1
|
Cervera L, Chaves-Pozo E, Cuesta A. Synthetic Antimicrobial Peptides Fail to Induce Leucocyte Innate Immune Functions but Elicit Opposing Transcriptomic Profiles in European Sea Bass and Gilthead Seabream. Mar Drugs 2024; 22:86. [PMID: 38393057 PMCID: PMC10889969 DOI: 10.3390/md22020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, the objective of this work was to evaluate the immunomodulatory capability of three known synthetic AMPs derived from European sea bass, NK-lysin (Nkl), hepcidin (Hamp), and dicentracin (Dic), in head-kidney cell suspensions from European sea bass and gilthead seabream. The tested peptides were neither cytotoxic for European sea bass nor gilthead seabream cells and failed to modulate the respiratory burst and phagocytosis activities. However, they modified the pattern of transcription of immune-related genes differently in both species. Peptides were able to promote the expression of marker genes for anti-inflammatory (il10), antiviral (mx, irf3), cell-mediated cytotoxicity (nccrp1, gzmb), and antibody responses (ighm) in European sea bass, with the Nkl peptide being the most effective. Contrary to this, the effects of those peptides on gilthead seabream mainly resulted in the suppression of immune responses. To conclude, European sea bass-derived peptides can be postulated as potential tools for immunostimulation in European sea bass fish farms, but more efforts are required for their universal use in other species.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
| |
Collapse
|
2
|
Liao G, Wang S, Wang Z, Zhang C, Li Z, Yang H, Zhou A, Xie S, Fan L, Wang M, Zou J, Zeng F. Characterization, Expression, and Functional Analysis of the Northern Snakehead (Channa argus) Hepcidin. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10195-y. [PMID: 38048025 DOI: 10.1007/s12602-023-10195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hepcidin, an antimicrobial peptide (AMP), is a well-conserved molecule present in various species such as fish, amphibians, birds, reptiles, and mammals. It exhibits broad-spectrum antimicrobial activity and holds a significant role in the innate immune system of host organisms. The northern snakehead (Channa argus) has become a valuable freshwater fish in China and Asia. In this investigation, the cDNA encoding the hepcidin gene of northern snakehead was cloned and named caHep. The amino acid sequences and protein structure of caHep are similar to those of hepcidins from other fish. The eukaryotic expression product of the caHep gene showed broad-spectrum antibacterial activity. Scanning electron microscope analysis indicated that the caHep peptide inhibited bacterial growth by damaging their cell membranes. Lipopolysaccharide (LPS) injection induced significant expression of caHep, implying the involvement of caHep in the innate immune response of northern snakeheads. This investigation showed that the caHep peptide is potentially a robust antibacterial drug against bacterial diseases in aquaculture animals.
Collapse
Affiliation(s)
- Guowei Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shulan Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zimo Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zicong Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huirong Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, China
| | - Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Meifang Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Fang Zeng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, China.
| |
Collapse
|
3
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Ahmad I, Pal S, Singh R, Ahmad K, Dey N, Srivastava A, Ahmad R, Suliman M, Alshahrani MY, Barkat MA, Siddiqui S. Antimicrobial peptide moricin induces ROS mediated caspase-dependent apoptosis in human triple-negative breast cancer via suppression of notch pathway. Cancer Cell Int 2023; 23:121. [PMID: 37344820 DOI: 10.1186/s12935-023-02958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Breast cancer is the world's most prevalent cancer among women. Microorganisms have been the richest source of antibiotics as well as anticancer drugs. Moricin peptides have shown antibacterial properties; however, the anticancer potential and mechanistic insights into moricin peptide-induced cancer cell death have not yet been explored. METHODS An investigation through in silico analysis, analytical methods (Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), mass spectroscopy (MS), circular dichroism (CD), and in vitro studies, has been carried out to delineate the mechanism(s) of moricin-induced cancer cell death. An in-silico analysis was performed to predict the anticancer potential of moricin in cancer cells using Anti CP and ACP servers based on a support vector machine (SVM). Molecular docking was performed to predict the binding interaction between moricin and peptide-related cancer signaling pathway(s) through the HawkDOCK web server. Further, in vitro anticancer activity of moricin was performed against MDA-MB-231 cells. RESULTS In silico observation revealed that moricin is a potential anticancer peptide, and protein-protein docking showed a strong binding interaction between moricin and signaling proteins. CD showed a predominant helical structure of moricin, and the MS result determined the observed molecular weight of moricin is 4544 Da. An in vitro study showed that moricin exposure to MDA-MB-231 cells caused dose dependent inhibition of cell viability with a high generation of reactive oxygen species (ROS). Molecular study revealed that moricin exposure caused downregulation in the expression of Notch-1, NF-ƙB and Bcl2 proteins while upregulating p53, Bax, caspase 3, and caspase 9, which results in caspase-dependent cell death in MDA-MB-231 cells. CONCLUSIONS In conclusion, this study reveals the anticancer potential and underlying mechanism of moricin peptide-induced cell death in triple negative cancer cells, which could be used in the development of an anticancer drug.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India.
| | - Saurabh Pal
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India.
| | - Khursheed Ahmad
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Nilanjan Dey
- Department of Chemistry, BITS- Pilani Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
| |
Collapse
|
5
|
Qiao D, Yan Y, Pei C, Zhang J, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Characterization of hepcidin gene and protection of recombinant hepcidin supplemented in feed against Aeromonas hydrophila infection in Yellow River carp (Cyprinus carpio haematopterus). FISH & SHELLFISH IMMUNOLOGY 2023:108872. [PMID: 37271324 DOI: 10.1016/j.fsi.2023.108872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Hepcidin is a small peptide of defensins with antibacterial activity, and plays an important role in innate immunity against pathogenic microorganisms, which can also participate in the regulation of iron metabolism. The hepcidin gene in Yellow River carp (Cyprinus carpio haematopterus) (CcHep) was cloned and identified. The total length of CcHep cDNA was 480 bp, containing an open reading frame (ORF) that encoded 91 amino acids (aa), which contained a 24-aa signal peptide, a 42-aa propeptide, and a 25-aa mature peptide. The mature peptide had a typical RX (K/R) R motif and eight conserved cysteine residues forming four pairs of disulfide bonds. Homology and phylogenetic tree analysis showed that CcHep had the closest relationship with that of crucian carp. The expression levels of hepcidin mRNA in healthy and Aeromonas hydrophila stimulated fish were measured by real-time fluorescence quantitative PCR. The results showed that CcHep mRNA was expressed in different tissues of healthy fish with the highest relative expression level in liver, followed by kidney and intestine, and the lowest expression level was observed in heart. The hepcidin gene was extremely significantly up-regulated in head kidney, intestine, liver, skin, spleen, and gill at 6 h and 12 h after A. hydrophila infection. Furthermore, the immunoregulation effect of dietary recombinant protein was evaluated. The recombinant hepcidin protein (rCcHep) was successfully expressed by Pichia pastoris X-33 and showed strong antibacterial activity against A. hydrophila, Escherichia coli, Vibrio anguillarum and Bacillus subtilis in vitro. In order to evaluate the preventive effect of rCcHep, fish were fed with basal diet or diet supplemented with different doses of rCcHep, and then challenged with A. hydrophila. The results showed that immune genes were up-regulated to varying degrees, and feed additive groups exhibited a significantly improved up-regulation expressions of Lysozyme, Toll-like receptor 5 (TLR 5), Major histocompatibility complex classⅡ (MHCⅡ), while inhibited up-regulation expressions of Interleukin 1β (IL-1β), Interleukin 8 (IL-8), and Tumor necrosis factor α (TNF-α) in liver and spleen compared to the control. Meanwhile, the relative immune protection rate in 120 mg/kg feed additive group was 28%, and the bacterial clearance rate in tissues of this group was higher than that of the control. Collectively, these results indicated that rCcHep had antibacterial activity and showed an immune protection effect against A. hydrophila, and could be considered as a dietary supplement to apply in aquaculture.
Collapse
Affiliation(s)
- Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Yan Yan
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jinghang Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
6
|
Zhu QY, Chen RY, Yu J, Ding GH, Seah RWX, Chen J. Antimicrobial peptide hepcidin contributes to restoration of the intestinal flora after Aeromonas hydrophila infection in Acrossocheilus fasciatus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109486. [PMID: 36216305 DOI: 10.1016/j.cbpc.2022.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Hepcidin is a cysteine-rich antimicrobial peptide that serves an important role in the immunity system of fishes. It exhibits antibacterial, antifungal, antiviral, and antitumor activities. However, the exact role of fish hepcidin in the regulation of the intestinal flora still remains a mystery. In our study, we sequenced and characterized hepcidin from the liver of Acrossocheilus fasciatus. Phylogenetic tree analysis showed that A. fasciatus hepcidin and Gobiocypris rarus hepcidin were the most closely related, and both belonged to the fish HAMP1 cluster. Studies conducted on in vivo tissue distribution showed that the expression of hepcidin was highest in healthy A. fasciatus liver. Aeromonas hydrophila infection was confirmed by the increased expression of pro-inflammatory cytokine genes and bacterial loads in A. fasciatus tissues. After A. hydrophila infection, hepcidin expression significantly increased in the liver, spleen, and head kidney. In vitro antibacterial assays showed that hepcidin exhibits strong broad spectrum antibacterial activity. Furthermore, we examined the regulatory effect of hepcidin on the intestinal flora and found that A. fasciatus hepcidin restored the reduced diversity and compositional changes in intestinal flora caused by A. hydrophila infection. Our results suggest that hepcidin could regulate the intestinal flora in fishes; however, the underlying mechanisms need to be explored in greater detail.
Collapse
Affiliation(s)
- Qun-Yin Zhu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ru-Yi Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jing Yu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
| | - Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
7
|
Cervera L, González-Fernández C, Cano D, Esteban MÁ, Mercado L, Chaves-Pozo E, Cuesta A. Immunity elicited by AMP-encoding plasmids fails to increase the protection of European sea bass against nodavirus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108507. [PMID: 36581252 DOI: 10.1016/j.fsi.2022.108507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are a potent arm of the innate immune system that can directly kill pathogens and induce immunomodulation. In the marine aquaculture, European sea bass (Dicentrarchus labrax L.) is one of the most prosperous species but is highly susceptible to nodavirus (NNV), which produces high rates of mortality in larvae and juvenile stages. Thus, we aimed to evaluate whether AMPs exert immunomodulatory and/or NNV-preventive actions in sea bass. To do this, plasmids encoding the sea bass AMPs dicentracin (pDIC), beta-defensin (pDB1), hepcidin (pHAMP2) or NK-lysin (pNKL) were generated and intramuscularly injected into sea bass juveniles to evaluate their immunomodulatory and anti-NNV roles. Sea bass muscle transcribes the AMPs and produces an increase in their circulating levels, along with an increase of the antibacterial activity. Immune-related gene analysis revealed a great activation of the inflammatory response and the recruitment of neutrophilic granulocytes at the site of injection. However, AMP-encoding plasmids, namely pHAMP2, negatively affected to NNV disease by increasing fish mortality. In conclusion, plasmids encoding AMPs show immunostimulatory effects on European sea bass but do not improve the resistance to NNV.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniela Cano
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council (IEO-CSIC), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
8
|
Liu E, Huang T, Gu W, Wang G, Dong F, Ma H, Zhang L, He X, Yao Z, Jiao W, Li C, Wang B, Xu G. Molecular characterization and antibacterial immunity functional analysis of the antimicrobial peptide hepcidin from Coregonus ussuriensis berg. FISH & SHELLFISH IMMUNOLOGY 2022; 122:78-86. [PMID: 35051564 DOI: 10.1016/j.fsi.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Collapse
Affiliation(s)
- Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Haibing Ma
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Lanlan Zhang
- Heilongjiang Fisheries Technology Extension Center, Harbin, PR China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, PR China
| | - Zuochun Yao
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Limited Liability Company, Yili, PR China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
9
|
Rashidian G, Moosazadeh Moghaddam M, Mirnejad R, Mohammadi Azad Z. Supplementation of zebrafish (Danio rerio) diet using a short antimicrobial peptide: Evaluation of growth performance, immunomodulatory function, antioxidant activity, and disease resistance. FISH & SHELLFISH IMMUNOLOGY 2021; 119:42-50. [PMID: 34597813 DOI: 10.1016/j.fsi.2021.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Short-chain bioactive peptides are new and promising antimicrobial, immune moderating, and antioxidant agents. Therefore, the present study was conducted to evaluate in vitro antibacterial activity of CM11, a short antimicrobial peptide (AMP), against Streptococcus iniae and Yersinia ruckeri as fish pathogenic bacteria using standard disk diffusion and microdilution assays. In addition, in vivo effects of CM11 on fish growth, immunity, antioxidant activity, and disease resistance were evaluated using zebrafish (Danio rerio) as an animal model. For in vivo study, based on in vitro susceptibility results, four diets were designed to include zero (as control), 10, 20, and 50 μg of CM11 per g diet referred to as control, P1, P2, and P3 treatments, respectively. After eight weeks of dietary trial, fish were challenged with Streptococcus iniae, and the survival rate was calculated for a period of two weeks. Results showed that CM11 effectively inhibited the growth of S. iniae and Y. ruckeri on agar plates at a concentration of eight μg/ml. Minimum inhibitory and minimum bactericidal concentrations of CM11 were measured at 8 and 32 μg/ml for S. iniae and 16 and 64 μg/ml Y. ruckeri, respectively. In vivo results showed no noticeable effects on fish growth parameters, however, feed conversion ratio (FCR) was found lower in P3 and P2 compared to control (P < 0.05). Immunological and antioxidant responses were found strongly affected by CM11 in all treatment groups in which the highest values were found in the P3 treated group. Key immune and antioxidant genes were up-regulated particularly in fish receiving the highest level of CM11 (P3). Fish receiving the CM11 peptide showed better survival when challenged with S. iniae. These findings suggest the potential of CM11 for use in aquaculture as an antibacterial and immunostimulant agent.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356, Noor, Iran
| | | | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi Azad
- Department of Microbiology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|