1
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
2
|
Liu S, Yu Q, Liu J, Wang H, Wang X, Qin C, Li E, Qin J, Chen L. The interaction between lipid and vitamin D 3 impacts lipid metabolism and innate immunity in Chinese mitten crabs Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109455. [PMID: 38369072 DOI: 10.1016/j.fsi.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Yang Y, Xu W, Du X, Ye Y, Tian J, Li Y, Jiang Q, Zhao Y. Effects of dietary melatonin on growth performance, antioxidant capacity, and nonspecific immunity in crayfish, Cherax destructor. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108846. [PMID: 37230307 DOI: 10.1016/j.fsi.2023.108846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is an indole hormone widely found in plants and animals. Many studies have shown that MT promotes the growth and immunity of mammals, fish, and crabs. However, the effect on commercial crayfish has not been demonstrated. The purpose of this study was to evaluate the effects of dietary MT on growth performance and innate immunity of Cherax destructor from three aspects of individual level, biochemical level, and molecular level after 8 weeks of culture. In this study, we found that MT supplementation increased weight gain rate, specific growth rate, and digestive enzyme activity in C. destructor compared to the control group. Dietary MT not only promoted the activity of T-AOC, SOD, and GR, increased the content of GSH, and decreased the content of MDA in the hepatopancreas, but also increased the content of hemocyanin and copper ions and AKP activity in hemolymph. Gene expression results showed that MT supplementation at appropriate doses increased the expression of cell cycle-regulated genes (CDK, CKI, IGF, and HGF) and non-specific immune genes (TRXR, HSP60, and HSP70). In conclusion, our study showed that adding MT to the diet improved growth performance, enhanced the antioxidant capacity of hepatopancreas, and immune parameters of hemolymph in C. destructor. In addition, our results showed that the optimal dietary supplementation dose of MT in C. destructor is 75-81 mg/kg.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Li S, Huo G, Jiang Y, Wu Y, Jiang H, Wang R, Hua C, Zhou F. Transcriptomics provides insights into toxicological effects and molecular mechanisms associated with the exposure of Chinese mitten crab, Eriocheir sinensis, to dioxin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104540. [PMID: 36089220 DOI: 10.1016/j.dci.2022.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Dioxins are stable, ubiquitous, persistent, and halogenated environmental pollutants that have recently garnered increasing attention. This study constructed a microcosmic system to simulate the real breeding conditions of the Chinese mitten crab (Eriocheir sinensis) to evaluate the impact of environmental dioxins on these aquaculture animals. Histological observation and detection of antioxidant enzyme activities revealed that dioxin exposure for different durations substantially damaged the hepatopancreas of Chinese mitten crabs, increasing the enzymatic activities of total superoxide dismutase (T-SOD) and catalase (CAT) but decreasing that of malondialdehyde (MDA). We also obtained the gene expression profiles of the hepatopancreas corresponding to different periods of dioxin exposure using RNA-seq technology. Compared with the control group, 2999 and 941 differentially expressed genes (DEGs) corresponding to different periods of dioxin exposure were identified in the hepatopancreas. Enrichment analysis indicated that some pathways, such as those governing carbohydrate metabolism, fatty acid metabolism, and immune disease, also responded to dioxin exposure. Subsequently, we selectively analyzed DEGs involved in oxidoreductase activity, carbohydrate metabolic processes, and other processes, identifying that increased expression of Hsp70, Ldh, and Trx1 and decreased expression of Lgbp, Bgal1, and Acsbg2 were potentially caused by sensitivity to environmental dioxin exposure. Therefore, we contend that, although crabs exposed to unfavorable environmental pollutants, such as dioxin, may adapt via antioxidant and immune response modulation. However, continued dioxin exposure would disrupt such homeostatic restorative capabilities. Thus, this study may provide new insights into the toxicological effects exerted by dioxin on aquatic organisms, such as E. sinensis, as well as the mechanisms underlying such toxicity.
Collapse
Affiliation(s)
- Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Guangming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Ying Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Yulong Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Haitao Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Renlei Wang
- Biology Department, Jiangsu Second Normal University, Nanjing, 210013, PR China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China.
| |
Collapse
|
5
|
Li W, Wang J, Li J, Liu P, Li J. Transcriptomics revealed the effect of astaxanthin on apoptosis and immunity of the adult prawn of Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2022; 131:480-486. [PMID: 36195268 DOI: 10.1016/j.fsi.2022.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Astaxanthin (Axn), a common aquatic feed additive, can enhance immunity, improve the antioxidant capacity of the crustacean and then improve the anti-stress ability of crustaceans. Exopalaemon carinicauda (E. carinicauda) is an economically important fishery species in China that has been found that dietary Axn can significantly increase ACP and AKP compared to a control diet for shrimp hepatopancreas in this study. RNA-sequencing and comparative transcriptomic analyses were utilized to explore changes in E. carinicauda gene expression following Axn feeding. Differential gene expression analyses comparing the control and Axn groups identified 631 transcripts that were differentially expressed following Axn feeding, of which 314 and 317 were respectively upregulated and downregulated. Functional enrichment analyses of these genes revealed their enrichment in 22 Gene Ontology categories and 11 KEGG pathways. In the GO and KEGG enrichment analysis, it was found that dietary astaxanthin can regulate the gene expression level of adult E. carinicauda. Many of the signal pathways enriched by these genes are related to immunity, apoptosis and anti-stress. In addition, through KEGG enrichment analysis, it was found that dietary Axn could also regulate the amino acid metabolism of hepatopancreas of adult E. carinicauda. The comprehensive comparative transcriptomic analysis showed that Axn could improve the hepatopancreatic immunity and anti-apoptosis ability of adult E. carinicauda.
Collapse
Affiliation(s)
- Wenyang Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Wuxi Fisheries College of Nanjing Agricultural University, China
| | - Jiajia Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Yang Z, Lian W, Waiho K, Zhu L, Chen A, Cheng Y, Wang Y. Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 308:136556. [PMID: 36155024 DOI: 10.1016/j.chemosphere.2022.136556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is not only a common metal pollutant in the aquatic environment but also an essential trace element for aquatic organisms such as the Chinese mitten crab (Eriocheir sinensis). Cu is known to regulate lipid metabolism yet exert toxic effects if ingested in excess. However, the molecular regulatory roles of Cu in the lipid metabolism of crabs remains unclear. Thus, this study investigated the potential regulatory mechanism of Cu onto lipid metabolism of E. sinensis following acute Cu exposure. Crabs were exposed to environmental concentration of Cu (50 μg/L) for 96 h, and the expression of sterol regulatory element binding protein (SREBP) was knocked down by RNA interference (RNAi) to test its effect on Cu exposure. The results showed that RNAi significantly attenuated the Cu exposure-induced increase in lipid synthesis and triglycerides (TG) hydrolysis, while significantly inhibited the Cu exposure-induced decrease in fatty acid β-oxidation, suggesting that SREBP is involved in Cu-induced lipid metabolism. Subsequent analyses of the transcriptome results further revealed potential responsive genes of SREBP that were linked to lipid metabolism and immune regulation. Moreover, Cu may affect lipid metabolism through the TOR-SREBP pathway in E. sinensis. This work provides a reference for exploring the effects of Cu on lipid metabolism disorders in crustaceans.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wan Lian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Mavrommatis A, Zografaki ME, Marka S, Myrtsi ED, Giamouri E, Christodoulou C, Evergetis E, Iliopoulos V, Koulocheri SD, Moschopoulou G, Simitzis PE, Pappas AC, Flemetakis E, Koutinas A, Haroutounian SA, Tsiplakou E. Effect of a Carotenoid Extract from Citrus reticulata By-Products on the Immune-Oxidative Status of Broilers. Antioxidants (Basel) 2022; 11:antiox11010144. [PMID: 35052648 PMCID: PMC8773417 DOI: 10.3390/antiox11010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Although carotenoids generally possess antimicrobial and antioxidant properties, the in vivo synergistic action of carotenoid blends derived from plant-based by-products has not been thoroughly studied. Therefore, the carotenoid characterization and antimicrobial potential of Citrus reticulata extract as well as the impact of this carotenoid-rich extract (CCE) dietary supplementation on the performance, meat quality, and immune-oxidative status of broiler chickens were determined. One hundred and twenty one-day-old hatched chicks (Ross 308) were allocated to two dietary groups, with four replicate pens of 15 birds each. Birds were fed either a basal diet (CON) or the basal diet supplemented with 0.1% CCE (25 mg carotenoid extract included in 1 g of soluble starch) for 42 d. β-Cryptoxanthin, β-Carotene, Zeaxanthin, and Lutein were the prevailing carotenoid compounds in the Citrus reticulata extract. The CCE feed additive exerted inhibitory properties against both Gram-positive (Staphylococcus aureus) and negative (Klebsiella oxytoca, Escherichia coli, and Salmonella typhimurium) bacteria. Both the broiler performance and meat quality did not substantially differ, while the breast muscle malondialdehyde (MDA) concentration tended to decrease (p = 0.070) in the CCE-fed broilers. The inclusion of CCE decreased the alanine aminotransferase and MDA concentration, and the activity of glutathione peroxidase, while the activity of superoxide dismutase was increased in the blood. Catalase and NADPH oxidase 2 relative transcript levels were significantly downregulated in the livers of the CCE-fed broilers. Additionally, Interleukin 1β and tumor necrosis factor (TNF) relative transcript levels were downregulated in the livers of the CCE- fed broilers, while TNF and interferon γ (IFNG) tended to decrease in the spleens and bursa of Fabricius, respectively. The present study provided new insights regarding the beneficial properties of carotenoids contained in Citrus reticulata in broilers’ immune-oxidative status. These promising outcomes could be the basis for further research under field conditions.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Sofia Marka
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Christos Christodoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
- Correspondence: ; Tel.: +30-2105294435; Fax: +30-2105294413
| |
Collapse
|
8
|
Liu S, Wang X, Bu X, Zhang C, Qiao F, Qin C, Li E, Qin JG, Chen L. Influences of dietary vitamin D 3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J Steroid Biochem Mol Biol 2021; 210:105862. [PMID: 33675950 DOI: 10.1016/j.jsbmb.2021.105862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
This study investigates the effects of vitamin D3 (VD3) on growth performance, antioxidant capacity, immunity and molting of larval Chinese mitten crab Eriocheir sinensis. A total of 6,000 larvae (7.52 ± 0.10 mg) were fed with six isonitrogenous and isolipidic experimental diets with different levels of dietary VD3 (0, 3000, 6000, 9000, 12000 and 36000 IU/kg) respectively for 23 days. The highest survival and molting frequency were found in crabs fed 6000 IU/kg VD3. Weight gain, specific growth rate, and carapace growth significantly increased in crabs fed 3000 and 6000 IU/kg VD3 compared to the control. Broken-line analysis of molting frequency, weight gain and specific growth rate against dietary VD3 levels indicates that the optimal VD3 requirement for larval crabs is 4825-5918 IU/kg. The highest whole-body VD3 content occurred in the 12000 IU/kg VD3 group, and the 25-dihydroxy VD3 content decreased with the increase of dietary VD3. The malonaldehyde content was lower than the control. Moreover, the superoxide dismutase activity, glutathione peroxidase and total antioxidant capacity of crab fed 6000 IU/kg VD3 were significantly higher than in control. Crabs fed 9000 IU/kg showed the highest survival after 120 h of salinity stress, and the relative mRNA expressions indicate vitamin D receptor (VDR) is the important regulatory element in molting and innate immunity. The molting-related gene expressions showed that the response of crab to salinity was self-protective. This study would contribute to a new understanding of the molecular basis underlying molting and innate immunity regulation by vitamin D3 in E. sinensis.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|