1
|
Zhang T, Xu D, Zhou Y, Ma X, Wen H. Acute ammonia stress affects the immune response, oxidative stress, ammonia transport and detoxication in the hepatopancreas of freshwater mollusk Solenaia oleivora. Toxicol Appl Pharmacol 2024; 493:117138. [PMID: 39481765 DOI: 10.1016/j.taap.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ammonia is a common and major pollutant in aquatic systems. Excessive ammonia has toxic effects on hepatopancreas in aquatic animals. In this study, we investigated the toxic effects of acute ammonia (concentration: 10 mg/L; test duration: 48 h) stress on the hepatopancreas of a freshwater mollusk, Solenaia oleivora. Transcriptome analysis identified 3355 differentially expressed genes (DEGs), including 1432 up-regulated and 1923 down-regulated genes. Many DEGs were associated with immune and stress responses, including heat shock proteins, pattern recognition receptors, and lysozyme. In addition, some DEGs were related to ammonia transport and detoxification, such as aquaporins, K+channel, V-ATPase, cytochrome p450, glutathione transferase, and glutamine synthetase. Physiological analysis showed that ammonia stress increased the activities of antioxidant enzymes (superoxide dismutase and catalase) and non-specific immune enzymes (acid phosphatase) and the levels of liver injury markers (malonaldehyde, aspartate aminotransferase, and alanine transaminase). TdT-mediated dUTP nick-end labeling assay revealed that ammonia stress induced apoptosis in the hepatopancreas. These results indicated the toxic effects of ammonia on hepatopancreas on the immune response, oxidative stress, ammonia transport and detoxification of S. oleivora. Our findings will accumulate data on the toxic effects of ammonia on the hepatopancreas of aquatic animals.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanfeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
2
|
Li F, Cui X, Fu C, Wang A. The physiological response of oriental river prawn Macrobrachium nipponense to starvation-induced stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101229. [PMID: 38531153 DOI: 10.1016/j.cbd.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Environmental stresses play critical roles in the physiology of crustaceans. Food deprivation is an important environmental factor and a regular occurrence in both natural aquatic habitats and artificial ponds. However, the underlying physiological response mechanisms to starvation-caused stress in crustaceans are yet to be established. In the present study, the hepatopancreas tissue of Macrobrachium nipponense was transcriptome analyzed and examined for starvation effects on oxidative stress, DNA damage, autophagy, and apoptosis across four fasting stages (0 (control group), 7, 14, and 21 days). These results indicated that a ROS-mediated regulatory mechanism is critical to the entire fasting process. At the initial stage of starvation (fasting 0 d ~ 7 d), ROS concentration increased gradually, activating antioxidant enzymes to protect the cellular machinery from the detrimental effects of oxidative stress triggered by starvation-induced stress. ROS content production (hydrogen peroxide and superoxide anion) then rose continuously with prolonged starvation (fasting 7 d ~ 14 d), reaching peak levels and resulting in autophagy in hepatopancreas cells. During the final stages of starvation (fasting 14 d ~ 21 d), excessive ROS induced DNA damage and cell apoptosis. Furthermore, autophagolysosomes and apoptosis body were further identified with transmission electron microscopy. These findings lay a foundation for further scrutiny of the molecular mechanisms combating starvation-generated stress in M. nipponense and provide fishermen with the theoretical guidance for adopting fasting strategies in M. nipponense aquaculture.
Collapse
Affiliation(s)
- Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Xiaocui Cui
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China.
| |
Collapse
|
3
|
Li W, Wang J, Li J, Liu P, Fei F, Liu B, Li J. The effect of astaxanthin on the alkalinity stress resistance of Exopalaemon carinicauda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170415. [PMID: 38278276 DOI: 10.1016/j.scitotenv.2024.170415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Astaxanthin (Axn), a feed additive, can improve growth performance and enhance the environmental stress tolerance of shrimp at all growth stages. High carbonate alkalinity is considered a major stressor that affects the survival, growth, and reproduction of aquatic animals in saline-alkaline waters. In this study, a combined analysis of physiology, transcriptomics, and metabolomics was performed to explore the effected mechanism of Axn on Exopalaemon carinicauda (E. carinicauda) under alkalinity stress. The results revealed that dietary Axn can inhibit oxidative stress damage caused by alkalinity stress and maintain the normal cell structure and mitochondrial membrane potential. Transcriptomic data indicated that differentially expressed genes (DEGs) under alkalinity stress and those under alkalinity stress after Axn feeding were associated with apoptosis. The metabolic data suggested that alkalinity stress has adverse effects on ammonia metabolism, unsaturated fatty acid metabolism, and TCA cycle, and dietary Axn can improve the metabolic processes in E. carinicauda. In addition, transcriptomics and metabolomics analyses showed that Axn could help maintain the cytoskeletal structure and inhibit apoptosis under alkalinity stress; a TUNEL assay further confirmed these effects. Lastly, metabolic responses to alkalinity stress included changes in multiple amino acids and unsaturated fatty acids, and pathways related to energy metabolism were downregulated in the hepatopancreas of E. carinicauda under alkalinity stress. Collectively, all these results provide new insights into the molecular mechanisms underlying alkalinity stress tolerance in E. carinicauda after Axn feeding.
Collapse
Affiliation(s)
- Wenyang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jiajia Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Fan Fei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Baoliang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
4
|
Guo Z, Chen Y, Du X, Li Y, Niu D. Ammonia-induced oxidative stress triggered apoptosis in the razor clam (Sinonovacula constricta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22380-22394. [PMID: 38407712 DOI: 10.1007/s11356-024-32635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.
Collapse
Affiliation(s)
- Ziqi Guo
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yukuan Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xinxin Du
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
5
|
Phonsiri K, Mavichak R, Panserat S, Boonanuntanasarn S. Differential responses of hepatopancreas transcriptome between fast and slow growth in giant freshwater prawns (Macrobrachium rosenbergii) fed a plant-based diet. Sci Rep 2024; 14:4957. [PMID: 38418833 PMCID: PMC10902295 DOI: 10.1038/s41598-024-54349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Efficient utilisation of plant-based diets in the giant freshwater prawn, Marcrobrachium rosenbergii, varies according to individual, suggesting that it might be associated with differences in physiological and metabolic responses. Therefore, we aimed to investigate the individual differences in the growth response of shrimp fed to a soybean-based diet (SBM). Two hundred shrimp were fed SBM for 90 days, and specific growth rate (SGR) was determined individually. Fast- and slow-growing shrimp (F-shrimp vs. S-shrimp), with the highest and lowest 5% SGRs, respectively, were sampled to determine haemolymph chemistry and carcass composition. The hepatopancreas of these shrimps were used for transcriptome analysis through RNA sequencing (RNA-Seq). The results showed no significant differences in haemolymph chemistry parameters. In terms of carcass proximate composition, F-shrimp exhibited higher protein composition than did S-shrimp, suggesting that F-shrimp have higher protein anabolism. Using RNA-seq and real-time reverse transcription polymerase chain reaction (qRT-PCR), the expression levels of several genes encoding physiologic and metabolic enzymes were found to be upregulated in F-shrimp compared to in S-shrimp, suggesting that these enzymes/proteins mediated the efficient use of SBM-based diets for growth promotion in shrimp. Various DEGs associated with the immune system were observed, indicating a difference in immune processes between F- and S-shrimp. The expression of several housekeeping genes was found to be upregulated in S-shrimp. Collectively, the upregulated expression of several enzymes associated with physiological and/or metabolic processes and increased protein anabolism may be attributed to the efficient use of SBM for maximal growth in shrimp.
Collapse
Affiliation(s)
- Khanakorn Phonsiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Rapeepat Mavichak
- Aquatic Animal Health Research Center, Charoen Pokphand Co. Ltd., Rama 2 Rd., Km 41.5, Bangtorat, Muang Samutsakorn, Samutsakorn, 74000, Thailand
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-Sur-Nivelle, France
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Wang F, Zhao F, Deng Y, Tan A, Lai Y, Gong H, Huang Z, Liu Y, Liang Q, Wang W. miR-2765 involved in ammonia nitrogen stress via negative regulation of autophagy in shrimp. Int J Biol Macromol 2024; 258:129084. [PMID: 38161029 DOI: 10.1016/j.ijbiomac.2023.129084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
MicroRNA (miRNA) is a highly conserved non-coding tiny endogenous RNA molecule that regulates various cellular functions by inhibiting mRNA translation or promoting the degradation of proteins. In this study, we identified a specific miRNA (designed as Pva-miR-2765) from Penaeus vannamei, which widely distributed in different tissues of shrimp, with the highest concentration found in the intestine. Through fluorescence in situ hybridization (FISH), we observed that Pva-miR-2765 is primarily located in the cytoplasm. Interestingly, we found that the expression of Pva-miR-2765 significantly decreased in hemocytes, hepatopancreas and gill under ammonia nitrogen stress. Furthermore, when Pva-miR-2765 was silenced, the autophagy level in shrimp significantly increased. Additionally, Pva-miR-2765 was found to promote pathological damage in the hepatopancreas of shrimp. Subsequently, correlation analysis revealed a negative relationship between the expression of Pva-miR-2765 and PvTBC1D7. To confirm this interaction, we conducted a dual luciferase reporter gene assay, which demonstrated that Pva-miR-2765 inhibit the expression of PvTBC1D7 by interacting with its 3'UTR. And the expression level of PvTBC1D7 in shrimp decreased significantly under ammonia nitrogen stress in Pva-miR-2765 overexpressed. Our findings suggest that Pva-miR-2765 can reduce autophagy in P. vannamei by inhibiting the regulation of PvTBC1D7, thereby participating in the oxidative stress of shrimp caused by ammonia nitrogen stress.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China; Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Wang Z, Wang Y, Guan Y, Chen Z, Zhai Y, Wu Y, Zhou Y, Hu J, Chen L. Transcriptome analysis of Chinese mitten crabs ( Eriocheir sinensis) gills in response to ammonia stress. PeerJ 2024; 12:e16786. [PMID: 38250716 PMCID: PMC10798153 DOI: 10.7717/peerj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is an important commercial species in China. E. sinensis is typically farmed in rice-crab symbiosis, as an important ecological farming model. However, E. sinensis is often exposed to a high ammonia environment due to the application of nitrogen fertilizers essential for rice growth. We investigated the molecular mechanisms in the gills of E. sinensis exposed to high ammonia at transcriptional and histological levels. We randomly assigned E. sinensis to two groups (control group, CG; ammonia stress group, AG), and gill samples were excised from the CG and AG groups for histopathological and transcriptome analyses. The histopathological evaluation revealed that ammonia stress damaged the gills of E. sinensis. The transcriptome analysis showed that some essential genes, including Xanthine dehydrogenase (XDH), Ubiquitin C-terminal hydrolase-L3 (UCHL3), O-linked N-acetylglucosamine transferase (OGT), Cathepsin B (CTSB), and Ubiquitin-conjugating enzyme E2 W (UBE2W) changed significantly during ammonia exposure. These genes are related to ammonia detoxification, the immune response, and apoptosis. This study demonstrated the molecular response mechanism of E. sinensis gills to ammonia stress at the transcriptional and histological levels. This study provides insight for further study on the molecular mechanism of ammonia stress in crustaceans and supplies technical support for rice crab symbiosis.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Yue Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Yayun Guan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Zhuofan Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Yaotong Zhai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Ya Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Ying Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Jinghao Hu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| | - Lulu Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers Universtiy, Yancheng, Jiangsu Province, China
| |
Collapse
|
8
|
Liang Y, Li Z, Yuan J, Zhou Y, Li M, Gu H. ROS-mediated physiological activities and apoptotic effect on the survival of abalone (Haliotis discus hannai) under homoyessotoxin and ammonia stresses. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109769. [PMID: 37838069 DOI: 10.1016/j.cbpc.2023.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Serious dinoflagellate blooms produce homoyessotoxin (homo-YTX) and ammonia (NH3-N) in eutrophic seawaters, posing threats to the healthy development of the mariculture industry. This study aimed to explore the toxicity mechanism of homo-YTX and NH3-N on the survival of abalone, which is important for the ecotoxicological research and cultivation of shellfish. The economy abalone Haliotis discus hannai was placed in homo-YTX (0, 2, 5, and 10 μg L-1) and NH3-N (0, 1.08, and 3.16 mg L-1) and a mixture of the two compounds to determine the survival rate (S), antioxidative responses, physiological activities, and apoptosis of abalone. Results show that the combination of homo-YTX and NH3-N increased the reactive oxygen species level, the malondialdehyde content, and the expression level of BCL2-associated X but decreased S; the activities of superoxide dismutase, catalase, adenosine triphosphatase, glutamic-pyruvic transaminase, xanthine oxidase, lactate dehydrogenase, and lysozyme; and the expression level of B-cell lymphoma-2. The activities of alkaline phosphatase and acid phosphatase in 10 μg L-1 of homo-YTX and 3.16 mg L-1 of NH3-N solutions and in the mixture of the two toxicants decreased. The caspase3 expression level was downregulated in 10 μg L-1 of homo-YTX. These results suggest that homo-YTX and NH3-N enhanced the oxidative stress and lipid peroxidation reactions, inhibited the energy supply, disrupted the metabolic and immune physiological functions, and activated apoptosis in the gills of abalone. ROS-mediated physiological activities and apoptosis were among the potential toxicity mechanisms of the interactive effects of homo-YTX and NH3-N on abalone.
Collapse
Affiliation(s)
- Ye Liang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China.
| | - Zihao Li
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Jing Yuan
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Yiwen Zhou
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Meng Li
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China; Third Institute of Oceanography, Ministry of Natural Resources, No. 178 Daxue Road, Xiamen 361005, PR China
| |
Collapse
|
9
|
Hong X, Qin J, Fu D, Yang Y, Wang A, Gu Z, Yu F, Liu C. Transcriptomic analysis revealed the dynamic response mechanism to acute ammonia exposure in the ivory shell, Babylonia areolata. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109198. [PMID: 37926202 DOI: 10.1016/j.fsi.2023.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The ivory shell (Babylonia areolata) is an economically important shellfish in tropical and subtropical regions, but its intensive culture and biological characteristic of hiding in the sandy substrate make it highly susceptible to ammonia stress. In this study, we investigated the dynamic changes in histopathology, oxidative stress, and transcriptome of the ivory shell at different time points under high concentration (60 mg/L) ammonia exposure. With prolonged exposure to stress, vacuoles appeared in the hepatopancreas while cell volume and intercellular space increased. The activities of superoxide dismutase (SOD) and catalase (CAT) decreased significantly under high concentrations of ammonia-induced stress while malondialdehyde (MDA) levels increased significantly. Integrated analysis of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that lipid transport primarily contributed to maintaining cellular homeostasis during the early stage of stress (6 and 12 h). Subsequently, a significant upregulation of oxidation-reduction reactions occurred at the middle stage (24 h), leading to oxidative stress. Finally, during the later stage (48 h), metabolic decomposition provided energy for survival maintenance. Additionally, lysosome and apoptosis were identified as potential key pathways in response to acute ammonia toxicity. Overall, our findings suggest that ivory shells can respond to acute ammonia toxicity via immune and antioxidant defense mechanisms but sustained high concentrations may cause irreversible damage. This study provides valuable insights into the response mechanism of mollusks towards ammonia and serves as a data reference for breeding ammonia-tolerant varieties of ivory shells.
Collapse
Affiliation(s)
- Xin Hong
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Jie Qin
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Deng Fu
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Yi Yang
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572022, China
| | - Aimin Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China
| | - Zhifeng Gu
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572022, China
| | - Feng Yu
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572022, China.
| | - Chunsheng Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572022, China.
| |
Collapse
|
10
|
Lei Y, Yuan Z, Zeng Q, Wan B, Liu J, Wang W. Dynamic N6-methyladenosine RNA methylation landscapes reveal epi-transcriptomic modulation induced by ammonia nitrogen exposure in the Pacific whiteleg shrimp Litopenaeus vannamei. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131996. [PMID: 37423135 DOI: 10.1016/j.jhazmat.2023.131996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Despite the versatility of RNA m6A methylation in regulating various biological processes, its involvement in the physiological response to ammonia nitrogen toxicity in decapod crustaceans like shrimp remains enigmatic. Here, we provided the first characterization of dynamic RNA m6A methylation landscapes induced by toxic ammonia exposure in the Pacific whiteleg shrimp Litopenaeus vannamei. The global m6A methylation level showed significant decrease following ammonia exposure, and most of the m6A methyltransferases and m6A binding proteins were significantly repressed. Distinct from many well-studied model organisms, m6A methylated peaks in the transcriptome of L. vannamei were enriched not only near the termination codon and in the 3' untranslated region (UTR), but also around the start codon and in the 5' UTR. Upon ammonia exposure, 11,430 m6A peaks corresponding to 6113 genes were hypo-methylated, and 5660 m6A peaks from 3912 genes were hyper-methylated. The differentially methylated genes showing significant changes in expression were over-represented by genes associated with metabolism, cellular immune defense and apoptotic signaling pathways. Notably, the m6A-modified ammonia-responsive genes encompassed a subset of genes related to glutamine synthesis, purine conversion and urea production, implying that m6A methylation may modulate shrimp ammonia stress responses partly through these ammonia metabolic processes.
Collapse
Affiliation(s)
- Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Qingtian Zeng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Modern Seed Industry Park of the Pacific Whiteleg Shrimp, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China; Guangdong Provincial Modern Seed Industry Park of the Pacific Whiteleg Shrimp, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Tong D, Zhu Z, Wu J, Li F, Shen J, Cao J, Tang Y, Liu G, Hu L, Shi W. Impacts of ammonia stress on different Pacific whiteleg shrimp Litopenaeus vannamei families and the underlying adaptive mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106549. [PMID: 37150124 DOI: 10.1016/j.aquatox.2023.106549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Ammonia stress in aquaculture systems poses a great threat to the growth and survival of the Pacific whiteleg shrimp Litopenaeus vannamei. Although the ammonia stress tolerance capacity of L. vannamei has been found to vary significantly among different breeding families, the underneath mechanisms are still largely unknown. In this study, the ammonia tolerance capacity of different L. vannamei breeding families was compared. Results confirmed the significant differences in the ammonia adaptability among different families. To ascertain the underlying adaptive strategies, ATP status, ATP synthase activity, expression and activities of ammonia excretion and metabolism-related enzymes, and apoptosis in shrimp gills were analyzed. Furthermore, transcriptomic analyses were also performed to elucidate the molecular mechanisms. Our results indicated that ammonia-tolerant L. vannamei may possess (1) enhanced ability to excrete ammonia, (2) better capacity to convert ammonia into less toxic products, and (3) sufficient energy reserves for ammonia-compensating processes.
Collapse
Affiliation(s)
- Difei Tong
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Zhihang Zhu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, 325005 Wenzhou, PR China
| | - Jiayan Wu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, 325005 Wenzhou, PR China
| | - Fang Li
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, 325005 Wenzhou, PR China
| | - Jiawei Shen
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Jiaqi Cao
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yusong Tang
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Lihua Hu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, 325005 Wenzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| |
Collapse
|
12
|
Wang J, Li Y, Wang J, Wang Y, Liu H, Bao J. Selenium Alleviates Ammonia-Induced Splenic Cell Apoptosis and Inflammation by Regulating the Interleukin Family/Death Receptor Axis and Nrf2 Signaling Pathway. Biol Trace Elem Res 2023; 201:1748-1760. [PMID: 35581429 DOI: 10.1007/s12011-022-03279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Ammonia (NH3) is a harmful gas in livestock houses. So far, many researchers have demonstrated that NH3 is detrimental to animal and human organs. Selenium (Se) is one of the essential trace elements in the body and has a good antioxidant effect. However, there was little conclusive evidence that Se alleviated NH3 poisoning. To investigate the toxic mechanism of NH3 on pig spleen and the antagonistic effect of L-selenomethionine, a porcine NH3-poisoning model and an L-selenomethionine intervention model were established in this study. Our results showed that NH3 exposure increased the apoptosis rate, while L-selenomethionine supplementation alleviated the process of excessive apoptosis. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qRT-PCR), and western blot results confirmed that exposure to NH3 changed the expression levels of interleukin family factors, apoptosis, death receptor, and oxidative stress factors. Our study further confirmed that excessive NH3 induced inflammatory response and mediated necroptosis leading to cell apoptosis by activating the Nrf2 signaling pathway. Excessive NH3 could mediate spleen injury through oxidative stress-induced mitochondrial dynamics disorder. L-Selenomethionine could alleviate inflammation and abnormal apoptosis by inhibiting the IL-17/TNF-α/FADD axis. Our study would pave the way for comparative medicine and environmental toxicology.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
13
|
Zhang C, Ma J, Qi Q, Xu M, Xu R. Effects of ammonia exposure on anxiety behavior, oxidative stress and inflammation in guppy (Poecilia reticulate). Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109539. [PMID: 36563950 DOI: 10.1016/j.cbpc.2022.109539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ammonia is one of the most important aquatic environmental factors, which is of great concern. In order to evaluate the effect of ammonia on guppy (Poecilia reticulate), fish were exposed to increased concentrations (0, 12.50, 25.00, 41.67, 62.50 mg/L) of ammonia for 48 h. After exposure, we measured the anxiety behavior, antioxidant enzymes and pro-inflammation genes (TNF-α, IL-1β and IL-6) of guppy. The results showed that ammonia stress induced fish anxiety, which was manifested by the increased latency to enter the upper half and decreased time spent in upper half compared with control fish. The guppy showed oxidative stress after 48 h of ammonia stress as evidenced by decreases in the activities of antioxidant enzymes and an increase in lipid hydroperoxide content. With prolonged ammonia stress, the expressions of HSP70, HSP90, TNF-α, IL-1β and IL-6 mRNA at first had an increasing trend, and then decreased, all of which were significantly higher than the control levels at 12 h and 24 h after ammonia stress (P < 0.05). Ammonia significantly upregulated these genes mRNA levels after 48 h exposure, suggesting that heat shock proteins and innate immune system may try to protect cells from oxidative stress induced by ammonia stress. Our study showed that higher ammonia exposure induced oxidative stress in exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, and inflammation occurred. Furthermore, the results will be helpful to understand the mechanism of ammonia toxicity in guppys.
Collapse
Affiliation(s)
- Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mingjia Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
14
|
Zheng X, Xu D, Sun L, Qin X, Zhang Y. Inflammation and apoptosis pathways mediated the stress response of Litopenaeus vannamei to acute cold and air exposure during waterless live transportation: Based on ultrastructure and transcriptome. FISH & SHELLFISH IMMUNOLOGY 2022; 131:391-400. [PMID: 36252695 DOI: 10.1016/j.fsi.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
the combination of acute cold (AC) and waterless duration (WD) constitutes the major environmental stress and induces the damage or even mortality to shrimp L. vannamei during live transport, whereas the responding mechanism to AC + WD at molecular level remains unknown. The present study aims to clarify the responding mechanism of L. vannamei to AC + WD stress by ultrastructural observation and transcriptomic analysis on hepatopancreas tissue. The results showed that the dramatical oxidative stress induced by AC + WD significantly mediated the alteration of amino acids and energy metabolism. Furthermore, KEGG pathway enrichment analysis revealed that the genes including DDO, GOT1, IDH1 and BBOX1 involved in energy metabolism and were significantly down-regulated, while some apoptosis- and inflammation-related genes such as DRONC, AP-1, and COX-2 were significantly up-regulated under AC + WD stress in comparison with those at normal control (all p < 0.05 or 0.01). These findings suggested that metabolic processes mediate the stress-induced damages of L. vannamei during waterless transport. Moreover, the significant overexpression of apoptosis-and inflammation-related proteins, and levels of inflammation cytokines in serum of shrimps strongly demonstrated the implication of inflammation and apoptosis pathways in stress-induced ultrastructural damage. These findings deepen our understanding into the response mechanisms of L. vannamei to AC + WD stress and provide the potential controlling biomarkers for transportation management.
Collapse
Affiliation(s)
- Xiaoxian Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Ying Zhang
- School of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
15
|
Wang X, Xie Y, Hu W, Wei Z, Wei X, Yuan H, Yao H, Dunxue C. Transcriptome characterization and SSR discovery in the giant spiny frog Quasipaa spinosa. Gene 2022; 842:146793. [PMID: 35952842 DOI: 10.1016/j.gene.2022.146793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
The giant spiny frog Quasipaa spinosa (Amphibia: Ranidae) is a large unique frog species found mainly in southern China with a low amount of fat and high protein, and it has become one of the most important aquaculture animal species in China. To better understand its genetic background and screen potential molecular markers for artificial breeding and species conservation, we constructed an expression profile of Q. spinosa with high-throughput RNA sequencing and acquired potential SSR markers. Approximately 81.7 Gb of data and 93,887 unigenes were generated. The transcriptome contains 2085 (80.7 %) complete BUSCOs, suggesting that our assembly methods were effective and accurate.These unigenes were functionally classified using 7 functional databases, yielding 17,482 Pfam-, 12,752 Sting-, 17,526 KEGG-, 24,341 Swiss-Prot-, 28,604 Nr-, 16,287 GO- and 12,752 COG-annotated unigenes. Among several amphibian species, Q. spinosa unigenes had the highest number of hits to Xenopus tropicalis (35.25 %), followed by Xenopus laevis (12.68 %). 1417 unigenes were assigned to the immune system. In addition, a total of 33,019 candidate SSR markers were identified from the constructed library. Further tests with 20 loci and 118 large-scale breeding specimens gathered from four culture farms in China showed that 15 (75 %) loci were polymorphic, with the number of alleles per locus varying from 3 to 9 (mean of 4.3). The PIC values for the SSR markers ranged from 0.19 to 0.82, with an average value of 0.43, indicating moderate polymorphism in Q. spinosa. The transcriptomic profile and SSR repertoire obtained in the present study will facilitate population genetic studies and the selective breeding of amphibian species.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yongguang Xie
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Zhaoyu Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Xiuying Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hong Yuan
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hongyan Yao
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Chen Dunxue
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China.
| |
Collapse
|
16
|
Expression Analysis of a Novel Oxidoreductase Glutaredoxin 2 in Black Tiger Shrimp, Penaeus monodon. Antioxidants (Basel) 2022; 11:antiox11101857. [PMID: 36290579 PMCID: PMC9598912 DOI: 10.3390/antiox11101857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/08/2023] Open
Abstract
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that is an important component of the redox system in organisms. However, there is a serious lack of sequence information and functional validation related to Grx in crustaceans. In this study, a novel Grx was identified in Penaeus monodon (PmGrx2). The full-length cDNA of PmGrx2 is 998 bp, with an open reading frame (ORF) of 441 bp, encoding 119 amino acids. Sequence alignment showed that PmGrx2 had the highest identity with Grx2 of Penaeus vannamei at 96.64% and clustered with Grx2 of other crustaceans. Quantitative real-time PCR (qRT-PCR) analysis showed that PmGrx2 was expressed in all examined tissues, with higher expression levels in the stomach and testis. PmGrx2 was continuously expressed during development and had the highest expression level in the zygote stage. Both ammonia-N stress and bacterial infection could differentially induce the expression of PmGrx2 in hepatopancreas and gills. When PmGrx2 was inhibited, the expression of antioxidant enzymes was suppressed, the degree of apoptosis increased, and the GSH content decreased with the prolongation of ammonia-N stress. Inhibition of PmGrx2 resulted in shrimp being exposed to a greater risk of oxidative damage. In addition, an SNP locus was screened on the exons of PmGrx2 that was significantly associated with an ammonia-N-stress-tolerance trait. This study suggests that PmGrx2 is involved in redox regulation and plays an important role in shrimps’ resistance to marine environmental stresses.
Collapse
|
17
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Effects of Low Temperature on Antioxidant and Heat Shock Protein Expression Profiles and Transcriptomic Responses in Crayfish ( Cherax destructor). Antioxidants (Basel) 2022; 11:antiox11091779. [PMID: 36139854 PMCID: PMC9495765 DOI: 10.3390/antiox11091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Low temperature is a critical factor restricting the growth and survival of aquatic animals, but research on the mechanism of response to low temperature in Cherax destructor is limited. C. destructor is one of the most important freshwater crustaceans with strong adaptability in Australia, and it has been commercialized gradually in recent years. Here, growth indicators, antioxidant parameters, anti-stress gene expression, and transcriptome sequencing were used on crayfish following 8 weeks of low-temperature acclimation. The results showed that weight gain, length gain, and molting rates decreased as the temperature decreased. The activity of antioxidant enzymes decreased, while the content of antioxidant substances and the expression of anti-stress genes increased. Transcriptome sequencing identified 589 differentially expressed genes, 279 of which were upregulated and 310 downregulated. The gene functions and pathways for endocrine disorders, glucose metabolism, antioxidant defense, and immune responses were identified. In conclusion, although low-temperature acclimation inhibited the basal metabolism and immune ability of crayfish, it also increased the antioxidant substance content and anti-stress-gene expression to protect the organism from low-temperature damage. This study provided molecular insights into the study of low-temperature responses of low-temperature-tolerant crustacean species.
Collapse
|
19
|
Ruiz MB, Servetto N, Alurralde G, Abele D, Harms L, Sahade R, Held C. Molecular responses of a key Antarctic species to sedimentation due to rapid climate change. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105720. [PMID: 35987040 DOI: 10.1016/j.marenvres.2022.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid regional warming causing glacial retreat and melting of ice caps in Antarctica leads benthic filter-feeders to be exposed to periods of food shortage and high respiratory impairment as a consequence of seasonal sediment discharge in the West Antarctic Peninsula coastal areas. The molecular physiological response and its fine-tuning allow species to survive acute environmental stress and are thus a prerequisite to longer-term adaptation to changing environments. Under experimental conditions, we analyzed here the metabolic response to changes in suspended sediment concentrations, through transcriptome sequencing and enzymatic measurements in a highly abundant Antarctic ascidian. We found that the mechanisms underlying short-term response to sedimentation in Cnemidocarpa verrucosa sp. A involved apoptosis, immune defense, and general metabolic depression. These mechanisms may be understood as an adaptive protection against sedimentation caused by glacial retreat. This process can strongly contribute to the structuring of future benthic filter-feeder communities in the face of climate change.
Collapse
Affiliation(s)
- Micaela B Ruiz
- Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina.
| | - Natalia Servetto
- Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina.
| | - Gastón Alurralde
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Doris Abele
- Alfred Wegener Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Section Functional Ecology, Evolutionary Macroecology, Bremerhaven, Germany
| | - Lars Harms
- Alfred Wegener Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Computing and data center, Data Science Support, Bremerhaven, Germany.
| | - Ricardo Sahade
- Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina.
| | - Christoph Held
- Alfred Wegener Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Section Functional Ecology, Evolutionary Macroecology, Bremerhaven, Germany.
| |
Collapse
|
20
|
Fu S, Liu J. Genome-wide association study identified genes associated with ammonia nitrogen tolerance in Litopenaeus vannamei. Front Genet 2022; 13:961009. [PMID: 36072655 PMCID: PMC9441690 DOI: 10.3389/fgene.2022.961009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Ammonia nitrogen tolerance is an economically important trait of the farmed penaeid shrimp Litopenaeus vannamei. To identify the genes associated with ammonia nitrogen tolerance, we performed an extreme phenotype genome-wide association study method (XP-GWAS) on a population of 200 individuals. The single nucleotide polymorphism (SNP) genotyping array method was used to construct the libraries and 36,048 SNPs were genotyped. Using the MLM, FarmCPU and Blink models, six different SNPs, located on SEQ3, SEQ4, SEQ5, SEQ7 and SEQ8, were determined to be significantly associated with ammonia nitrogen tolerance. By integrating the results of the GWAS and the biological functions of the genes, seven candidate genes (PDI, OZF, UPF2, VPS16, TMEM19, MYCBP2, and HOX7) were found to be associated with ammonia nitrogen tolerance in L. vannamei. These genes are involved in cell transcription, cell division, metabolism, and immunity, providing the basis for further study of the genetic mechanisms of ammonia nitrogen tolerance in L. vannamei. Further candidate gene association analysis in the offspring population revealed that the SNPs in the genes zinc finger protein OZF-like (OZF) and homeobox protein Hox-B7-like (HOX7) were significantly associated with ammonia nitrogen tolerance trait of L. vannamei. Our results provide fundamental genetic information that will be useful for further investigation of the molecular mechanisms of ammonia nitrogen tolerance. These associated SNPs may also be promising candidates for improving ammonia nitrogen tolerance in L. vannamei.
Collapse
Affiliation(s)
- Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Jianyong Liu,
| |
Collapse
|
21
|
Comparative transcriptome analysis of differentially expressed genes and pathways in Procambarus clarkii (Louisiana crawfish) at different acute temperature stress. Genomics 2022; 114:110415. [PMID: 35718088 DOI: 10.1016/j.ygeno.2022.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.
Collapse
|
22
|
Li Y, Zhou F, Yang Q, Jiang S, Huang J, Yang L, Ma Z, Jiang S. Single-Cell Sequencing Reveals Types of Hepatopancreatic Cells and Haemocytes in Black Tiger Shrimp ( Penaeus monodon) and Their Molecular Responses to Ammonia Stress. Front Immunol 2022; 13:883043. [PMID: 35603188 PMCID: PMC9114817 DOI: 10.3389/fimmu.2022.883043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The cell types and developmental trajectories of shrimp cells based on the transcriptional level have not been established, and gene expression profile and function at the single-cell level is unclear. We aimed to use scRNA-seq to construct a single-cell resolution transcriptional map of hepatopancreas and haemocytes in shrimp to analyse the molecular mechanisms of the immune response to ammonia nitrogen stress. In the present study, seven cell clusters were successfully identified in each of the two tissues (haemocytes, Hem1-7; hepatopancreas, Hep1-7) based on specifically-expressed marker genes. The developmental starting points of haemocytes and hepatopancreatic cells were Hem2 and Hep1, respectively. We propose that Hem2 has oligopotent potential as the initiation site for haemocyte development and that Hem4 and Hem5, located at the end of development, are the most mature immune cell types in haemocytes. Hep5 and Hep6 were the developing terminal cells of hepatopancreas. The antioxidant system and proPO system of shrimp were activated under ammonia nitrogen stress. A large number of DEGs were involved in oxidative stress, detoxification metabolism, and immune defence. In particular, important response genes such as AMPs, proPO, and GST were not only marker genes for identifying cell groups but also played an important role in shrimp cell differentiation and functional plasticity. By successfully applying 10× Genomics based scRNA-seq to the study of shrimp, the single-cell transcriptional profiles of hepatopancreatic cells and haemocytes of shrimp innate immune responses under ammonia stress were constructed for the first time. This atlas of invertebrate hepatopancreatic cells and haemocytes at single-cell resolution identifies molecular events that underpin shrimp innate immune system responses to stress.
Collapse
Affiliation(s)
- Yundong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qibin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
23
|
Effects of acute heat stress on liver damage, apoptosis and inflammation of pikeperch (Sander lucioperca). J Therm Biol 2022; 106:103251. [DOI: 10.1016/j.jtherbio.2022.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
|
24
|
Yin X, Zhuang X, Liao M, Huang L, Cui Q, Liu C, Dong W, Wang F, Liu Y, Wang W. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas challenged by Vibrio alginolyticus reveals lipid metabolic disturbance. FISH & SHELLFISH IMMUNOLOGY 2022; 123:238-247. [PMID: 35278640 DOI: 10.1016/j.fsi.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Vibrio alginolyticus is a devastating bacterial pathogen of Pacific white shrimp (Litopenaeus vannamei), which often causes acute hepatopancreatic necrosis syndrome (AHPNS) and early mortality syndrome (EMS). Elucidation of molecular mechanisms of L. vannamei in responding to infection is essential for controlling the epidemic. In the present study, transcriptomic profiles of L. vannamei hepatopancreas were explored by injecting with PBS or V. alginolyticus. Hepatopancreas morphology of L. vannamei was also assessed. The result reveals that compared with the hepatopancreas of PBS group, the storage cells (R-cell), secretory cells (B-cell) and star-shaped polygonal structures of the lumen were disappeared and necrotic after challenged by V. alginolyticus at 24 h. Transcriptome data showed that a total of 314 differential expression genes were induced by V. alginolyticus, with 133 and 181 genes up- and down-regulated, respectively. These genes were mainly associated with lysosome pathway, glycerophospholipid metabolism, drug metabolism-other enzymes, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis and PPAR signal pathway. Among these pathways, the lysosome pathway, glycerophospholipid metabolism and PPAR signal pathway were both related with lipid metabolism. Therefore, we detected the lipid accumulation in hepatopancreas by Oil Red O staining, TG and CHOL detection and the relative mRNA expression of several lipid metabolism related genes in the hepatopancreas of shrimp after challenge to V. alginolyticus. The present data reveals that lipids from the L. vannamei are nutrient sources for the V. alginolyticus and define the fate of the infection by modulating lipid homeostasis. These findings may have important implication for understanding the L. vannamei and V. alginolyticus interactions, and provide a substantial dataset for further research and may deliver the basis for preventing the bacterial diseases.
Collapse
Affiliation(s)
- Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qiqian Cui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
25
|
Shi W, Hu R, Wang P, Zhao R, Shen H, Li H, Wang L, Qiao Y, Jiang G, Cheng J, Wan X. Transcriptome analysis of acute high temperature-responsive genes and pathways in Palaemon gravieri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100958. [PMID: 34999569 DOI: 10.1016/j.cbd.2021.100958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Temperature is an important variable factor in aquaculture which affects the health, survival, behavior, growth, and development of aquatic animals. Palaemon gravieri is one of the main economic shrimps in marine capture fisheries of the East China Sea and the South China Yellow Sea; however, it cannot tolerate high temperatures, thereby, resulting in unsuccessful large-scale farming. Thus far, there are few studies on the effects of acute high temperature on P. graviera. Therefore, it is especially important to study the effects of temperature fluctuations, especially acute high temperature, on P. gravieri. In this study, P. gravieri was treated with acute high-temperature stress, which gradually rose from 15 °C to 30 °C in 3 h, then remained at 30 °C for 12 h. The hepatopancreas of shrimps from five time points was collected once at 15 °C and thereafter, every 3 h after 30 °C. The samples of G0, G1, and G4 were selected for transcriptome analysis. A total of 18,308 unigenes were annotated, of which 7744 were differentially expressed. Most differentially expressed genes (DEGs) come from several physiological and biochemical processes, such as metabolism (GRHPR, ALDH5A1, GDH), immunity (HSP70, Rab5B, Rab10, CASP7), and stress-related process (UGT, GST, HSP60, HSP90). The results indicated that acute high temperature significantly reduced the metabolic capacity of shrimp but enhanced the immune capacity, which seemed to be an emergency metabolic compensation technique to resist stress. This study contributes to ongoing research on the physiological mechanism of P. gravieri response to acute high temperature.
Collapse
Affiliation(s)
- Wenjun Shi
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Runhao Hu
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Pan Wang
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ran Zhao
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hui Shen
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Hui Li
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Libao Wang
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Yi Qiao
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Ge Jiang
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Jie Cheng
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China
| | - Xihe Wan
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong, China.
| |
Collapse
|
26
|
Chen T, Li Z, Liu J, Liang C. Cloning, expression and function analysis of trehalose-6-phosphate synthase gene from Marsupenaeus japonicu. Gene 2022; 808:145971. [PMID: 34543688 DOI: 10.1016/j.gene.2021.145971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Trehalose is an important disaccharide that plays an important role in extreme environmental conditions. Trehalose-6-phosphate synthase (TPS) gene is the key gene for trehalose synthesis in Marsupenaeus japonicus. In this study, a TPS gene was isolated and characterized from M. japonicus. The full-length cDNA of TPS gene of M. japonicus (MjTPS) was 3308 bp, encoding 844 amino acids. The protein of the deduced MjTPS contained a glycol_transf_20 domain and a trehalose_PPase domain. The mRNA expression level of MjTPS was the highest in hepatopancreas. The further analysis found that MjTPS gene expression was up-regulated in a short time under low-salinity and high-nitrite stress, indicating that MjTPS gene had certain resistance to low-salinity and high-nitrite stress. Compared with the control group, both the expression of MjTPS and the trehalose content significantly decreased from 3 h to 24 h after MjTPS gene interference,. After RNAi, the mortality of M. japonicus increased, the expression level of MjTPS and the synthesis of downstream products decreased under low-salinity and high-nitrite stress, and what's more, the expression of immune genes PMO25, ERP, CD, HSP90, HSP70, HSP60, HMC and CLEC2 were significantly changed, implying that MjTPS might be participated in the immune response of M. japonicus. In addition, MjTPS gene silencing could affect the expression of CHI1 and CHS, suggesting that MjTPS might be involved in molting behavior of M. japonicus. These results provide new information for further studying the function of trehalose-6-phosphate synthase in shrimp.
Collapse
Affiliation(s)
- Tingjun Chen
- Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhimin Li
- Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jianyong Liu
- Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Caifeng Liang
- Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
27
|
Shang ZH, Huang M, Wu MX, Mi D, You K, Zhang YL. Transcriptomic analyses of the acute aerial and ammonia stress response in the gill and liver of large-scale loach (Paramisgurnus dabryanus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109185. [PMID: 34500090 DOI: 10.1016/j.cbpc.2021.109185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
The large-scale loach (Paramisgurnus dabryanus) is one of the most commercially important cultured species. Ammonia nitrogen accumulation is one of the key issue which limited production and animal health in aquaculture, but few of information is available on the molecular mechanisms of ammonia detoxification. We performed transcriptomic analyses of the gill and liver of large-scale loach subjected to 48 h of aerial and ammonia exposure. We obtained 47,473,424 to 56,791,496 clean reads from the aerial exposure, ammonia exposure and control groups, assembled and clustered a total of 92,658 unigenes with an average length of 909 bp and N50 of 1787 bp. Totals of 489/145 and 424/140 differentially expressed genes (DEGs) were detected in gill/liver of large-scale loach after aerial and ammonia exposure through comparative transcriptome analyses, respectively. In addition, totals of 43 gene ontology (GO) terms and 266 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. After aerial and ammonia exposure, amino acid metabolism pathways in liver of large-scale loach were significantly enriched, suggesting that large-scale loach responded to high exogenous and endogenous ammonia stress by enhancing amino acid metabolism. Besides, the expression of several ammonia transporters (i.e., Rhesus glycoproteins and Aquaporins) in gill of large-scale loach were markedly changed after 48 h of aerial exposure, suggesting that large-scale loach responded to high endogenous ammonia stress by regulating the expression of Rh glycoproteins and Aqps related genes in gill. The results provide valuable information on the molecular mechanism of ammonia detoxification of large-scale loach to endogenous and environmental ammonia loading, will facilitate the molecular assisted breeding of ammonia resistant varieties, and will offer beneficial efforts for establishing an environmental-friendly and sustainable aquaculture industry.
Collapse
Affiliation(s)
- Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Mi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kun You
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
28
|
Meng X, Jayasundara N, Zhang J, Ren X, Gao B, Li J, Liu P. Integrated physiological, transcriptome and metabolome analyses of the hepatopancreas of the female swimming crab Portunus trituberculatus under ammonia exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113026. [PMID: 34839137 DOI: 10.1016/j.ecoenv.2021.113026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a common environmental pollutant in aquatic ecosystem and is also a significant concern in closed aquaculture systems. The threat of ammonia has been increasing with rising anthropogenic activities including intensified aquaculture. In this study, we aimed to investigate ammonia toxicity and metabolism mechanisms in the hepatopancreas, a major organ for Vitellogenin (Vtg) synthesis and defending against ammonia stress, of female swimming crab Portunus trituberculatus which is an important fishery and aquaculture species, by integrating physiological, transcriptome and metabolome analyses. The results revealed that ammonia exposure (10 mg/L, an environmentally relevant concentration) resulted in a remarkable reduction in vtg expression and depression of multiple signaling pathways for reproductive regulators including methyl farnesoate, ecdysone and neuroparsin, demonstrating for the first time that ammonia impairs swimming crab female reproduction. In addition, a number of important genes and metabolites in glycolysis, the Krebs cycle, fatty acid β-oxidation and synthesis were significantly downregulated, indicating that changes in ammonia levels lead to a general depression of energy metabolism in hepatopancreas. After ammonia exposure, an increased level of urea and a reduction of amino acid catabolism were observed in hepatopancreas, suggesting that urea cycle was utilized to biotransform ammonia, and amino acid catabolism was decreased to reduce endogenous ammonia generation. Furthermore, antioxidant systems were altered following ammonia exposure, which was accompanied by proteins and lipid oxidations, as well as cellular apoptosis. These results indicate that ammonia leads to metabolic suppression, oxidative stress and apoptosis in P. trituberculatus hepatopancreas. The findings improve the understanding for the mechanisms of ammonia toxicity and metabolism in P. trituberculatus, and provide valuable information for assessing potential ecological risk of environmental ammonia and improving aquaculture management.
Collapse
Affiliation(s)
- Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - Jingyan Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xianyun Ren
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
29
|
Liang Q, Dong W, Wang F, Wang W, Zhang J, Liu X. Ficus hirta Vahl. promotes antioxidant enzyme activity under ammonia stress by inhibiting miR-2765 expression in Penaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112989. [PMID: 34794028 DOI: 10.1016/j.ecoenv.2021.112989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Ficus hirta Vahl. has been reported to have hepatoprotective, antitumor, antibacterial functions, and is used to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ammonia nitrogen is one of the most common environmental stress factors in aquaculture. Long-term exposure to high concentrations of ammonia nitrogen can induce oxidative stress and increase the risk of infections. However, whether Ficus hirta Vahl. has effect on ammonia nitrogen stress is unclear. In present study we report that Ficus hirta Vahl. improves the activity of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of shrimp and decreases shrimp mortality caused by ammonia nitrogen stress. It is demonstrated that miR-2765 is negatively regulate the antioxidant capacity. We find that SOD was a direct target gene of miR-2765. MiR-2765 can bind to 3'-untranslated region (3'-UTR) of SOD to inhibit its transcription. Furthermore, Ficus hirta Vahl. down-regulates miR-2765 to activate the antioxidant capacity to alleviate the damage caused by ammonia nitrogen stress. Interestingly, overexpression of miR-2765 could attenuate the protective effect of Ficus hirta Vahl. on shrimp under ammonia nitrogen stress. These data indicate that Ficus hirta Vahl. alleviates the damage of ammonia nitrogen stress in shrimp by repressing miR-2765 and activating the antioxidant enzyme system. This study will provide a theoretical basis and a new perspective for assessing the toxicity mechanism of ammonia nitrogen in the process of farming on shrimp.
Collapse
Affiliation(s)
- QingJian Liang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| | - WenNa Dong
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - FeiFei Wang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - WeiNa Wang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, PR China
| | - Xing Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, PR China.
| |
Collapse
|
30
|
Wang T, Yang C, Zhang S, Rong L, Yang X, Wu Z, Sun W. Metabolic changes and stress damage induced by ammonia exposure in juvenile Eriocheir sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112608. [PMID: 34365214 DOI: 10.1016/j.ecoenv.2021.112608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The application of nitrogen fertilizers in the rice-crab co-culture system may expose juvenile Eriocheir sinensis to high ammonia concentrations within a short period of time, potentially causing death. Currently, the molecular mechanism underlying ammonia toxicity in juvenile Eriocheir sinensis remains poorly understood. This study compared the effects of 24 h exposure to different total ammonia-N concentrations (0, 10.47, and 41.87 mg/L) on antioxidant enzyme activities and tandem mass tag (TMT)-based proteomics in the hepatopancreas of juvenile Eriocheir sinensis. During the experiment, water temperature and pH were maintained at 20.4 ± 1.4 °C and 7.69 ± 0.46, respectively. Proteomic data demonstrated that Eriocheir sinensis used different metabolic regulatory mechanisms to adapt to varying ammonia conditions. The tricarboxylic acid (TCA) cycle, glycogen degradation, and oxidative phosphorylation showed marginally upregulated trends under low ammonia exposure. High ammonia stress caused downregulation of the TCA cycle and provided energy by enhancing oxidative phosphorylation, fatty acid beta oxidation, gluconeogenesis, and glycogen degradation. The detoxification of ammonia into urea and glutamine was suppressed under high ammonia stress. Finally, ammonia exposure induced oxidative stress and caused protein damage. Antioxidant enzyme activity analysis further revealed that exposure to high concentrations of ammonia may induce more severe oxidative stress. This study provides a global perspective on the mechanisms underlying ammonia exposure-induced metabolic changes and stress damage in juvenile Eriocheir sinensis.
Collapse
Affiliation(s)
- Tianyu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chen Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shuang Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Liyan Rong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaofei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wentao Sun
- Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110661, China.
| |
Collapse
|
31
|
Huang YY, Wang GD, Liu JS, Zhang LL, Huang SY, Wang YL, Yang ZW, Ge H. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene 2021; 787:145642. [PMID: 33848570 DOI: 10.1016/j.gene.2021.145642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
Penaeus vannamei is the principle cultured shrimp species in China. However, with the increase of culture density, the growth difference between individuals is also expanding. Here, we make use of RNA-seq to study the growth mechanisms of P. vannamei. After 120 days, we examined the transcriptomes of rapid-growing individuals (RG) and slow-growing individuals (SG). A total of 2116 and 176 differentially expressed genes (DEGs) were found in SG and RG, respectively. Moreover, the main DEGs are opsin, heat shock protein (HSP), actin, myosin, superoxide dismutase (SOD), cuticle protein, and chitinase. GO analysis further revealed that the DEGs were enriched in biological processes significantly, such as "sensory perception," "sensory perception of light stimulus," "response to stimulus," and "response to stress." Additionally, KEGG enrichment analysis showed that the DEGs were mainly enriched in "pentose and glucuronate interconversions," "amino sugar and nucleotide sugar metabolism," "glycophospholipid biosynthesis," and "glutathione metabolism." Interestingly, the upstream genes in the ecdysone signaling pathway, including molting inhibition hormone (MIH) and crustacean hyperglycemic hormone (CHH), did not differ significantly between RG and SG, which suggests that the cause for the inconsistent growth performance is due to the stress levels rather than the ecdysone signal pathway. In summary, this work provides data that will be useful for future studies on shrimp growth and development.
Collapse
Affiliation(s)
- Yong-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Guo-Dong Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| | - Jun-Sheng Liu
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Li-Li Zhang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Shi-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Lei Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Zhang-Wu Yang
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China.
| | - Hui Ge
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| |
Collapse
|
32
|
Comparative transcriptome analysis of the gills of Procambarus clarkii provide novel insights into the response mechanism of ammonia stress tolerance. Mol Biol Rep 2021; 48:2611-2618. [PMID: 33811573 DOI: 10.1007/s11033-021-06315-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Procambarus clarkii is an important model crustacean organism in many researches. Ammonia nitrogen is one of common contaminants in aquatic environment, influencing the health of aquatic organisms. The primary objective of this study was to investigate molecular mechanisms on ammonia stress in gills of P. clarkii to provide new insights into the strategies of aquatic animals in responding to high concentration of ammonia in the environment. Procambarus clarkii were randomly assigned into two groups (ammonia stress group, AG; control group, CG), and gill samples were dependently excised from AG and CG. Then response mechanisms on ammonia stress were investigated based on transcriptome data of P. clarkii. 9237 differentially expressed genes were identified in ammonia stress group. The genes of ion transport enzymes (NKA and SLC6A5S) were significantly up-regulated. Whereas the immune-related genes (e.g. MAP3K7, HSP70, HSP90A, CTSF, CTSL1, CHI and CTL4) and pathways were significantly up-regulated, which played an important role in reacting to ammonia stress. Procambarus clarkii may enhance immune defense to counteract ammonia toxicity by the up-regulation of immune-related genes and signaling pathways. The activities of ion transport enzymes are changed to mobilise signal transduction and ion channel regulation for adapting to ammonia environment. These previous key genes play an important role in resistance to ammonia stress to better prepare for survival in high concentration of ammonia.
Collapse
|
33
|
Hongxing G, Xiafei L, Jialing L, Zhenquan C, Luoyu G, Lei L, Yuxuan S, Zhiguo D, Min W. Effects of acute ammonia exposure on antioxidant and detoxification metabolism in clam Cyclina sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111895. [PMID: 33476851 DOI: 10.1016/j.ecoenv.2021.111895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
To investigate the defensive strategies of clam Cyclina sinensis in response to environmental ammonia exposure, we investigate the 96 h median lethal concentration (LC50-96 h) and the 96 h safe concentration (SC) of total ammonia nitrogen (TAN) for C. sinensis, and on the basis we examined glutamine synthetase (GS) activity, glutamine content, urea content and the antioxidant enzyme activities of super oxide dismutase (SOD) and catalase (CAT) in 96 h at three different levels of TAN as 0 (control), 73.94 (T1) and 227.04 mg/L (T2). Results showed that LC50-96 h and SC for C. sinensis were 65.79 and 6.58 mg/L, respectively. The LC50-96 h and SC of NH3 were 1.70 and 0.17 mg/L, respectively. Ammonia exposure had significantly effects on SOD and CAT activities in the hepatopancreas tissue. Both the level of SOD activity and CAT activity increased with increasing concentration of TAN. No significant differences between T1 and T2 were found in GS activity from 3 h to 96 h after exposed to ammonia, whereas they were significantly higher than those in the control. Both the level of glutamine content in T1 and T2 increased significantly from 6 h to 24 h after exposed to ammonia and they were significantly higher than those in the control. There were no significantly differences were found in the level of urea concentration between T1 and T2 from 6 h to 96 h, while they were significantly higher those in the control. In conclusion, enhancing hepatopancreas antioxidant responses as well as converting ammonia into glutamine and urea worked in combination to allow C. sinensi to defend against acute ammonia exposure.
Collapse
Affiliation(s)
- Ge Hongxing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China; Jiangsu Key Laboratory of Marine Biotechnolog, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Liang Xiafei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Liu Jialing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Cui Zhenquan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Guo Luoyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Li Lei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Sun Yuxuan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Dong Zhiguo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China.
| | - Wei Min
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| |
Collapse
|
34
|
Dong X, Liu Q, Zhao W, Ou J, Jiang F, Guo H, Lv L. Effects of ammonia-N stress on the antioxidant enzymes, heat shock proteins, and apoptosis-related genes of Macrobrachium rosenbergii. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1886612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xuexing Dong
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Qigen Liu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Weihong Zhao
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Jiangtao Ou
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - FengJuan Jiang
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Haisong Guo
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Linlan Lv
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| |
Collapse
|
35
|
Transcriptome reveals the important role of metabolic imbalances, immune disorders and apoptosis in the treatment of Procambarus clarkii at super high temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100781. [PMID: 33316578 DOI: 10.1016/j.cbd.2020.100781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
Temperature is an important environmental factor in the living environment of crustaceans. Changes in temperature can affect their normal growth and metabolism and even cause bacterial disease. Currently, the potential anti-reverse molecular reaction mechanism of crustaceans during high-temperature conditions has not yet been fully understood. Therefore, in this study, we characterised the transcriptome of Procambarus clarkii using RNA sequencing and performed a comparison between super-high-temperature treated samples and controls. After assembly and annotation, 81,097 unigenes with an average length of 069 bp and 358 differentially expressed genes (DEGs) were identified. Among these DEGs, 264 were differentially upregulated and 94 were differentially downregulated. To obtain comprehensive gene function information, we queried seven databases, namely, Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO to annotate gene functions. Transcriptome analysis revealed that the identified DEGs have significant effects on immune-related pathways, including lysosomal and phagosomal pathways, and that super-high-temperature conditions can cause disease in P. clarkii. Some significantly downregulated genes are involved in oxidative phosphorylation and the PPAR signalling pathway; this suggests a metabolic imbalance in P. clarkia during extreme temperature conditions. In addition, elevated temperature changed the expression patterns of key apoptosis genes XIAP, CASP2, CASP2, CASP8, and CYTC, thereby confirming that high-temperature conditions caused immune disorders, metabolic imbalance, and, finally, triggered apoptosis. Our results provide a useful foundation for understanding the molecular mechanisms underlying the responses of P. clarkii during high-temperature conditions.
Collapse
|
36
|
Chen Q, Zhang Y, Zhao Q. Expression analysis of immune-associated genes in hemocytes of mud crab Scylla paramamosain under low salinity challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 107:16-25. [PMID: 32947031 DOI: 10.1016/j.fsi.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
To gain knowledge on the immune response in Scylla paramamosain under low salinity challenge, S. paramamosain we investigated digital gene expression (DEG) in S. paramamosain hemocytes using the deep-sequencing platform Illumina Hiseq XTen. A total of 97,257 high quality unigenes with mean length 786.59 bp were found to be regulated by low salinity challenge, among which 93 unigenes were significantly up regulated, and 71 were significantly down regulated. Functional categorization and pathways analysis of differentially expressed genes revealed that immune signaling pathway including cAMP and cGMP signaling pathway were affected in low salinity stress. Cellular immunity-related genes including low-density lipoprotein receptor-related protein 6 (LRP6) and xanthine dehydrogenase (XDH) were down-regulated, indicating phagocytosis and oxygen dependent mechanism of phagocyte were suppressed in low salinity stress; Humoral immunity-related genes serine proteases and serpins 3 were up- and down-regulated, respectively, suggest that the proPO system was influenced by low salinity significantly; Moreover, processes related to immune response including carbohydrate metabolism, protein synthesis and lipid transport were found differentially regulated, implying the integrity of the immune response in low salinity stress. This study gained comprehensive insights on the immune mechanism of S. paramamosain at low salinity stress at the molecular level. The findings provide a theoretical basis for understanding immune mechanisms of S. paramamosain under low salinity stress, and technical reference for evaluating physiological adaptation in fresh water environment.
Collapse
Affiliation(s)
- Qinsheng Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
37
|
Xu R, Zheng X. Hemocytes transcriptomes reveal metabolism changes and detoxification mechanisms in response to ammonia stress in Octopus minor. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1441-1452. [PMID: 32945976 DOI: 10.1007/s10646-020-02279-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Ammonia is one of the major aquatic environmental pollutants that can bring detrimental effects to the growth and survival of aquatic organisms. However, the molecular mechanisms of ammonia toxicity and ammonia excretion in marine invertebrates especially mollusks are still poorly understood. Cephalopods are exclusively ammonotelic with high protein metabolism and ammonia excretion rate, making this taxonomic group an ideal specimen to explore the ammonia detoxification mechanism. In this study, comparative transcriptomes were employed to investigate the transcriptional changes of O. minor in responses to acute ammonia exposure. A total of 63,237 unigenes with an average length of 811 bp were discovered and 25,708 unigenes were successfully annotated. The transcription of 1845 genes were significantly changed after ammonia stress, including 315 up-regulated genes and 1530 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on differentially expressed genes (DEGs) revealed that 44 GO terms and 55 KEGG pathways were over-represented. Notably, a large number of genes involved in immune defense, citric acid (TCA) cycle, oxidative phosphorylation and amino acid metabolisms were significantly down-regulated, indicating the decelerated energy production and amino acid rate in response to acute ammonia stress. These results provide new insights into the potential molecular mechanism of ammonia detoxification on transcriptomic level and will facilitate further mechanism studies on mollusks.
Collapse
Affiliation(s)
- Ran Xu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Yushan Road 5, 266003, Qingdao, China
- Key Laboratory of Mariculture, Ocean University of China, Yushan Road 5, 266003, Qingdao, China
| | - Xiaodong Zheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Yushan Road 5, 266003, Qingdao, China.
- Key Laboratory of Mariculture, Ocean University of China, Yushan Road 5, 266003, Qingdao, China.
| |
Collapse
|
38
|
Zhang T, Yan Z, Zheng X, Wang S, Fan J, Liu Z. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). FISH & SHELLFISH IMMUNOLOGY 2020; 99:514-525. [PMID: 32092406 DOI: 10.1016/j.fsi.2020.02.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Ammonia is one of the major pollutants associated with the main river basins due to ammonification of uneaten food and animal excretion, which usually brings detrimental health effects to aquatic invertebrate. However, the mechanisms of ammonia toxicity in aquatic invertebrate have rarely been reported. In this study, C. fluminea was exposed to different levels of ammonia (control group, 10 mg/L, and 25 mg/L) for 24 h and 48 h, and digestive gland and gill were collected to explore toxic effects on oxidative stress, DNA damage and apoptosis under ammonia stress. The results showed that ammonia poisoning could increase the activity of oxidative stress enzyme (SOD and CAT), inducing differentially expressed genes (DRAM2, GADD45, P53, BAX, BCL2, CASP8, CASP9, CASP3, HSP70 and HSP90) and different cytokines (IL-1 beta, IL-8, IL-17 and TNF-alpha) of DNA damage and apoptosis. The difference of toxic effects induced by ammonia among digestive gland and gill were also observed by real-time PCR and TUNEL staining. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in C. fluminea.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
39
|
Gao J, Zhu Y, Guo Z, Xu G, Xu P. Transcriptomic analysis reveals different responses to ammonia stress and subsequent recovery between Coilia nasus larvae and juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108710. [PMID: 31958509 DOI: 10.1016/j.cbpc.2020.108710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Excessive ammonia triggered negative effects on aquatic animals' health, growth, and mass death, especially at different developmental periods. However, the underlying responses to ammonia stress in fish larvae and juveniles were much less explored. Transcriptomic analysis of Coilia nasus larvae and juveniles treated with ammonia stress and subsequent recovery in freshwater were performed. Total 958,213,132 clean reads were obtained. A total of 234,830 unigenes with an average length of 1397 bp and N50 value 2521 bp were assembled. 831 and 952 DEGs were identified in C. nasus larvae and juveniles, respectively. Transcriptomic analysis revealed that genes associated with purine metabolism, immune, inflammation, epigenetic modification, and nerve conduction presented different expression trends between C. nasus larvae and juveniles. Other genes related to purine metabolism (XDH) and epigenetic modifications (DNMT1, DNMT3A, and DNMT3B) detected by RT-qPCR also displayed different expression trends. These results indicated that ammonia detoxify strategies and gene regulation patterns were different in C. nasus larvae and juveniles. Higher TNF-α, ILF-2, and ILF-3 expression and reduced LZM, AKP, and ACP activities suggested that inflammation and declined immunity were triggered by ammonia stress. Additionally, nervous conduction was severely affected under ammonia stress in C. nasus juveniles. Furthermore, recovery in freshwater had positive effects on nervous conduction. However, it was worth noting that reduced immunity and inflammation were still existed after recovery in freshwater. In conclusion, our study would be beneficial to reveal the different responses to ammonia stress between larvae and juveniles.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Yongxiang Zhu
- Nantong Longyang Aquatic Products Co., Ltd, Nantong 226600, China
| | - Zhenglong Guo
- Nantong Longyang Aquatic Products Co., Ltd, Nantong 226600, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China..
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China..
| |
Collapse
|
40
|
Shi M, Jiang S, Li Y, Yang Q, Jiang S, Yang L, Huang J, Zhou F. Comprehensive expression analysis of the beta integrin from Penaeus monodon indicating its participation in innate immunity and ammonia nitrogen stress response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:887-898. [PMID: 31770641 DOI: 10.1016/j.fsi.2019.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate the function of the beta integrin (PmItgb) in Penaeus monodon. The 3011 bp cDNA sequence of PmItgb was cloned from P. monodon using rapid amplification of cDNA ends (RACE) PCR. Phylogenetic tree analyses indicated that the amino acid sequence of PmItgb should be merged into Fenneropenaeus chinensis (93%). Quantitative real-time PCR (q RT-PCR) revealed that PmItgb mRNA was highly expressed in the hemocytes. In addition, with regard to developmental stages, PmItgb showed significantly higher expression in oosperm, nauplius IV, zoea I and III, and post larval stages than that in other development stages. PmItgb expression in the shrimp epidermis was higher in the postmolt (B) stage, and lower in other molting stages. We also found that Vibrio harveyi and V. anguillarum challenge enhanced PmItgb expression in the hepatopancreas and gills. When PmItgb was inhibited, innate immunity-related genes such as ALF, crustin 1, crustin 7, penaeidin 3, and penaeidin 5 were significantly down-regulated. Furthermore, we demonstrated that PmItgb knock-down by specific dsRNA reduced bacterial clearance. In high ammonia nitrogen concentrations, PmItgb was significantly up-regulated in the hepatopancreas and gills. After PmItgb was silenced, the rate of mortality owing to high ammonia nitrogen concentrations decreased; the expression of related anti-apoptotic genes was up-regulated, and that of the apoptotic genes was slightly down-regulated. These results suggested that PmItgb may be involved in shrimp innate immunity and mediate apoptosis of hepatopancreatic cells induced by high ammonia nitrogen environments.
Collapse
Affiliation(s)
- Mengke Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Yundong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|
41
|
Xu Y, Li Z, Zhang S, Zhang H, Teng X. miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicol Appl Pharmacol 2019; 388:114869. [PMID: 31863799 DOI: 10.1016/j.taap.2019.114869] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Ammonia (NH3), a toxic gas, is an important cause of atmospheric haze and one of the main pollutants in air environment of poultry houses, threatening the health of human beings and poultry. However, little is known about the effect of NH3 on liver apoptotic damage. This study aimed to investigate the mechanism of oxidative stress-mediated apoptosis caused by NH3 in chicken livers and whether miR-187-5p/apaf-1 axis was involved in this mechanism. Here we duplicated NH3 poisoning model of chickens for fattening to study the ultrastructure of chicken livers, apoptosis rate, oxidative stress indexes, miR-187-5p, and apoptosis-related genes. Obvious apoptotic characteristics of liver tissues exposed to excess NH3 were observed, and the apoptosis rate increased. Excess NH3 decreased the activities of catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde (MDA), suggesting that oxidative stress occurred. miR-187-5p decreased, and apoptotic protease activating factor-1 (apaf-1) increased, indicating that excess NH3 dysregulated miR-187-5p/apaf-1 axis. The expression of tumor protein p53 (p53), Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), Cytochrome-c (Cyt-c), Caspase-9, Caspase-8, and Caspase-3 was promoted, and the expression of B-cell lymphoma-2 (Bcl-2) was inhibited, resulting in apoptosis. Moreover, oxidative stress indexes, miR-187-5p, and apoptosis-related genes changed in dose- and time-dependent manner. Altogether, miR-187-5p/apaf-1 axis participated in oxidative stress-mediated apoptosis caused by NH3 via mitochondrial pathway in the livers of chickens for fattening. This study may provide new ideas to study the mechanism of liver apoptotic damage induced by NH3 exposure.
Collapse
Affiliation(s)
- Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
42
|
Jiao T, Yang TT, Wang D, Gao ZQ, Wang JL, Tang BP, Liu QN, Zhang DZ, Dai LS. Characterization and expression analysis of immune-related genes in the red swamp crayfish, Procambarus clarkii in response to lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 95:140-150. [PMID: 31629063 DOI: 10.1016/j.fsi.2019.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
To learn more about red swamp crayfish related genes in response to bacterial infections, we investigated immune-related genes induced by lipopolysaccharide (LPS) in the hepatopancreas using high-throughput sequencing method. In present the study, a total of 55,107 unigenes were identified, with an average length of 678 bp. A total of 2215 differentially expressed genes (DEGs) were found, including 669 up-regulated genes and 1546 down-regulated genes. The result of Gene ontology (GO) analysis revealed that 3017 DEGs were enriched in 19 biological process subcategories, 17 cellular component subcategories and 15 molecular function subcategories. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that "ribosome" was the most abundant group, which had 34 DEGs. KEGG enrichment analysis identified several immune response pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results exhibited that several immune responsive genes were greatly up-regulated following LPS stimulation as observed in the results of high-throughput sequencing. Overall, this study provides new insight into the immune defense mechanisms of P. clarkii against LPS infection.
Collapse
Affiliation(s)
- Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Dong Wang
- Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zhen-Qiu Gao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
43
|
Maha IF, Xie X, Zhou S, Yu Y, Liu X, Zahid A, Lei Y, Ma R, Yin F, Qian D. Skin metabolome reveals immune responses in yellow drum Nibea albiflora to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:661-674. [PMID: 31521785 DOI: 10.1016/j.fsi.2019.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The yellow drum Nibea albiflora is less susceptible to Cryptocaryon irritans infection than is the case with other marine fishes such as Larimichthys crocea, Lateolabrax japonicus, and Pagrus major. To investigate further their resistance mechanism, we infected the N. albiflora with the C. irritans at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24 h and 72 h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24 h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72 h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24 h with 22 categories and 58 subcategories (49 up, 9 down) than at 72 h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24 h the metabolites composition of infected group were separately clustered to uninfected group while at 72 h the metabolites composition in infected group were much closer to uninfected group. This indicated that C. irritans caused strong metabolic stress on the N. albiflora at 24 h and restoration of the dysregulated metabolic state took place at 72 h of infection. Also, at 72 h post infection a total of 17 compounds were identified as potential biomarkers. Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24 h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(-)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72 h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72 h, might be related to immure responses including stimulation of immune system such as production of antibodies. Our results therefore further advance our understanding on the immunological regulation of N. albiflora during immune response against infections as they indicated a strong relationship between skin metabolome and C. irritans infection.
Collapse
Affiliation(s)
- Ivon F Maha
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Suming Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Aysha Zahid
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Yuhua Lei
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Rongrong Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| |
Collapse
|
44
|
Xing H, Chen J, Peng M, Wang Z, Liu F, Li S, Teng X. Identification of signal pathways for immunotoxicity in the spleen of common carp exposed to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109464. [PMID: 31398777 DOI: 10.1016/j.ecoenv.2019.109464] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant due to its high toxicity to aquatic animals. Because CPF was detected in aquatic environments in many countries, it has been widely concerned by researchers. Although the immunotoxicity of CPF to fish had been reported, the immunotoxicity mechanism is still not clear. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. However, the immunotoxicity identification of CPF on fish had not been reported by transcriptome analysis. In the present study, we examined the effects of CPF on organismal system in the spleen of common carp by transcriptome analysis. We have successfully constructed a database of transcriptome analysis of carp spleens under exposure to CPF and found 773 differentially expressed genes (DEGs) (including 498 up-regulated DEGs and 275 down-regulated DEGs) and 4 branches (containing 33 known KEGG pathways). Some genes associated with the 4 pathways (Complement and coagulation cascades, PPAR signaling pathway, Fat digestion and absorption, and Collecting duct acid secretion) contained in organismal system were validated by quantitative real-time PCR and showed significant improvement compared with the control group. Our results indicated that exposure to CPF caused a change in the signal pathways of organismal system in carp spleens. The present study provides new insights into the immunotoxicity mechanism and risk assessment of CPF, as well as references for comparative medicine.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muqiao Peng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhilei Wang
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Feng Liu
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
45
|
Negro CL, Iturburu FG, Mendieta J, Menone ML, Collins P. Are Oxidative Stress Biomarkers Sensitive to Environmental Concentrations of Chlorpyrifos Exposed to the Freshwater Crab, Zilchiopsis collastinensis (Decapoda; Trichodactylidae)? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:405-410. [PMID: 31203409 DOI: 10.1007/s00128-019-02643-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/31/2019] [Indexed: 05/04/2023]
Abstract
Global trends in pesticide use can increase aquatic pollution and affect resident fisheries. Crabs exposed to organophosphate pesticides, such as chlorpyrifos, may increase production of reactive oxygen species (ROS), affecting the pro-oxidant/antioxidant balance. Zichiopsis collastinensis crabs were exposed to environmentally relevant concentrations of chlorpyrifos (0.1 and 0.5 µg L-1). Effects on the oxidative stress enzymes catalase, superoxide dismutase, glutathione S-transferases, glutathione reductase, and on thiobarbituric acid reactive substances and hydrogen peroxide concentrations were evaluated at four intervals during 96 h exposures. Exposures caused decreased GST activity and increased H2O2 levels in gills. There were modifications of GST, CAT and SOD activities in the hepatopancreas after 12 h of exposure, and an increase of H2O2 levels at every exposure interval observed. The present study proved that chlorpyrifos lead to oxidative stress in Z. collastinensis. However other enzymatic/non-enzymatic responses should be further investigated in order to be included as part of a battery of biomarkers, together with H2O2 levels, which is a parameter highly recommended to be taken into account.
Collapse
Affiliation(s)
- C L Negro
- INALI (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina.
- ESS (FBCB-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina.
| | - F G Iturburu
- IIMyC (UNMdP-CONICET), Funes 3350, 7600, Mar del Plata, Argentina
| | - J Mendieta
- IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - M L Menone
- IIMyC (UNMdP-CONICET), Funes 3350, 7600, Mar del Plata, Argentina
| | - P Collins
- INALI (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina
- ESS (FBCB-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
46
|
Qin Y, Jiang S, Huang J, Zhou F, Yang Q, Jiang S, Yang L. C-type lectin response to bacterial infection and ammonia nitrogen stress in tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2019; 90:188-198. [PMID: 31028898 DOI: 10.1016/j.fsi.2019.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
C-type lectins (CTLs) are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many shrimp, C-type lectins subfamily contain a large number of members with different functions that need to research in deep. In this present study, a new type of CTL, PmCL1 with 861 bp long full-length cDNA, that encodes a protein with 164-amino acid from a 495-bp open reading frame, was isolated and characterized from tiger shrimp (Penaeus monodon). The mRNA transcript of PmCL1 showed the highest expression in the hepatopancreas, whereas it was barely detected in the ovary. After the shrimp were stimulated by Vibrio harveyi and Vibrio anguillarum, PmCL1 expression in the hepatopancreas and gill was significantly upregulated. A carbohydrate-binding assay revealed the specificity of PmCL1 for pathogen-associated molecular patterns (PAMPs) that included peptidoglycan (PGN) and lipopolysaccharide (LPS), and saccharides that included d-glucose, galactosamine, α-lactose, treholose, and d-mannose. Recombinant PmCL1 agglutinated gram-positive (Staphylococcus aureus) and gram-negative bacteria (V. harveyi, V. anguillarum, Vibrio alginolyticus, Vibrio parahemolyticus, Vibrio vulnificus, and Aeromonas hydrophila) in the presence of calcium ions and enhanced the efficiency of clearing the invading bacteria. Collectively, our results suggested that PmCL1 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, as well as the response towards ammonia nitrogen stress.
Collapse
Affiliation(s)
- Yukai Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|