analyzed by dual RNA sequencing (RNA-seq), and the transcriptome data were compared with uninfected channel catfish spleen or bacteria cultured in vitro. The transcript expression profile of pathogen-host interaction between A. veronii and channel catfish was successfully studied. During infection, the host was enriched for multiple immune-related signaling pathways, such as the Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and T cell receptor signaling pathway; and significantly upregulated for many innate immune-related genes, including IL-8. At the same time, we found that A. veronii mainly harmed the host spleen through hemolysin. Our current findings are of great significance in clarifying the pathogenesis of channel catfish induced by A. veronii and provide gene targets for developing preventive measures.
Collapse
Affiliation(s)
- Gaixiao Qin
- College of Animal Science and Technology, Henan university of animal husbandry and Economy, Zhengzhou 450046, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
6
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
7
|
Zhou Z, Leng C, Wang Z, Long L, Lv Y, Gao Z, Wang Y, Wang S, Li P. The potential regulatory role of the lncRNA-miRNA-mRNA axis in teleost fish. Front Immunol 2023; 14:1065357. [PMID: 36895573 PMCID: PMC9988957 DOI: 10.3389/fimmu.2023.1065357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Research over the past two decades has confirmed that noncoding RNAs (ncRNAs), which are abundant in cells from yeast to vertebrates, are no longer "junk" transcripts but functional regulators that can mediate various cellular and physiological processes. The dysregulation of ncRNAs is closely related to the imbalance of cellular homeostasis and the occurrence and development of various diseases. In mammals, ncRNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to serve as biomarkers and intervention targets in growth, development, immunity, and disease progression. The regulatory functions of lncRNAs on gene expression are usually mediated by crosstalk with miRNAs. The most predominant mode of lncRNA-miRNA crosstalk is the lncRNA-miRNA-mRNA axis, in which lncRNAs act as competing endogenous RNAs (ceRNAs). Compared to mammals, little attention has been given to the role and mechanism of the lncRNA-miRNA-mRNA axis in teleost species. In this review, we provide current knowledge about the teleost lncRNA-miRNA-mRNA axis, focusing on its physiological and pathological regulation in growth and development, reproduction, skeletal muscle, immunity to bacterial and viral infections, and other stress-related immune responses. Herein, we also explored the potential application of the lncRNA-miRNA-mRNA axis in the aquaculture industry. These findings contribute to an enhanced understanding of ncRNA and ncRNA-ncRNA crosstalk in fish biology to improve aquaculture productivity, fish health and quality.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuibo Leng
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zhan Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yiju Lv
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Haridevamuthu B, Guru A, Velayutham M, Snega Priya P, Arshad A, Arockiaraj J. Long non‐coding RNA, a supreme post‐transcriptional immune regulator of bacterial or virus‐driven immune evolution in teleost. REVIEWS IN AQUACULTURE 2023; 15:163-178. [DOI: 10.1111/raq.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2023]
Abstract
AbstractThe global aquaculture boom, fuelled by a reduction in wild population and detection of novel viruses, has created a demanding market, hence, there is a pressing need to investigate the immune system of fish, further. As the most diverse community of vertebrates and a central contributor to the progressing global aquaculture market, teleost continues to draw vast scientific interest. Recent breakthroughs in multi‐omics technologies have provided a platform to understand the role of long non‐coding RNA (lncRNA) in the host immune system during infection. Emerging evidence shows that teleost lncRNA might have a regulatory role in immune responses, mostly through lncRNA–microRNA (miRNA) sponging. Teleost lncRNA shares a functionally active short sequence complement to target the miRNA which is conserved among the several fish species. Recent report suggests that rhabdovirus exploits a lncRNA in teleost and, to dodge the host immune mechanism and negatively regulate the immune system. This observation reveals the essentiality of lncRNA in pathogen‐driven immunity in teleost. Reports available on the function of teleost lncRNA are still in early stages and experimental verifications are a limiting factor. Unravelling the lncRNA‐mediated immune regulation in fishes could be used against the invading pathogens to strengthen the aquaculture production. This review elaborates on the experimentally identified and functionally characterized lncRNA and its regulatory role in the teleost immune response during infection and pathogen‐driven host immune evolution, which could eventually lead to achieving high standards in aquaculture productivity.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
9
|
Nie W, Chen X, Tang Y, Xu N, Zhang H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front Bioeng Biotechnol 2022; 10:1066799. [PMID: 36466329 PMCID: PMC9712207 DOI: 10.3389/fbioe.2022.1066799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
Collapse
Affiliation(s)
| | | | | | | | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Wang Y, Chen R, Wang Q, Yue Y, Gao Q, Wang C, Zheng H, Peng S. Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress. Vet Sci 2022; 9:vetsci9110632. [PMID: 36423081 PMCID: PMC9697846 DOI: 10.3390/vetsci9110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The large yellow croaker is one of the most economically important fish in China. In recent years, the deterioration of the water environment and unregulated aquaculture have caused great economic losses to the large yellow croaker breeding industry. The aim of this study was to analyze the effects of hypoxia and acidification stress on large yellow croaker. This study revealed that hypoxia and acidification stress suppressed the growth of the large yellow croaker. Transcriptome analysis revealed that genes of the collagen family play an important role in the response of large yellow croaker to hypoxia and acidification stress. The study elucidates the mechanism underlying the response of large yellow croaker to hypoxia–acidification stress during early development and provides a basic understanding of the potential combined effects of reduced pH and dissolved oxygen on Sciaenidae fishes. Abstract Fishes live in aquatic environments and several aquatic environmental factors have undergone recent alterations. The molecular mechanisms underlying fish responses to hypoxia and acidification stress have become a serious concern in recent years. This study revealed that hypoxia and acidification stress suppressed the growth of body length and height of the large yellow croaker (Larimichthys crocea). Subsequent transcriptome analyses of L. crocea juveniles under hypoxia, acidification, and hypoxia–acidification stress led to the identification of 5897 differentially expressed genes (DEGs) in the five groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that several DEGs were enriched in the ‘protein digestion and absorption’ pathway. Enrichment analysis revealed that this pathway was closely related to hypoxia and acidification stress in the five groups, and we found that genes of the collagen family may play a key role in this pathway. The zf-C2H2 transcription factor may play an important role in the hypoxia and acidification stress response, and novel genes were additionally identified. The results provide new clues for further research on the molecular mechanisms underlying hypoxia–acidification tolerance in L. crocea and provides a basic understanding of the potential combined effects of reduced pH and dissolved oxygen on Sciaenidae fishes.
Collapse
Affiliation(s)
- Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Run Chen
- Marine Fisheries Development Center of Xiapu, Xiapu 355100, China
| | - Qian Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yanfeng Yue
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hanfeng Zheng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence: (H.Z.); (S.P.)
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence: (H.Z.); (S.P.)
| |
Collapse
|
11
|
Fu Q, Li Y, Zhao S, Wang H, Zhao C, Zhang P, Cao M, Yang N, Li C. Comprehensive identification and expression profiling of immune-related lncRNAs and their target genes in the intestine of turbot (Scophthalmus maximus L.) in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:233-243. [PMID: 36084890 DOI: 10.1016/j.fsi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Long non-coding RNA (lncRNA) play vital regulatory roles in various biological processes. Intestine is one of the most sensitive organs to environmental and homeostatic disruptions for fish. However, systematic profiles of lncRNAs in the intestine of teleost in responses to pathogen infections is still limited. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection, resulted in dramatic economic loss. Hereinto, the intestinal tissues of turbot were sampled at 0 h, 2 h, 12 h, and 48 h following V. anguillarum infection. The histopathological analysis revealed that the pathological trauma was mainly present in intestinal tunica mucosal epithelium. After high-throughput sequencing and bioinformatic analysis, a total of 9722 lncRNAs and 21,194 mRNAs were obtained, and the average length and exon number of lncRNAs were both less than those of mRNAs. Among which, a set of 158 lncRNAs and 226 mRNAs were differentially expressed (DE-lncRNAs and DEGs) in turbot intestine at three time points, related to many immune-related genes such as complement, interleukin, chemokine, lysosome, and macrophage, indicating their potential critical roles in immune responses. In addition, 2803 and 1803 GO terms were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Moreover, 127 and 50 KEGG pathways including cell adhesion molecules (CAMs), phagosome, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, and intestinal immune network for IgA production, were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Finally, qRT-PCR was conducted to confirm the reliability of sequencing data. The present study will set the foundation for the future exploration of lncRNA functions in teleost in response to bacterial infection.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
12
|
Du Z, Zhang M, Qin Y, Zhao L, Huang L, Xu X, Yan Q. The role and mechanisms of the two-component system EnvZ/OmpR on the intracellular survival of Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2022; 45:1609-1621. [PMID: 35822274 DOI: 10.1111/jfd.13684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila infections are common in aquaculture. Our previous studies found that the A. hydrophila B11 strain can survive in fish macrophages for at least 24 h and the two-component system EnvZ/OmpR may be involved in intracellular survival. To reveal the role and mechanism of the two-component system EnvZ/OmpR in intracellular survival of A. hydrophila, the genes of envZ/ompR were silenced by shRNAi. The results showed that the survival rates of the envZ-RNAi and ompR-RNAi strains were only 2.05% and 3.75%, respectively, which were decreased by 91% and 83.6% compared with that of the wild-type strain. The escape ability of envZ-RNAi and ompR-RNAi was also decreased by 51.4% and 19.7%, respectively. The comparative transcriptome analysis revealed that the functional genes directly related to bacterial intracellular survival mainly included the genes related to anti-stress capacity, and the genes related to Zn2+ and Mg2+ transport. Further research confirmed that two-component system EnvZ/OmpR can regulate the expression of the important molecular chaperones, such as groEL, htpG, dnaK, clpB and grpE. The expression of these molecular chaperones in wild-type strain was up-regulated with the increase in H2 O2 concentrations, while the expression of these molecular chaperones in silent strains did not change significantly. Cells that phagocytosed wild-type strain had higher ROS content than cells that phagocytosed silent strains. Two-component system EnvZ/OmpR could also regulate zinc transporter (znuA, znuB, znuC) and zinc efflux protein (zntA) to maintain zinc homeostasis in cells, thus affecting the ability of bacteria to survive in phagocytes. Moreover, two-component system EnvZ/OmpR could affect the growth and intracellular survival of A. hydrophila by regulating the expression of MgtA, MgtC and MgtE and participating in bacterial Mg2+ homeostasis in fish macrophages.
Collapse
Affiliation(s)
- Ziyan Du
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
13
|
Yi X, Xu X, Qi X, Chen Y, Zhu Z, Xu G, Li H, Kraco EK, Shen H, Lin M, Zheng J, Qin Y, Jiang X. Mechanisms Underlying the Virulence Regulation of Vibrio alginolyticus ND-01 pstS and pstB with a Transcriptomic Analysis. Microorganisms 2022; 10:2093. [PMID: 36363689 PMCID: PMC9698627 DOI: 10.3390/microorganisms10112093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 05/18/2024] Open
Abstract
Vibrio alginolyticus is a common opportunistic pathogen of fish, shrimp, and shellfish, and many diseases it causes can result in severe economic losses in the aquaculture industry. Causing host disease was confirmed by several virulence factors of V. alginolyticus. To date, there have been no reports on the effect of the pstS gene on its virulence regulation of V. alginolyticus. The virulence mechanism of target genes regulating V. alginolyticus is worthy of further study. Previous studies found that Fructus schisandrae (30 mg/mL) inhibited the growth of V. alginolyticus ND-01 (OD600 = 0.5) for 4 h, while the expressions of pstS and pstB were significantly affected by F. schisandrae stress. So, we speculated that pstS and pstB might be the virulence genes of V. alginolyticus, which were stably silenced by RNAi to construct the silencing strains pstS-RNAi and pstB-RNAi, respectively. After the expression of pstS or pstB gene was inhibited, the adhesion capacity and biofilm formation of V. alginolyticus were significantly down-regulated. The chemotaxis and biofilm formation ability of pstS-RNAi was reduced by 33.33% and 68.13% compared with the wild-type strain, respectively. Sequence alignment and homology analysis showed that pstS was highly conserved, which suggested that pstS played a vital role in the secretion system of V. alginolyticus. The pstS-RNAi with the highest silencing efficiency was selected for transcriptome sequencing. The Differentially Expressed Genes (DEGs) and GO terms were mapped to the reference genome of V. alginolyticus, including 1055 up-regulated genes and 1134 down-regulated genes. The functions of the DEGs were analyzed by GO and categorized into different enriched functional groups, such as ribosome synthesis, organelles, biosynthesis, pathogenesis, and secretion. These DEGs were then mapped to the reference KEGG pathways of V. alginolyticus and enriched in commonalities in the metabolic, ribosomal, and bacterial secretion pathways. Therefore, pstS and pstB could regulate the bacterial virulence of V. alginolyticus by affecting its adhesion, biofilm formation ability, and motility. Understanding the relationship between the expressions of pstS and pstB with bacterial virulence could provide new perspectives to prevent bacterial diseases.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xin Qi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunong Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhiqin Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Genhuang Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Emma-Katharine Kraco
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA
| | - Haoyang Shen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinglong Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
14
|
Pang Y, Li L, Yang Y, Shen Y, Xu X, Li J. LncRNA-ANAPC2 and lncRNA-NEFM positively regulates the inflammatory response via the miR-451/npr2/ hdac8 axis in grass carp. FISH & SHELLFISH IMMUNOLOGY 2022; 128:1-6. [PMID: 35843524 DOI: 10.1016/j.fsi.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In grass carp (Ctenopharyngodon idella), septicemia is a systemic inflammatory response to bacterial infection and could be leaded to lethality. MiR-451 involved in septicemia progression has been reported. However, the underlying mechanism of miR-451 in septicemia induced inflammatory response remains to be revealed. In the present study, miR-451 was highly expressed in Aeromonas hydrophila induced CIK cells, opposite to lncRNA-ANAPC2 and lncRNA-NEFM expression. Furthermore, we found that miR-451 interacted with lncRNA-ANAPC2 and lncRNA-NEFM, also targeted the 3' UTR of npr2 and hdac8. In CIK cells, the inhibition of npr2 and hdac8 were down-regulated by lncRNA-ANAPC2 and lncRNA-NEFM knockdown, while downstream proinflammatory factors were inhibited. In a word, this study indicates that lncRNA-ANAPC2 and lncRNA-NEFM regulation the LPS-induced progression of inflammatory response by modulating miR-451/npr2/hdac8 axis.
Collapse
Affiliation(s)
- Yifan Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Liuyang Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yuyue Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
16
|
Xin G, Zhao L, Zhuang Z, Wang X, Fu Q, Huang H, Huang L, Qin Y, Zhang J, Zhang J, Yan Q. Function of the rpoD gene in Pseudomonas plecoglossicida pathogenicity and Epinephelus coioides immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 127:427-436. [PMID: 35779810 DOI: 10.1016/j.fsi.2022.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative pathogenic bacterium that causes visceral white spot disease in several marine fish species, resulting in high mortality and financial loss. Based on previous RNA sequencing (RNA-seq) results, rpoD gene expression is significantly up-regulated in P. plecoglossicida during infection, indicating that rpoD may contribute to bacterial pathogenicity. To investigate the role of this gene, five specific short hairpin RNAs (shRNAs) were designed and synthesized based on the rpoD gene sequence, with all five mutants exhibiting a significant decrease in rpoD gene expression in P. plecoglossicida. The mutant with the highest silencing efficiency (89.2%) was chosen for further study. Compared with the wild-type (WT) P. plecoglossicida strain NZBD9, silencing rpoD in the rpoD-RNA interference (RNAi) strain resulted in a significant decrease in growth, motility, chemotaxis, adhesion, and biofilm formation in P. plecoglossicida. Silencing of rpoD also resulted in a 25% increase in the survival rate, a one-day delay in the onset of death, and a significant decrease in the number of white spots on the spleen surface of infected orange-spotted groupers (Epinephelus coioides). In addition, rpoD expression and pathogen load were significantly lower in the spleens of E. coioides infected with the rpoD-RNAi strain than with the WT strain of P. plecoglossicida. We performed RNA-seq of E. coioides spleens infected with different P. plecoglossicida strains. Results showed that rpoD silencing in P. plecoglossicida led to a significant change in the infected spleen transcriptomes. In addition, comparative transcriptome analysis showed that silencing rpoD caused significant changes in complement and coagulation cascades and the IL-17 signaling pathway. Thus, this study revealed the effects of the rpoD gene on P. plecoglossicida pathogenicity and identified the main pathway involved in the immune response of E. coioides.
Collapse
Affiliation(s)
- Ge Xin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
17
|
He R, Wang J, Lin M, Tian J, Wu B, Tan X, Zhou J, Zhang J, Yan Q, Huang L. Effect of Ferredoxin Receptor FusA on the Virulence Mechanism of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2022; 12:808800. [PMID: 35392610 PMCID: PMC8981516 DOI: 10.3389/fcimb.2022.808800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas plecoglossicida is an aerobic Gram-negative bacterium, which is the pathogen of “Visceral white spot disease” in large yellow croaker. P. plecoglossicida is a temperature-dependent bacterial pathogen in fish, which not only reduces the yield of large yellow croaker but also causes continuous transmission of the disease, seriously endangering the healthy development of fisheries. In this study, a mutant strain of fusA was constructed using homologous recombination technology. The results showed that knockout of P. plecoglossicida fusA significantly affected the ability of growth, adhesion, and biofilm formation. Temperature, pH, H2O2, heavy metals, and the iron-chelating agent were used to treat the wild type of P. plecoglossicida; the results showed that the expression of fusA was significantly reduced at 4°C, 12°C, and 37°C. The expression of fusA was significantly increased at pH 4 and 5. Cu2+ has a significant inducing effect on the expression of fusA, but Pb2+ has no obvious effect; the expression of fusA was significantly upregulated under different concentrations of H2O2. The expression of the fusA gene was significantly upregulated in the 0.5~4-μmol/l iron-chelating agent. The expression level of the fusA gene was significantly upregulated after the logarithmic phase. It was suggested that fusA included in the TBDR family not only was involved in the transport of ferredoxin but also played important roles in the pathogenicity and environment adaptation of P. plecoglossicida.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Miaozhen Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jing Tian
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Bi Wu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaohan Tan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianchuan Zhou
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiachen Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- *Correspondence: Qingpi Yan, ; Lixing Huang,
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- *Correspondence: Qingpi Yan, ; Lixing Huang,
| |
Collapse
|
18
|
Xiao Y, Wu L, He L, Tang Y, Guo S, Zhai S. Transcriptomic analysis using dual RNA sequencing revealed a Pathogen-Host interaction after Edwardsiella anguillarum infection in European eel (Anguilla anguilla). FISH & SHELLFISH IMMUNOLOGY 2022; 120:745-757. [PMID: 34974154 DOI: 10.1016/j.fsi.2021.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 05/26/2023]
Abstract
Many studies have explored differentially expressed genes (DEGs) between some pathogens and hosts, but no study has focused on the interaction of DEGs between Edwardsiella anguillarum (Ea) and Anguilla anguilla (Aa). In this study, we examined the interactions of DEGs during Ea infection and Aa anti-infection processes by dual RNA sequencing. Total RNA from in vitro and in vivo (Aa liver) Ea culture was extracted. Using high-throughput transcriptomics, significant DEGs that were expressed between Ea cultured in vitro versus in vivo and those in the liver of the infected group versus control group were identified. Protein-protein interactions between the pathogen and host were explored using Cytoscape according to the HPIDB 3.0 interaction transcription database. The results showed that the liver in the infection group presented with severe bleeding and a large number of thrombi in the hepatic vessels. We found 490 upregulated and 398 downregulated DEGs of Ea in vivo versus Ea cultured in vitro, and 2177 upregulated and 970 downregulated genes in the liver of the infected eels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the pathogen DEGs revealed that the upregulated genes were mainly enriched in migration, colonization, biofilm formation, and significantly enriched in ABC transport and quorum sensing; the downregulated genes were mainly involved in metabolism, information transduction, organelle formation, enzyme catalysis, molecular transport, and binding. GO of the host DEGs showed that metabolic process, catalytic activity, single organism metabolic process, small molecule binding, nucleotide binding, nucleotide phosphate binding, and anion binding were markedly enriched. Finally, we found that 79 Ea and 148 Aa proteins encoded by these DEGs were involved in an interaction network, and some pathogen (DegP, gcvP, infC, carB, rpoC, trpD, sthA, and FhuB) and host proteins (MANBA, STAT1, ETS2, ZEP1, TKT1, NMI and RBPMS) appear to play crucial roles in infection. Thus, determining the interaction networks revealed crucial molecular mechanisms underlying the process of pathogenic infection and host anti-infection.
Collapse
Affiliation(s)
- Yiqun Xiao
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Le He
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Yijun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd, Oshkosh, WI, USA
| | - Songlin Guo
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| | - Shaowei Zhai
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| |
Collapse
|
19
|
Yang Y, Zhu X, Zhang H, Chen Y, Song Y, Ai X. Dual RNA-Seq of Trunk Kidneys Extracted From Channel Catfish Infected With Yersinia ruckeri Reveals Novel Insights Into Host-Pathogen Interactions. Front Immunol 2021; 12:775708. [PMID: 34975864 PMCID: PMC8715527 DOI: 10.3389/fimmu.2021.775708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Host-pathogen intectarions are complex, involving large dynamic changes in gene expression through the process of infection. These interactions are essential for understanding anti-infective immunity as well as pathogenesis. In this study, the host-pathogen interaction was analyzed using a model of acute infection where channel catfish were infected with Yersinia ruckeri. The infected fish showed signs of body surface hyperemia as well as hyperemia and swelling in the trunk kidney. Double RNA sequencing was performed on trunk kidneys extracted from infected channel catfish and transcriptome data was compared with data from uninfected trunk kidneys. Results revealed that the host-pathogen interaction was dynamically regulated and that the host-pathogen transcriptome fluctuated during infection. More specifically, these data revealed that the expression levels of immune genes involved in Cytokine-cytokine receptor interactions, the NF-kappa B signaling pathway, the JAK-STAT signaling pathway, Toll-like receptor signaling and other immune-related pathways were significantly upregulated. Y. ruckeri mainly promote pathogenesis through the flagellum gene fliC in channel catfish. The weighted gene co-expression network analysis (WGCNA) R package was used to reveal that the infection of catfish is closely related to metabolic pathways. This study contributes to the understanding of the host-pathogen interaction between channel catfish and Y. ruckeri, more specifically how catfish respond to infection through a transcriptional perspective and how this infection leads to enteric red mouth disease (ERM) in these fish.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Haixin Zhang
- Fish Disease Laboratory, Jiangxi Fisheries Research Institute, Nanchang, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Song
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
20
|
Transcriptome analysis revealed multiple immune processes and energy metabolism pathways involved in the defense response of the large yellow croaker Larimichthys crocea against Pseudomonas plecoglossicida. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100886. [PMID: 34418783 DOI: 10.1016/j.cbd.2021.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023]
Abstract
The large yellow croaker (Larimichthys crocea) aquaculture industry is suffering substantial financial losses caused by visceral white nodules disease resulting from Pseudomonas plecoglossicida infection. However, how L. crocea responds to P. plecoglossicida infection remains largely unknown. Here, we characterized the changes in the mRNA profile in the spleen of L. crocea upon P. plecoglossicida infection and explored the related defensive strategies. Sample clustering analysis and qRT-PCR indicated that P. plecoglossicida induced profound and reproducible transcriptome remodeling in the L. crocea spleen. Many innate immune-related genes, such as IL-17 signaling molecules, chemokines and chemokine receptors, complement components, TLR5 signaling molecules, and antimicrobial peptide hepcidins (Hamps), were upregulated by P. plecoglossicida and may play important roles in the L. crocea defense against P. plecoglossicida. The antibacterial activity of Hamp2-5 against P. plecoglossicida was further confirmed by using synthetic mature peptide of Hamp2-5. Additionally, significant enrichment of "Glycolysis/Gluconeogenesis", "Citrate cycle" and "Oxidative phosphorylation" pathways and a significant upregulation of all 6 rate-limiting enzyme genes (HK1, PFK, PKM, CS, IDH2, DLST) in the Glycolysis and Citrate cycle pathways in P. plecoglossicida-infected fish suggested that ATP synthesis may be accelerated to ensure energy supply in response to pathogenic infection. Altogether, our results not only identified the key immune-related genes and immune pathways that participated in the defense response of L. crocea against P. plecoglossicida, but also revealed a novel defensive strategy involving ATP synthesis in this species.
Collapse
|
21
|
He L, Wang L, Zhao L, Zhuang Z, Wang X, Huang H, Fu Q, Huang L, Qin Y, Wang P, Yan Q. Integration of RNA-seq and RNAi reveals the contribution of znuA gene to the pathogenicity of Pseudomonas plecoglossicida and to the immune response of Epinephelus coioides. JOURNAL OF FISH DISEASES 2021; 44:1831-1841. [PMID: 34339054 DOI: 10.1111/jfd.13502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida is an important pathogen in aquaculture and causes serious economic losses. Our previous study indicated that znuA gene might play an important role in the pathogenicity of P. plecoglossicida. Five shRNAs were designed and synthesized to silence the znuA gene of P. plecoglossicida. Two of the five mutants of P. plecoglossicida exhibited significant reduction in the expression level of znuA mRNA with different efficiencies. The mutant with the highest silencing efficiency of 89.2% was chosen for further studies. Intrapleural injection of the znuA-RNAi strain at a dose of 105 cfu/fish did not cause the death of Epinephelus coioides, and no significant signs were observed at the spleen surface of infected E. coioides, while the counterpart E. coioides infected by the same dose of wild-type strain of P. plecoglossicida all died in 5 days post-infection (dpi). The expression of znuA gene of znuA-RNAi strain in E. coioides was always lower than that in wild-type strain of P. plecoglossicida. The pathogen load in the early stage of infection was higher than that in the later stage of infection. Although the infection of the znuA-RNAi strain of P. plecoglossicida could induce the production of antibodies in E. coioides, it failed to produce a good immune protection against the infection of wild-type strain of P. plecoglossicida. Compared with the transcriptome data of E. coioides infected by the wild-type strain of P. plecoglossicida, the transcriptome data of E. coioides infected by the znuA-RNAi strain of P. plecoglossicida have altered significantly. Among them, KEGG enrichment analysis showed that the focal adhesion pathway was significantly enriched and exhibited the largest number of 302 DEMs (differentially expressed mRNAs). These results showed that the immune response of E. coioides to P. plecoglossicida infection was significantly affected by the RNAi of znuA gene.
Collapse
Affiliation(s)
- Le He
- Fisheries College, Jimei University, Xiamen, China
| | - Luying Wang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
22
|
Hu L, Zhao L, Zhuang Z, Wang X, Fu Q, Huang H, Lin L, Huang L, Qin Y, Zhang J, Yan Q. The Effect of tonB Gene on the Virulence of Pseudomonas plecoglossicida and the Immune Response of Epinephelus coioides. Front Microbiol 2021; 12:720967. [PMID: 34484162 PMCID: PMC8415555 DOI: 10.3389/fmicb.2021.720967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas plecoglossicida is the causative agent of "visceral white spot disease" in cultured fish and has resulted in serious economic losses. tonB gene plays a crucial role in the uptake of nutrients from the outer membranes in Gram-negative bacteria. The previous results of our lab showed that the expression of tonB gene of P. plecoglossicida was significantly upregulated in the spleens of infected Epinephelus coioides. To explore the effect of tonB gene on the virulence of P. plecoglossicida and the immune response of E. coioides, tonB gene of P. plecoglossicida was knocked down by RNAi; and the differences between the wild-type strain and the tonB-RNAi strain of P. plecoglossicida were investigated. The results showed that all of the four mutants of P. plecoglossicida exhibited significant decreases in mRNA of tonB gene, and the best knockdown efficiency was 94.0%; the survival rate of E. coioides infected with the tonB-RNAi strain was 20% higher than of the counterpart infected with the wild strain of P. plecoglossicida. Meanwhile, the E. coioides infected with the tonB-RNAi strain of P. plecoglossicida carried less pathogens in the spleen and less white spots on the surface of the spleen; compared with the wild-type strain, the motility, chemotaxis, adhesion, and biofilm formation of the tonB-RNAi strain were significantly attenuated; the transcriptome data of E. coioides infected with the tonB-RNAi strain were different from the counterpart infected with the wild strain of P. plecoglossicida; the antigen processing and presentation pathway and the complement and coagulation cascade pathway were the most enriched immune pathways. The results indicated that tonB was a virulence gene of P. plecoglossicida; tonB gene was involved in the regulation of motility, chemotaxis, adhesion, and biofilm formation; tonB gene affected the immune response of E. coioides to P. plecoglossicida infection.
Collapse
Affiliation(s)
- Lingfei Hu
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lili Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China.,College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China.,Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| |
Collapse
|
23
|
Li X, Song H, Wang J, Zhang D, Shan X, Yang B, Kang Y, Qian A, Zhang L, Sun W. Functional analysis of fis in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence. Microb Pathog 2021; 159:105123. [PMID: 34364977 DOI: 10.1016/j.micpath.2021.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Aeromonas veronii is a comorbid pathogen that can infect humans, and animals including various aquatic organisms. In recent years, an increasing number of cases of A. veronii infection has been reported, indicating serious risks. This bacterium not only threatens public health and safety but also causes considerable economic loss in the aquaculture industry. Currently, some understanding of the pathogenic mechanism of A. veronii has been obtained. In this study, we first constructed the A. veronii TH0426 fis gene deletion strain Δfis and the complementation strain C-fis through homologous recombination technology. The results showed that the adhesion and invasion ability of the Δfis strain towards Epithelioma papulosum cyprini (EPC) cells and the cytotoxicity were 3.8-fold and 1.38-fold lower, respectively, than those of the wild-type strain. In the zebrafish infection model, the lethality of the deleted strain is 3-fold that of the wild strain. In addition, the bacterial load of the deletion strain Δfis in crucian carp was significantly lower than the wild-type strain, and the load decreased with time. In summary, deletion of the fis gene led to a decrease in the virulence of A. veronii. Our research results showed that the deletion of the fis gene significantly reduces the virulence and adhesion ability of A. veronii TH0426. Therefore, the fis gene plays a vital role in the pathogenesis of A. veronii TH0426. This preliminary study of the function of the fis gene in A. veronii will help researchers further understand the pathogenic mechanism of A. veronii.
Collapse
Affiliation(s)
- Xintong Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Haichao Song
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jinglin Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Dongxing Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Bintong Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Yuanhuan Kang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Lei Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
24
|
Ning X, Sun L. Identification and characterization of immune-related lncRNAs and lncRNA-miRNA-mRNA networks of Paralichthys olivaceus involved in Vibrio anguillarum infection. BMC Genomics 2021; 22:447. [PMID: 34130627 PMCID: PMC8204505 DOI: 10.1186/s12864-021-07780-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) structurally resemble mRNAs and exert crucial effects on host immune defense against pathogen infection. Japanese flounder (Paralichthys olivaceus) is an economically important marine fish susceptible to Vibrio anguillarum infection. To date, study on lncRNAs in flounder is scarce. RESULTS Here, we reported the first systematic identification and characterization of flounder lncRNAs induced by V. anguillarum infection at different time points. A total of 2,368 lncRNAs were identified, 414 of which were differentially expressed lncRNAs (DElncRNAs) that responded significantly to V. anguillarum infection. For these DElncRNAs, 3,990 target genes (named DETGs) and 42 target miRNAs (named DETmiRs) were identified based on integrated analyses of lncRNA-mRNA and lncRNA-miRNA expressions, respectively. The DETGs were enriched in a cohort of functional pathways associated with immunity. In addition to modulating mRNAs, 36 DElncRNAs were also found to act as competitive endogenous RNAs (ceRNAs) that regulate 37 DETGs through 16 DETmiRs. The DETmiRs, DElncRNAs, and DETGs formed ceRNA regulatory networks consisting of 114 interacting DElncRNAs-DETmiRs-DETGs trinities spanning 10 immune pathways. CONCLUSIONS This study provides a comprehensive picture of lncRNAs involved in V. anguillarum infection. The identified lncRNAs and ceRNA networks add new insights into the anti-bacterial immunity of flounder.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, 210023, Nanjing, Jiangsu, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, 222005, Lianyungang, Jiangsu, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Huang L, Zuo Y, Qin Y, Zhao L, Lin M, Yan Q. The Zinc Nutritional Immunity of Epinephelus coioides Contributes to the Importance of znuC During Pseudomonas plecoglossicida Infection. Front Immunol 2021; 12:678699. [PMID: 34017347 PMCID: PMC8129501 DOI: 10.3389/fimmu.2021.678699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, the dual RNA-seq was carried out in a Pseudomonas plecoglossicida- Epinephelus coioides infection model to investigate the dynamics of pathogen-host interplay in vivo. ZnuC, a member of ZnuCBA Zn importer, was found transcriptionally up-regulated during infection. Thus, this study aimed to assess its role during the trade-off for Zn between host and P. plecoglossicida. ICP-MS analysis and fluorescent staining showed that Zn was withheld from serum and accumulated in the spleen, with increased Zn uptake in the Golgi apparatus of macrophages after infection. Additionally, growth assay, macrophage infection and animal infection after gene knockout / silencing revealed that znuC was necessary for growth in Zn-limiting conditions, colonization, intracellular viability, immune escape and virulence of P. plecoglossicida. Further analysis with dual RNA-seq revealed associations of host's Zn nutritional immunity genes with bacterial Zn assimilation genes. IL6 and ZIP4 played key roles in this network, and markedly affected znuB expression, intracellular viability and immune escape, as revealed by gene silencing. Moreover, EMSA and GFP reporter gene analysis showed that Fur sensed changes in Fe concentration to regulate znuCBA in P. plecoglossicida. Jointly, these findings suggest a trade-off for Zn between host and P. plecoglossicida, while ZnuC is important for P. plecoglossicida Zn acquisition.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mao Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
26
|
Lu JF, Luo S, Jin TC, Lu XJ, Chen J. Nonstructural protein NS26 of grass carp reovirus is a principal regulator for viral replication and infection. JOURNAL OF FISH DISEASES 2021; 44:661-664. [PMID: 33715183 DOI: 10.1111/jfd.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Tian-Cheng Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Abo-Al-Ela HG. RNA Interference in Aquaculture: A Small Tool for Big Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4343-4355. [PMID: 33835783 DOI: 10.1021/acs.jafc.1c00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| |
Collapse
|
28
|
Fan K, Shen Y, Xu X, Tao L, Bao T, Li J. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to regulate the inflammatory response in grass carp. FISH & SHELLFISH IMMUNOLOGY 2021; 111:201-207. [PMID: 33582280 DOI: 10.1016/j.fsi.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Septicemia of grass carp is a systemic inflammatory reaction caused by bacterial infection. More and more evidences show that long non-coding RNAs (lncRNAs) can participate in the regulation of inflammatory response. In the present study, lncRNA-WAS and lncRNA-C8807 were confirmed to be involved in the inflammatory response following infection with Aeromonas hydrophila. LncRNA-WAS and lncRNA-C8807 could interact with miR-142a-3p. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to effect pro-inflammatory genes and NF-κB pathway. Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by lncRNA in grass carp.
Collapse
Affiliation(s)
- Kun Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Tianjie Bao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
29
|
Deng Y, Zhang Y, Chen H, Xu L, Wang Q, Feng J. Gut-Liver Immune Response and Gut Microbiota Profiling Reveal the Pathogenic Mechanisms of Vibrio harveyi in Pearl Gentian Grouper ( Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀). Front Immunol 2020; 11:607754. [PMID: 33324424 PMCID: PMC7727329 DOI: 10.3389/fimmu.2020.607754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Vibrio harveyi causes vibriosis in nearly 70% of grouper (Epinephelus sp.), seriously limiting grouper culture. As well as directly inhibiting pathogens, the gut microbiota plays critical roles in immune homeostasis and provides essential health benefits to its host. However, there is still little information about the variations in the immune response to V. harveyi infection and the gut microbiota of grouper. To understand the virulence mechanism of V. harveyi in the pearl gentian grouper, we investigated the variations in the pathological changes, immune responses, and gut bacterial communities of pearl gentian grouper after exposure to differently virulent V. harveyi strains. Obvious histopathological changes were detected in heart, kidney, and liver. In particular, nodules appeared and huge numbers of V. harveyi cells colonized the liver at 12 h postinfection (hpi) with highly virulent V. harveyi. Although no V. harveyi was detected in the gut, the infection simultaneously induced a gut-liver immune response. In particular, the expression of 8 genes associated with cellular immune processes, including genes encoding inflammatory cytokines and receptors, and pattern recognition proteins, was markedly induced by V. harveyi infection, especially with the highly virulent V. harveyi strain. V. harveyi infection also induced significant changes in gut bacterial community, in which Vibrio and Photobacterium increased but Bradyrhizobium, Lactobacillus, Blautia, and Faecalibaculum decreased in the group infected with the highly virulent strain, with accounting for 82.01% dissimilarity. Correspondingly, four bacterial functions related to bacterial pathogenesis were increased by infection with highly virulent V. harveyi, whereas functions involving metabolism and genetic information processing were reduced. These findings indicate that V. harveyi colonizes the liver and induces a gut-liver immune response that substantially disrupts the composition of and interspecies interactions in the bacterial community in fish gut, thereby altering the gut-microbiota-mediated functions and inducing fish death.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Yaqiu Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Haoxiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qian Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| |
Collapse
|
30
|
Identification and expression analysis of Langerhans cells marker Langerin/CD207 in grasscarp, Ctenopharyngodon idella. Gene 2020; 768:145315. [PMID: 33220343 DOI: 10.1016/j.gene.2020.145315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Langerhans cells (LCs) play an essential role in the initiation of immune response and maintenance of immune tolerance. However, the function and the molecular markers of grass carp LCs remains unclear. The grass carp LCs were firstly identified by immunofluorescence (IF) using a commercial anti-human Langerin/CD207 polyclonal antibody (pAb) and transmissionelectronmicroscope (TEM) technology in this study. After that, a cDNA sequence that homology with human and mouse CD207 gene was obtained by the bBLASTn program in NCBI. The open reading frame (ORF) of the grass carp CD207 gene contains 903 bp encoding 300 amino acids which consisted of a transmembrane domain, a coiled-coil domain and a CLECT domain. Furthermore, the result of quantitative real-time PCR (qRT-PCR) indicated that this gene was expressed in all tested tissues, and mainly expressed in immune organs such as the gill, trunk kidney, head kidney, spleen and skin. To explore the role of CD207 gene in the immune responses induced by bacteria, an immersed infection model of grass carp with Flavobacterium columnare was constructed, and the optimal infection dose was determined to be 1.0 × 108 CFU/mL. Moreover, the qRT-PCR results indicated that the expression levels of CD207 gene were significantly upregulated at 6 h, 12 h, 1 d, 3 d and 7 d in the spleen, and significantly downregulated at 5 d in the head kidney, at 12 h and 5 d in the gill, and at all time points in the skin after F. columnare infection. This result suggested that the grass carp CD207 gene may play an important role in antigen processing and presentation. Our results in this study suggested that CD207 gene is also existed in teleosts, and this study provided a molecular basis to analyzed the biological function of grass carp CD207 gene and the critical roles of LCs in the immune responses induced by bacterial infections.
Collapse
|
31
|
Shi F, Qiu X, Nie L, Hu L, Babu V S, Lin Q, Zhang Y, Chen L, Li J, Lin L, Qin Z. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:563-573. [PMID: 32738515 DOI: 10.1016/j.fsi.2020.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The immunomodulatory effects of oligochitosan have been demonstrated in several fish. However, the underlying mechanisms are not well characterized. The profound interplay between gut microbes and aquaculture has received much scientific attention but understanding the alternations of microbes populating in gut of tilapia (Oreochromis niloticus) fed with oligochitosan remains enigmatic. In this study, the effects of oligochitosan on the growth, immune responses and gut microbes of tilapia were investigated. The feeding trial was conducted in triplicates with the control diet supplemented with oligochitosan at different concentrations (0, 100, 200, 400 or 800 mg/kg). Following a six-week feeding trial, body weights of the fish supplemented with 200 mg/kg and 400 mg/kg oligochitosan were significantly higher than that of the control group. To address the immune responses stimulated by oligochitosan, by the quantitative real time PCR (qRT-PCR), the mRNA expression levels of CSF, IL-1β, IgM, TLR2 and TLR3 genes from head kidney were all significantly up-regulated in the 400 mg/kg group compared to the control. To characterize the gut microbes, bacterial samples were collected from the foregut, midgut, and hindgut, respectively and were subjected to high-throughput sequencing of 16S rDNA. The results showed that significantly lower abundance of Fusobacterium was detected in the hindgut of 400 mg/kg group compared to the control. Additionally, beta-diversity revealed that both gut habitat and oligochitosan had effects on the gut bacterial assembly. To further elucidate the mechanism underlying the effects of oligochitosan on bacterial assembly, the results showed that difference dosages of dietary oligochitosan could alter the specific metabolic pathways and functions of the discriminatory bacterial taxa, resulting in the different bacterial assemblies. To test the antibacterial ability of tilapia fed with oligochitosan, when the tilapias were challenged with Aeromonas hydrophila, the mortality of groups fed with dietary oligochitosan was significantly lower than that of the control. Taken together, appropriate dietary oligochitosan could improve growth, immune responses and alter the bacterial flora in the intestine of tilapia, so as to play a role in fighting against the bacterial infection.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaolong Qiu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lingju Nie
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Luoying Hu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liehuan Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China.
| |
Collapse
|
32
|
Li C, Wang S, Ren Q, He T, Chen X. An outbreak of visceral white nodules disease caused by Pseudomonas plecoglossicida at a water temperature of 12°C in cultured large yellow croaker (Larimichthys crocea) in China. JOURNAL OF FISH DISEASES 2020; 43:1353-1361. [PMID: 32851664 DOI: 10.1111/jfd.13206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida is a common disease in cage-farmed large yellow croaker (Larimichthys crocea) in China. VWND usually occurred at water temperature of 16-19℃, resulting in high mortality in farmed large yellow croaker. Now, P. plecoglossicida as its pathogen has been considered nonpathogenic at 7-12℃. During February 2019, an infectious disease outbreak was observed in cage-farmed large yellow croaker at a water temperature of 12℃ in Ningde, China. This disease is characterized by white granulomatous lesions in internal organs of the diseased fish, which was similar with the symptoms of the VWND in large yellow croaker. Then, we isolated a bacterial strain named PQLYC4 from visceral lesions of the diseased fish. The experimental infection studies demonstrated that the strain PQLYC4 was the pathogen of the disease, which was further identified as P. plecoglossicida by the analysis of morphology, 16s rRNA gene homology and average nucleotide identity based on the whole genome sequence. Our results revealed that P. plecoglossicida strain PQLYC4 could cause the outbreak of the VWND at 12℃, a water temperature lower than that reported previously, thus providing new knowledges of prevalence and prevention of the VWND in large yellow croaker.
Collapse
Affiliation(s)
- Chengwei Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shenglan Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiulei Ren
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
Tan J, Hu X, Lü A, Liu X, Sun J, Niu Y. Skin proteome profiling of tongue sole (Cynoglossus semilaevis) challenged with Vibrio vulnificus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1052-1066. [PMID: 32950679 DOI: 10.1016/j.fsi.2020.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Vibrio vulnificus is a major pathogen of cultured Cynoglossus semilaevis and results in skin ulceration and haemorrhage, but the proteomic mechanism of skin immunity against V. vulnificus remains unclear. In this study, we investigated the histopathology and skin immune response in C. semilaevis with V. vulnificus infection at the protein levels, the differential proteomic profiling of its skin was examined by using iTRAQ and LC-MS/MS analyses. A total of 951 proteins were identified in skin, in which 134 and 102 DEPs were screened at 12 and 36 hpi, respectively. Selected eleven immune-related DEPs (pvβ, Hsp71, MLC1, F2, α2ML, HCII, C3, C5, C8β, C9 and CD59) were verified for their immune roles in the V. vulnificus infection via using qRT-PCR assay. KEGG enrichment analysis revealed that most of the identified immune proteins were significantly associated with complement and coagulation cascades, antigen processing and presentation, salivary secretion and phagosome pathways. To our knowledge, this study is the first to describe the proteome response of C. semilaevis skin against V. vulnificus infection. The outcome of this study contributed to provide a new perspective for understanding the molecular mechanism of local skin mucosal immunity, and facilitating the development of novel mucosal vaccination strategies in fish.
Collapse
Affiliation(s)
- Jing Tan
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiaoxue Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yuchen Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
34
|
Tang Y, Xin G, Zhao LM, Huang LX, Qin YX, Su YQ, Zheng WQ, Wu B, Lin N, Yan QP. Novel insights into host-pathogen interactions of large yellow croakers ( Larimichthys crocea) and pathogenic bacterium Pseudomonas plecoglossicida using time-resolved dual RNA-seq of infected spleens. Zool Res 2020; 41:314-327. [PMID: 32242645 PMCID: PMC7231473 DOI: 10.24272/j.issn.2095-8137.2020.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-pathogen interactions are highly complex, involving large dynamic changes in gene expression during infection. These interactions are fundamental to understanding anti-infection immunity of hosts, as well as the pathogenesis of pathogens. For bacterial pathogens interacting with animal hosts, time-resolved dual RNA-seq of infected tissue is difficult to perform due to low pathogen load in infected tissue. In this study, an acute infection model of Larimichthys crocea infected by Pseudomonas plecoglossicida was established. The spleens of infected fish exhibited typical symptoms, with a maximum bacterial load at two days post-injection (dpi). Time-resolved dual RNA-seq of infected spleens was successfully applied to study host-pathogen interactions between L. crocea and P. plecoglossicida. The spleens of infected L. crocea were subjected to dual RNA-seq, and transcriptome data were compared with those of noninfected spleens or in vitro cultured bacteria. Results showed that pathogen-host interactions were highly dynamically regulated, with corresponding fluctuations in host and pathogen transcriptomes during infection. The expression levels of many immunogenes involved in cytokine-cytokine receptor, Toll-like receptor signaling, and other immune-related pathways were significantly up-regulated during the infection period. Furthermore, metabolic processes and the use of oxygen in L. crocea were strongly affected by P. plecoglossicida infection. The WGCNA results showed that the metabolic process was strongly related to the entire immune process. For P. plecoglossicida, the expression levels of motility-related genes and flagellum assembly-related genes were significantly up-regulated. The results of this study may help to elucidate the interactions between L. crocea and P. plecoglossicida.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ge Xin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Li-Xing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yong-Quan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Bin Wu
- Fujian Provincial Fishery Technical Extention Center, Fuzhou, Fujian 350003, China
| | - Nan Lin
- Fujian Provincial Fishery Technical Extention Center, Fuzhou, Fujian 350003, China
| | - Qing-Pi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China. E-mail:
| |
Collapse
|
35
|
Liu Z, Zhao L, Huang L, Qin Y, Zhang J, Zhang J, Yan Q. Integration of RNA-seq and RNAi provides a novel insight into the immune responses of Epinephelus coioides to the impB gene of Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2020; 105:135-143. [PMID: 32645517 DOI: 10.1016/j.fsi.2020.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative bacterium that causes visceral white spot disease in Epinephelus coioides and leads to severe aquatic economic losses. The RNA-seq results of a previous study showed that the expression of the impB gene in P. plecoglossicida was significantly upregulated during infection. Four shRNAs were designed and synthesized to silence the impB gene in P. plecoglossicida, and the maximum silencing efficiency was 95.2%. Intraperitoneal injection of the impB-RNAi strain of P. plecoglossicida did not cause E. coioides death, and the spleens of infected fish did not show significant clinical symptoms. Although the injection of the mutant strain increased the antibody titer in E. coioides serum, it could not effectively protect E. coioides against wild strain infection. Compared with E. coioides infected with the wild type strain, the RNA-seq results for E. coioides infected with the impB-RNAi strain differed greatly. The KEGG enrichment analysis showed that key genes of the chemokine signalling pathway of E. coioides were downregulated by the silencing of impB in P. plecoglossicida. Infection with the impB-RNAi strain of P. plecoglossicida through injection did not produce good immune protection against E. coioides. The present study provides a novel insight into the immune responses of E. coioides to the impB gene of P. plecoglossicida.
Collapse
Affiliation(s)
- Zixu Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
36
|
MicroRNA negatively regulates NF-κB-mediated immune responses by targeting NOD1 in the teleost fish Miichthys miiuy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:803-815. [PMID: 32815068 DOI: 10.1007/s11427-020-1777-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs (miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNA-mediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide (LPS) treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1 (NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa (NF-kB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.
Collapse
|
37
|
Wang LY, Liu ZX, Zhao LM, Huang LX, Qin YX, Su YQ, Zheng WQ, Wang F, Yan QP. Dual RNA-seq provides novel insight into the roles of dksA from Pseudomonas plecoglossicida in pathogen-host interactions with large yellow croakers ( Larimichthys crocea). Zool Res 2020; 41:410-422. [PMID: 32521576 PMCID: PMC7340521 DOI: 10.24272/j.issn.2095-8137.2020.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas plecoglossicida is a rod-shaped, gram-negative bacterium with flagella. It causes visceral white spot disease and high mortality in Larimichthys crocea during culture, resulting in serious economic loss. Analysis of transcriptome and quantitative real-time polymerase chain reaction (PCR) data showed that dksA gene expression was significantly up-regulated after 48 h of infection with Epinephelus coioides (log 2FC=3.12, P<0.001). RNAi of five shRNAs significantly reduced the expression of dksA in P. plecoglossicida, and the optimal silencing efficiency was 96.23%. Compared with wild-type strains, the symptoms of visceral white spot disease in L. crocea infected with RNAi strains were reduced, with time of death delayed by 48 h and mortality reduced by 25%. The dksA silencing led to a substantial down-regulation in cellular component-, flagellum-, and ribosome assembly-related genes in P. plecoglossicida, and the significant up-regulation of fliC may be a way in which virulence is maintained in P. plecoglossicida. The GO and KEGG results showed that RNAi strain infection in L. crocea led to the down-regulation of inflammatory factor genes in immune-related pathways, which were associated with multiple immune response processes. Results also showed that dksA was a virulence gene in P. plecoglossicida. Compared with the wild-type strains, RNAi strain infection induced a weaker immune response in L. crocea.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Zi-Xu Liu
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Li-Xing Huang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yong-Quan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Fan Wang
- Fujian Provincial Fishery Technical Extension Center, Fuzhou, Fujian 350003, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China. E-mail:
| |
Collapse
|
38
|
|
39
|
Zhao J, Wu L, Zhai S, Lin P, Guo S. Construction expression and immunogenicity of a novel trivalent outer membrane protein (OmpU-A-II) from three bacterial pathogens in Japanese eels (Anguilla japonica). JOURNAL OF FISH DISEASES 2020; 43:519-529. [PMID: 32285473 DOI: 10.1111/jfd.13132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/11/2023]
Abstract
Vibrio vulnificus, Edwardsiella anguillarum and Aeromonas hydrophila are three common bacterial pathogens in cultivated eels. To protect farming eels from infection by these pathogens, a trivalent outer membrane protein (OMP) containing partial sequences of OmpU from V. vulnificus, OmpA from E. anguillarum and OmpII from A. hydrophila was expressed and purified; then, the OMP was used as a vaccine to immunize Japanese eels (Anguilla japonica). Whole-blood cell proliferation, antibody titres and complement and lysozyme activities were detected at different days post-immunization (dpi), and the relative per cent survival (RPS) was determined after eels were infected with V. vulnificus, E. anguillarum or A. hydrophila at 28 dpi. The results showed that the OMP significantly stimulates the antibody titres. At 14 days after the challenge (i.e. at 28 dpi), the RPS of OMP against V. vulnificus, E. anguillarum and A. hydrophila was 20%, 70% and 11.1%, respectively. The construction, expression and immunogenicity of a trivalent Omp were reported for the first time, and this study will provide a valuable reference for the development of fish multiplex vaccines.
Collapse
Affiliation(s)
- Jinping Zhao
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, China
| | - Peng Lin
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, China
| |
Collapse
|
40
|
Zhang M, Kang J, Wu B, Qin Y, Huang L, Zhao L, Mao L, Wang S, Yan Q. Comparative transcriptome and phenotype analysis revealed the role and mechanism of ompR in the virulence of fish pathogenic Aeromonas hydrophila. Microbiologyopen 2020; 9:e1041. [PMID: 32282134 PMCID: PMC7349151 DOI: 10.1002/mbo3.1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Aeromonas hydrophila B11 strain was isolated from diseased Anguilla japonica, which had caused severe gill ulcers in farmed eel, causing huge economic losses. EnvZ‐OmpR is a model two‐component system in the bacteria and is widely used in the research of signal transduction and gene transcription regulation. In this study, the ompR of A. hydrophila B11 strain was first silenced by RNAi technology. The role of ompR in the pathogenicity of A. hydrophila B11 was investigated by analyzing both the bacterial comparative transcriptome and phenotype. The qRT‐PCR results showed that the expression of ompR in the ompR‐RNAi strain decreased by 97% compared with the wild‐type strain. The virulence test showed that after inhibition of the ompR expression, the LD50 of A. hydrophila B11 decreased by an order of magnitude, suggesting that ompR is involved in the regulation of bacterial virulence. Comparative transcriptome analysis showed that the expression of ompR can directly regulate the expression of several important virulence‐related genes, such as the bacterial type II secretion system; moreover, ompR expression also regulates the expression of multiple genes related to bacterial chemotaxis, motility, adhesion, and biofilm formation. Further studies on the phenotype of A. hydrophila B11 and ompR‐RNAi also confirmed that the downregulation of ompR expression can decrease bacterial chemotaxis, adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuqing, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
41
|
Li CH, Xiong JB, Ding FF, Chen J. Immune and gut bacterial successions of large yellow croaker (Larimichthys crocea) during Pseudomonas plecoglossicida infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:176-183. [PMID: 32018034 DOI: 10.1016/j.fsi.2020.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea, LYC) aquaculture is being threatened by intensive infectious diseases. Relevant studies have focused on LYC immune responses to infection. By contrast, little is known how and to what extent the gut microbiota responds to infection. Here, we explored the interactions between LYC immune responses and gut bacterial communities during Pseudomonas plecoglossicida infection. P. plecoglossicida successfully colonized into LYC gut microbiota, resulting in an increasing mortality rate. Relative gene expressions of pro-inflammatory cytokines (TNF-α1, TNF-α2 and IL-1β) and anti-inflammatory cytokine (IL-10) were consistently and significantly induced by P. plecoglossicida infection, whereas non-specific immune enzymes activities were only enhanced at the early infection stages. P. plecoglossicida infection caused an irreversible disruption in the gut microbiota, of which infection and hours post infection constrained 16.2% and 5.6% variations, respectively. In addition, top 18 discriminatory taxa that were responsible for the difference between treatments were identified, whose abundances were significantly associated with the immune activities of LYC. Using a structural equation modeling (SEM), we found that gut bacterial communities were primarily governed by the conjointly direct (-0.33) and indirect (0) effects of infection, which subsequently affect host immune responses. Our results suggest that an irreversible dysbiosis in gut microbiota could be the causality of increasing mortality. To our knowledge, this is the first study to provide an integrated overview among pathogen infection, immune response and gut microbiota of LYC.
Collapse
Affiliation(s)
- Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jin-Bo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Fei-Fei Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
42
|
Guo S, He L, Wu L, Xiao Y, Zhai S, Yan Q. Immunization of a novel bivalent outer membrane protein simultaneously resisting Aeromonas hydrophila, Edwardsiella anguillarum and Vibrio vulnificus infection in European eels (Angullia angullia). FISH & SHELLFISH IMMUNOLOGY 2020; 97:46-57. [PMID: 31846771 DOI: 10.1016/j.fsi.2019.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 05/26/2023]
Abstract
In cultivated European eels, Aeromonas hydrophila, Edwardsiella anguillarum and Vibrio vulnificus are three important bacterial pathogens. In this study, European eels (Anguilla anguilla) were immunized by the bivalent expression products of the outer membrane protein (Omp) gene from A. hydrophila (OmpⅡ) and E. anguillarum (OmpA), and the effects of the bivalent protein (rOmpⅡ-A) on the immune function of the European eel were detected. Three hundred eels were divided average into three groups of PBS, adjuvant and rOmp. Eels of three goups were injected intraperitoneal with 0.2 mL of PBS (0.01 mol/L, pH7.4), PBS + F (PBS mixed equal volume of freund's uncomplete adjuvant) or rOmpⅡ-A (1 mg mL-1 rOmpⅡ-A mixed equal volume of freund's uncomplete adjuvant). Four immune-related genes expression, proliferation of whole blood cells, serum and skin mucus antibody titer, superoxide dismutase (SOD) activity and the relative percent of survival (RPS) were studied at different days (or hours) post the immunization. The results showed that the igm, lysC, mhc2 and sod gene in the liver, spleen, kidney and intestine tract were significant increased in the Omp group; On the 28 day post the immunization (dpi), blood cell proliferation was increased in the Omp group, and on the 14, 21, 28 and 42 dpi, antibody titers in serum and mucus of the Omp group were significantly higher than that of the PBS and adjuvant group, regardless of coating with bacteria or Omp antigen. The SOD activity of Omp group increased significantly in liver, kidney, skin mucus and serum from 14 to 42 dpi, especially in serum. Eels chanllenged by A. hydrophila, E. anguillarum and V. vulnificus in the bivalent Omp group showed the RPS were 83.33%, 55.56% and 44.44%, respectively. The results of this study showed that immunization of the bivalent Omp could effectively improve the immune function of European eels, and produced effectively protection to A. hydrophila and E. anguillarum infection. Simultaneously, the bivalent Omp also produced distinct cross-protection to the eels challenged by V. vulnificus.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, 361021, China
| | - Le He
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, 361021, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Yiqun Xiao
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, 361021, China
| | - Qinpi Yan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
43
|
Mao L, Qin Y, Kang J, Wu B, Huang L, Wang S, Zhang M, Zhang J, Zhang R, Yan Q. Role of LuxR-type regulators in fish pathogenic Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2020; 43:215-225. [PMID: 31770821 DOI: 10.1111/jfd.13114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
LuxR-type transcriptional factors are essential in many bacterial physiological processes. However, there have been no reports on their roles in Aeromonas hydrophila. In this study, six stable silent strains were constructed using shRNA. Significant decreases in the expression levels of luxR05 , luxR08 , luxR19 , luxR11 , luxR164 and luxR165 were shown in their respective strains by qRT-PCR. The luxR05 -RNAi and luxR164 -RNAi exhibit the most significant changes in sensitivity to kanamycin and gentamicin. The luxR05 -RNAi showed minimum biofilm formation and the least motility, while luxR164 -RNAi showed minimum biofilm formation, adhesion, growth and extracellular protease activity compared to the wild-type strain. In summary, the results of this paper suggest that all six luxR genes are involved in multiple physiological processes in A. hydrophila and that the roles of luxR05 and luxR164 are highly significant. The sensitivity of luxR05 -RNAi and luxR164 -RNAi to drugs may be closely related to biofilm formation. The luxR05 may play an important role in the pathogenicity of A. hydrophila by regulating the movement, adhesion and biofilm formation of bacteria, whereas luxR164 may be involved in similar functions by regulating bacterial adhesion, extracellular enzyme activity and growth. These results help further our understanding of the drug resistance and pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiahui Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ruixuan Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| |
Collapse
|
44
|
He R, Zhao L, Xu X, Zheng W, Zhang J, Zhang J, Yan Q, Huang L. Aryl hydrocarbon receptor is required for immune response in Epinephelus coioides and Danio rerio infected by Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2020; 97:564-570. [PMID: 31891808 DOI: 10.1016/j.fsi.2019.12.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor that responds to environmental chemicals, has been recently found to be closely associated with immune response in mammals. Pseudomonas plecoglossicida (P. plecoglossicida) is a temperature-dependent bacterial pathogen of visceral white spot disease in fish. Using dual RNA-seq, we previously evaluated the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in the spleen of Epinephelus coioides at different time points after infection with P. plecoglossicida. In the present study, the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in different organs of E. coioides and Danio rerio showed similar trends after being infected by P. plecoglossicida. It also was noted that liver, intestine, spleen, and heart were the most obviously affected organs, and ahr2 particularly showed a dramatically increase in the spleen. Subsequently, macrophages of E. coioides were isolated, and then infected by P. plecoglossicida, followed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, which revealed that the expression level of ahr1a in macrophages was significantly down-regulated, while expression levels of ahr1b, ahr2 and cyp1a were noticeably up-regulated. Eventually, it was noted that ahr1b and ahr2 were knocked-down in macrophages, and intracellular survival rate and immune escape rate of P. plecoglossicida were markedly improved. Taken together, ahr1a, ahr1b, ahr2 and cyp1a participate in the immune response to P. plecoglossicida in different organs of fish, while ahr1b and ahr2 may play pivotal roles in the immune response of spleen and macrophages.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
45
|
Luo G, Sun Y, Huang L, Su Y, Zhao L, Qin Y, Xu X, Yan Q. Time-resolved dual RNA-seq of tissue uncovers Pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol 2019; 22:677-693. [PMID: 31797531 DOI: 10.1111/1462-2920.14884] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Bacterial pathogen-host interactions are highly dynamic, regulated processes that have been primarily investigated using in vitro assays. The dynamics of bacterial pathogen-host interplay in vivo are poorly understood. Using time-resolved dual RNA-seq in a Pseudomonas plecoglossicida-Epinephelus coioides infection model, we observed that bacterial genes encoding classical virulence factors and host genes involved in immune regulation were dynamically expressed during infection. Using network inferencing, we were able to predict interspecies regulatory networks linking bacterial virulence genes to host immune genes. Together with gene co-expression network analysis of the pathogen, secY was predicted to be a key virulence gene for P. plecoglossicida pathogenicity in the host, fliN was predicted to be a less important virulence gene. The results of bioinformatics prediction were confirmed by animal infection experiments. Our work provides the first paradigm to study dynamic alterations of bacterial pathogen and host interactions based on the elucidation of time-resolved interactive transcriptomes in vivo, and may be developed into a novel and universal method for revealing the true complexity of the bacterial infection process.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yujia Sun
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| |
Collapse
|
46
|
Luo G, Zhao L, Xu X, Qin Y, Huang L, Su Y, Zheng W, Yan Q. Integrated dual RNA-seq and dual iTRAQ of infected tissue reveals the functions of a diguanylate cyclase gene of Pseudomonas plecoglossicida in host-pathogen interactions with Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 95:481-490. [PMID: 31698069 DOI: 10.1016/j.fsi.2019.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
The interactions between host and pathogen is exceedingly complex, which involves alterations at multiple molecular layers. However, research to simultaneously monitor the alterations of transcriptome and proteome between a bacterial pathogen and aquatic animal host through integrated dual RNA-seq and dual iTRAQ of tissue during infection is currently lacking. The important role of a diguanylate cyclase gene (L321_RS15240) in pathogenicity of Pseudomonas plecoglossicida against Epinephelus coioides was suggested by previous dual RNA-seq of our lab. Then L321_RS15240-RNAi strains of P. plecoglossicida were constructed with pCM130/tac, and the mutant with the best silencing effect was selected for follow-up study. The RNAi of L321_RS15240 resulted in a significant decrease in bacterial virulence of P. plecoglossicida. The E. coioides spleens infected by wild type strain or L321_RS15240-RNAi strain of P. plecoglossicida were subjected to dual RNA-seq and dual iTRAQ, respectively. The results showed that: RNAi of L321_RS15240 led to 1)alterations of host transcriptome associated with complement and coagulation cascades, ribosome, arginine and proline metabolism, and oxidative phosphorylation; 2)high expression of host proteins which related to phagosome and metabolism responses (metabolism of glutathione, amino sugar and nucleotide sugar); 3)the highly differentially expression of host lncRNAs and miRNAs. The differentially expressed proteins and mRNAs of pathogen were different after infection, but the functions of these proteins and mRNAs were mainly related to metabolism and virulence. This study provides a new insight to comprehensively understand the gene functions of pathogens and hosts at multiple molecular layers during in vivo infection.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China.
| |
Collapse
|
47
|
Dual RNA-Seq Unveils the Role of the Pseudomonas plecoglossicida fliA Gene in Pathogen-Host Interaction with Larimichthys crocea. Microorganisms 2019; 7:microorganisms7100443. [PMID: 31614635 PMCID: PMC6843279 DOI: 10.3390/microorganisms7100443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study, Larimichthys crocea and Pseudomonas plecoglossicida were selected as a host-pathogen interaction model for teleosts and prokaryotic pathogens. Five shRNAs were designed and synthesized to silence the fliA gene, all of which resulted in pronounced reductions in fliA mRNA; the mutant strain with the best silencing efficiency of 92.16% was chosen for subsequent analysis. A significant decrease in motility, intracellular survival and escape was observed for the fliA-RNAi strain of P. plecoglossicida, whereby silencing of the fliA gene led to a 30% decrease in mortality and a four-day delay in the onset of infection in L. crocea. Moreover, silencing of P. plecoglossicida fliA resulted in a significant change in both the pathogen and host transcriptome in the spleens of infected L. crocea. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of pathogen transcriptome data showed that silencing fliA resulted in downregulation of 18 flagellum-related genes; KEGG analysis of host transcriptome data revealed that infection with the fliA-RNAi strain caused upregulation of 47 and downregulation of 106 immune-related genes. These pathogen-host interactions might facilitate clearance of P. plecoglossicida by L. crocea, with a significant decrease in fliA-RNAi P. plecoglossicida strain virulence in L. crocea.
Collapse
|
48
|
Wang L, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Zhang J, Yan Q. Dual RNA-seq uncovers the immune response of Larimichthys crocea to the secY gene of Pseudomonas plecoglossicida from the perspective of host-pathogen interactions. FISH & SHELLFISH IMMUNOLOGY 2019; 93:949-957. [PMID: 31433996 DOI: 10.1016/j.fsi.2019.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative aerobic bacterium that causes high mortality and serious economic losses in some commercial marine fish. Expression of secY was found to be significantly upregulated at 18 °C compared to 28 °C by RNA-seq and qRT-PCR. All five tested recombinant vectors (pCM130/tac + shRNA) significantly reduced secY mRNA levels in P. plecoglossicida. The recombinant vector encoding shRNA-1165 exhibited the best gene-silencing efficiency, 82.4% and was used to create an RNAi strain for further studies. Compared with the wildtype strain, infections of Larimichthys crocea with the RNAi strain resulted in a 2-day delay in onset time and a 35% reduction in mortality, as well as the alleviation of spleen symptoms. The spleens of L. crocea infected by the wild type or RNAi strain of P. plecoglossicida were subjected to dual RNA-seq at 2 dpi. Compared with the wildtype strain, infection of P. plecoglossicida with the RNAi strain resulted in significant changes in the transcriptomes of both host and pathogen. KEGG analysis showed that the complement and coagulation cascade and the Toll-like receptor signalling pathway were the most enriched host pathways. In the pathogen, genes of the "Sec secretion system" were significantly downregulated. This downregulation of "Sec secretion system" genes hindered the secretion of bacterial proteins and reduced the virulence of P. plecoglossicida. Thus, it was easier for L. crocea to clear the RNAi strain of P. plecoglossicida, and the immune response was similarly reduced. The results indicated that secY was a virulence gene of P. plecoglossicida and played roles in the host-pathogen interactions of L. crocea and P. plecoglossicida.
Collapse
Affiliation(s)
- Luying Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yunjia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China.
| |
Collapse
|
49
|
Tang Y, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Yi G, Yan Q. Mechanistic insight into the roles of Pseudomonas plecoglossicida clpV gene in host-pathogen interactions with Larimichthys crocea by dual RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2019; 93:344-353. [PMID: 31352116 DOI: 10.1016/j.fsi.2019.07.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economical important farmed fish in China. "Visceral White Spot Disease" caused by Pseudomonas plecoglossicida is a disease with a high mortality rate in cage-cultured L. crocea in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of clpV gene in P. plecoglossicida was significantly up-regulated during infection. RNAi significantly reduced the expression of clpV in P. plecoglossicida with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of clpV-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of L. crocea, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of L. crocea infected by clpV-RNAi strain of P. plecoglossicida changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of L. crocea were most affected by the silence of clpV in P. plecoglossicida. RNAi of clpV resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yujia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian, 352000, China
| | - Ganfeng Yi
- Fujian Dabeinong Aquaculture Science & Technology Co. Ltd., Zhangzhou, Fujian, 363502, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
50
|
Tang R, Zhao L, Xu X, Huang L, Qin Y, Su Y, Yan Q. Dual RNA-Seq uncovers the function of an ABC transporter gene in the host-pathogen interaction between Epinephelus coioides and Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2019; 92:45-53. [PMID: 31129188 DOI: 10.1016/j.fsi.2019.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
As an important pathogen in aquaculture, Pseudomonas plecoglossicida has caused heavy losses. The expression of an ABC transporter gene-L321_23611 of P. plecoglossicida at 18 °C was found significant higher than those at 28 °C by RNA-seq and qRT-PCR. RNAi significantly reduced the content of L321_23611 mRNA in P. plecoglossicida with a maximal decrease of 89.2%. Compared with the wild type strain, the infection of L321_23611-RNAi strain resulted in the reduction in mortality and the onset time delay of a kind of marine teleosts, Epinephelus coioides. The results of dual RNA-seq showed that the RNAi of L321_23611 resulted in a significant change in both pathogen and host transcriptome in the spleens of infected E. coioides. The result of GO and KEGG analysis from dual RNA-seq data showed both host genes of chemokine signaling pathway, coagulation and complement system, hematopoietic cell lineage pathway as well as hemoglobin complex GO term and pathogenic genes of bacterial-type flagellum-dependent cell mortality GO term and flagellar assembly, biosynthesis of amino acids and lysine biosynthesis systems pathways were mainly affected by L321_23611 gene of P. plecoglossicida. The results indicated that: 1. ABC transporter gene-L321_23611 was a virulent gene of P. plecoglossicida. 2. Both the activation of the host immune pathways and depression of pathogenic virulence-related pathways facilitated E. coioides to remove L321_23611-RNAi strain than the wild type strain of P. plecoglossicida.
Collapse
Affiliation(s)
- Ruiqiang Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China.
| |
Collapse
|