1
|
Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int J Mol Sci 2023; 24:ijms24054716. [PMID: 36902147 PMCID: PMC10003359 DOI: 10.3390/ijms24054716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
This study attempted to evaluate the possible impact and mechanism of leucine (Leu) on fish intestinal barrier function. One hundred and five hybrid Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂ catfish were fed with six diets in graded levels of Leu 10.0 (control group), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g/kg diet for 56 days. Results showed that the intestinal activities of LZM, ACP, and AKP and contents of C3, C4, and IgM had positive linear and/or quadratic responses to dietary Leu levels. The mRNA expressions of itnl1, itnl2, c-LZM, g-LZM, and β-defensin increased linearly and/or quadratically (p < 0.05). The ROS, PC, and MDA contents had a negative linear and/or quadratic response, but GSH content and ASA, AHR, T-SOD, and GR activities had positive quadratic responses to dietary Leu levels (p < 0.05). No significant differences on the CAT and GPX activities were detected among treatments (p > 0.05). Increasing dietary Leu level linearly and/or quadratically increased the mRNA expressions of CuZnSOD, CAT, and GPX1α. The GST mRNA expression decreased linearly while the GCLC and Nrf2 mRNA expressions were not significantly affected by different dietary Leu levels. The Nrf2 protein level quadratically increased, whereas the Keap1 mRNA expression and protein level decreased quadratically (p < 0.05). The translational levels of ZO-1 and occludin increased linearly. No significant differences were indicated in Claudin-2 mRNA expression and protein level. The transcriptional levels of Beclin1, ULK1b, ATG5, ATG7, ATG9a, ATG4b, LC3b, and P62 and translational levels of ULK1, LC3Ⅱ/Ⅰ, and P62 linearly and quadratically decreased. The Beclin1 protein level was quadratically decreased with increasing dietary Leu levels. These results suggested that dietary Leu could improve fish intestinal barrier function by increasing humoral immunity, antioxidative capacities, and tight junction protein levels.
Collapse
|
2
|
Midhun Sebastian Jose, Arun D, Neethu S, Radhakrishnan EK, Jyothis M. Probiotic Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B combination improved growth performance, enzymatic profile, gene expression and disease resistance in Oreochromisniloticus. Microb Pathog 2023; 174:105951. [PMID: 36528324 DOI: 10.1016/j.micpath.2022.105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Bacterial consortium containing two bacterial strains such as Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B incorporated in the diet of Oreochromis niloticus at a concentration of 1 × 106 CFU g-1 (PB1) and 1 × 108 CFU g-1 (PB2) revealed the probiotic potentials of the bacterial combination. The probiotic feed enhanced the growth performance, digestive enzymes, and antioxidant enzymes in the liver and intestine. Probiotic mediated growth enhancement was further substantiated by the up-regulation of genes such as GHR-1, GHR-2, IGF-1, and IGF-2 and the up-regulation of immune-related genes viz. TLR-2, IL-10, and TNF-α were also significantly modulated by probiotics supplementation. The intestinal MUC 2 gene expression revealed the mucosal remodification and the disease resistance of the fish challenged with Aeromonas hydrophila (MTCC-1739) was improved by the probiotic supplementation. Based on these results the new probiotic supplementation feed can be possibly marketed to help aquaculture farmers to alleviate many of the problems associated with fish farming.
Collapse
Affiliation(s)
- Midhun Sebastian Jose
- Department of Veterinary Pathology, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK, Canada.
| | - Damodaran Arun
- Department of Biology, University of Regina, 3737,Wascana Parkway, Regina, Saskatchewan, Canada
| | - Sahadevan Neethu
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | | | - Mathew Jyothis
- School of Biosciences, Mahatma Gandhi University, Kottayam, India.
| |
Collapse
|
3
|
Harikrishnan R, Devi G, Van Doan H, Arockiaraj J, Jawahar S, Balasundaram C, Balamurugan P, Soltani M, Jaturasitha S. Influence of bamboo vinegar powder (BVP) enriched diet on antioxidant status, immunity level, and pro-anti-inflammatory cytokines modulation in Asian sea bass, Lates calcarifer (Bloch 1790) against Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2021; 119:462-477. [PMID: 34688863 DOI: 10.1016/j.fsi.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Effect of bamboo vinegar powder (BVP) on growth, immunity, disease resistance, and immune-related gene expressions in juvenile Asian sea bass (barramundi), Lates calcarifer against Vibrio anguillarum was investigated. V. anguillarum infected fish fed by 2g BVP kg-1 diet exhibited significant growth, albumin (AB), serum total protein (TP), and globulin (GB) levels. Similarly, enhanced lysozyme (LZM), phagocytic (PC), anti-protease (AP), respiratory burst (RB), bactericidal (BC) activities and total immunoglobulin (Ig) levels were observed in fish fed 2g BVP kg-1. In addition, use of 2g BVP kg-1 in diet modulated several immune related gene expressions against Vibrio disease. This study exhibited a positive effect of dietary 2g BVP kg-1 diet on hemato-biochemical and immunological responses, which enhance the immunocompetence and health status of L. calcarifer against V. anguillarum infection.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Affiliated to University of Madras, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Sharma J, Singh A, Begum A, Krishna VH, Chakrabarti R. The impact of Achyranthes aspera seeds and leaves supplemented feeds on the survival, growth, immune system and specific genes involved in immunostimulation in Clarias batrachus fry challenged with Aeromonas hydrophila in pond conditions. FISH & SHELLFISH IMMUNOLOGY 2021; 118:11-18. [PMID: 34454021 DOI: 10.1016/j.fsi.2021.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The present study was conducted to evaluate the effect of dietary inclusion of Achyranthes aspera seeds and leaves on the immune system of magur Clarias batrachus challenged with Aeromonas hydrophila in pond conditions. Magur fry (0.51 ± 0.032 g) were cultured in hapas set inside a pond and were fed with three feeds. Two experimental feeds FS1 and FS2 were supplemented with 0.5% seeds and leaves of A. aspera, respectively and FC3 was the control one. After 90 days of feeding, fish were challenged with A. hydrophila. In FC3, 70% fish died within 48 h of challenge, while 25 and 30% mortality were recorded in FS1 and FL2, respectively. The cumulative mortality rates were 70, 45 and 35% in FC3, FL2 and FS1, respectively. The average weight and specific growth rate of magur were significantly higher in FS1 compared to others. Serum lysozyme, myeloperoxidase, nitric oxide synthase and superoxide dismutase levels were significantly higher in FS1 compared to others. Thiobarbituric acid reactive substances and carbonyl protein levels were significantly lower in FS1 compared to others. In liver and head kidney of FS1 and FS2 fed magur, the iNOS, SOD-C, TNF-α, Cytochrome c, Caspase 9 were up-regulated. Caspase 3 was also significantly up-regulated in FS1 and it was followed by FL2 treatment. A. aspera incorporated feeds improved the immune system of fish and gave protection against bacteria even in the pond conditions.
Collapse
Affiliation(s)
- JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi, 110 042, India
| | - Amarjeet Singh
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Ajima Begum
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Vungarala Hari Krishna
- Central Institute of Fisheries Education, Rohtak Centre, Lahli, Rohtak, Haryana, 124 411, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
5
|
Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Esteban MÁ, Abdel-Tawwab M. Impact of grape pomace flour (GPF) on immunity and immune-antioxidant-anti-inflammatory genes expression in Labeo rohita against Flavobacterium columnaris. FISH & SHELLFISH IMMUNOLOGY 2021; 111:69-82. [PMID: 33508472 DOI: 10.1016/j.fsi.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the effects of dietary inclusion of grape pomace flour (GPF) on growth, antioxidant, anti-inflammatory, innate-adaptive immunity, and immune genes expression in Labeo rohita against Flavobacterium columnaris. In both normal and challenged fish the growth rate, hematology and biochemical parameters significantly increased when fed with 200 and 300 mg GPF enriched diets; similarly the activities of antioxidants and innate-adaptive immune parameters, such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), phagocytic (PC), respiratory burst (RB), alternative pathway complement (ACP), lysozyme (Lyz), and total immunoglobulin M (IgM) significantly increased in both groups. Similarly, the immune, antioxidant, and anti-inflammatory-related gene mRNA expression was significantly up-regulated in head kidney (HK) tissues. The challenged fish fed without GPF always exhibited lower values of all the studied parameters. The results indicate that both normal and challenged fish treated with 200 mg GPF inclusion diet had significantly enhanced growth rate, antioxidant status, and immune defense mechanisms than with 300 mg GPF diet in L. rohita against F. columnaris.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
6
|
Bandeira Junior G, Baldisserotto B. Fish infections associated with the genus Aeromonas: a review of the effects on oxidative status. J Appl Microbiol 2021; 131:1083-1101. [PMID: 33382188 DOI: 10.1111/jam.14986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review was to summarize the current knowledge regarding the effects of aeromonosis on fish oxidative status. The bibliographic survey was carried out on the research platforms: Scopus and Science Direct. The keywords 'Aeromonas', 'fish' and 'oxidative status' (or 'oxidative stress', 'oxidative damage' and similar terms) were used. Scientific papers and short communications were considered. Studies involving fish aeromonosis and enzymatic or non-enzymatic markers of oxidative status were selected. The results of antioxidant enzymes activities/expressions after infection lack consistency, suggesting that these findings should be interpreted with caution. Most of the analysed studies pointed to an increase in reactive oxygen species, malondialdehyde and protein carbonylation levels, indicating possible oxidative damage caused by the infection. Thus, these three biomarkers are excellent indicators of oxidative stress during infection. Regarding respiratory burst activity, several studies have indicated increased activity, but other studies have indicated unchanged activity after infection. Nitric oxide levels also increased after infection in most studies. Therefore, it is suggested that the fish's immune system tries to fight a bacterial infection by releasing reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- G Bandeira Junior
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
7
|
Harikrishnan R, Thamizharasan S, Devi G, Van Doan H, Ajith Kumar TT, Hoseinifar SH, Balasundaram C. Dried lemon peel enriched diet improves antioxidant activity, immune response and modulates immuno-antioxidant genes in Labeo rohita against Aeromonas sorbia. FISH & SHELLFISH IMMUNOLOGY 2020; 106:675-684. [PMID: 32858188 DOI: 10.1016/j.fsi.2020.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The effect of diet enriched with dried lemon (Citrus limon) peel was fed to Labeo rohita at three different levels (0, 1, 2.5, and 5 g kg-1) for a period of 60 days; the impact of the diet on the hematology, antioxidant activity and immunological reaction and gene expression against Aeromonas sorbia is reported. In both un-challenged and challenged groups treated with 2.5 g and 5 g kg-1 dried lemon peel diets, the enhanced significant changes are: the weight gain and specific growth rate, white blood cell and total protein content, the antioxidants: superoxide dismutase, catalase, glutathione peroxidase, and glutathione activities, the respiratory burst, alternative complement pathway, complement C3, and total immunoglobulin M levels. Similarly, the heat shock protein-70 and -90, superoxide dismutase, glutathione peroxidase, glutathione, interleukin-1β and -8, tumor necrosis factor alpha, inducible nitric oxide synthase, transforming growth factor beta, and immunoglobulin M were up-regulated significantly. Any dried lemon peel enriched diet increased the phagocytic and lysozyme activities significantly in both groups. In the un-challenged group treated with 0 g kg-1 diet or in both groups treated with 2.5 g kg-1 diet the SR was 100%. These results indicate that in both un-challenged and challenged-treated groups the 2.5 and 5 g kg-1 dried lemon peel enriched diets positively modulate growth rate, physiology, and antioxidant status, innate-adaptive immune response as well as antioxidant and immune related gene expression in L. rohita against A. sorbia.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Subramanian Thamizharasan
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| |
Collapse
|