1
|
Ye L, Liao L, Lan J, Huang L, Du J, Zhang X, Lun M, Zhu B, Liu C, Chen L. Temporal dynamics changes in the vaginal fluid microbiome: Implications for body fluid identification and estimating time since deposition (TsD) for forensics. Forensic Sci Int 2024; 364:112219. [PMID: 39270472 DOI: 10.1016/j.forsciint.2024.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Vaginal fluid analysis plays a crucial role in sexual assault investigations. However, vaginal fluid found at crime scenes is usually subject to a certain duration of exposure. This study thus aimed to assess the influence of different durations of exposure to indoor environment on the vaginal microbiota. The 16S rDNA high-throughput sequencing was used on vaginal fluid samples exposed for short-term (30 days) and long-term (240 days), respectively. Despite potential contamination from environmental microorganisms, particularly following long-term exposure, the results indicated that the vaginal microbiota after exposure was still dominated by Lactobacillus. Both in short-term and long-term exposure involving vaginal fluid, there were clusters with time-dependent characteristics, wherein the relative abundances of associated microbial genera showed a trend of increasing or decreasing over time. In addition, each bodily fluid presented with a unique array of dominant bacterial genera, enabling the differentiation of exposed vaginal fluid samples from other bodily fluids (semen, skin, saliva, feces) with a remarkable 98.75 % accuracy rate. Furthermore, the mean absolute error achieved by the long-term deposition time prediction model was 13.54 days. The mean absolute error for the short-term deposition time prediction model was notably lower, reaching just 2.05 days. In summary, this study investigates the variations in microbial communities within vaginal fluid subjected to different indoor exposure durations and explores their potential in body fluid identification and estimating the time since deposition, thereby contributing valuable supporting evidence in forensic investigations.
Collapse
Affiliation(s)
- Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lili Liao
- Department of Public Health, The Fifth People's Hospital of Foshan Nanhai District, Foshan 528231, China
| | - Jiangwei Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieyu Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaofeng Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Miaoqiang Lun
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Dass M, Ghai M. Development of a multiplex PCR assay and quantification of microbial markers by ddPCR for identification of saliva and vaginal fluid. Forensic Sci Int 2024; 362:112147. [PMID: 39067179 DOI: 10.1016/j.forsciint.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
3
|
Yuen ZWS, Shanmuganandam S, Stanley M, Jiang S, Hein N, Daniel R, McNevin D, Jack C, Eyras E. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci Int Genet 2024; 71:103048. [PMID: 38640705 DOI: 10.1016/j.fsigen.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
DNA methylation plays essential roles in regulating physiological processes, from tissue and organ development to gene expression and aging processes and has emerged as a widely used biomarker for the identification of body fluids and age prediction. Currently, methylation markers are targeted independently at specific CpG sites as part of a multiplexed assay rather than through a unified assay. Methylation detection is also dependent on divergent methodologies, ranging from enzyme digestion and affinity enrichment to bisulfite treatment, alongside various technologies for high-throughput profiling, including microarray and sequencing. In this pilot study, we test the simultaneous identification of age-associated and body fluid-specific methylation markers using a single technology, nanopore adaptive sampling. This innovative approach enables the profiling of multiple CpG marker sites across entire gene regions from a single sample without the need for specialized DNA preparation or additional biochemical treatments. Our study demonstrates that adaptive sampling achieves sufficient coverage in regions of interest to accurately determine the methylation status, shows a robust consistency with whole-genome bisulfite sequencing data, and corroborates known CpG markers of age and body fluids. Our work also resulted in the identification of new sites strongly correlated with age, suggesting new possible age methylation markers. This study lays the groundwork for the systematic development of nanopore-based methodologies in both age prediction and body fluid identification, highlighting the feasibility and potential of nanopore adaptive sampling while acknowledging the need for further validation and expansion in future research.
Collapse
Affiliation(s)
- Zaka Wing-Sze Yuen
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Somasundhari Shanmuganandam
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Maurice Stanley
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Simon Jiang
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia; Department of Renal Medicine, The Canberra Hospital, Canberra, ACT 2605, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Runa Daniel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
4
|
Xiao Y, Tan M, Song J, Huang Y, Lv M, Liao M, Yu Z, Gao Z, Qu S, Liang W. Developmental validation of an mRNA kit: A 5-dye multiplex assay designed for body-fluid identification. Forensic Sci Int Genet 2024; 71:103045. [PMID: 38615496 DOI: 10.1016/j.fsigen.2024.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yihang Huang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zailiang Yu
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Zhixiao Gao
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
5
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Gosch A, Banemann R, Dørum G, Haas C, Hadrys T, Haenggi N, Kulstein G, Neubauer J, Courts C. Spitting in the wind?-The challenges of RNA sequencing for biomarker discovery from saliva. Int J Legal Med 2024; 138:401-412. [PMID: 37847308 PMCID: PMC10861700 DOI: 10.1007/s00414-023-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Forensic trace contextualization, i.e., assessing information beyond who deposited a biological stain, has become an issue of great and steadily growing importance in forensic genetic casework and research. The human transcriptome encodes a wide variety of information and thus has received increasing interest for the identification of biomarkers for different aspects of forensic trace contextualization over the past years. Massively parallel sequencing of reverse-transcribed RNA ("RNA sequencing") has emerged as the gold standard technology to characterize the transcriptome in its entirety and identify RNA markers showing significant expression differences not only between different forensically relevant body fluids but also within a single body fluid between forensically relevant conditions of interest. Here, we analyze the quality and composition of four RNA sequencing datasets (whole transcriptome as well as miRNA sequencing) from two different research projects (the RNAgE project and the TrACES project), aiming at identifying contextualizing forensic biomarker from the forensically relevant body fluid saliva. We describe and characterize challenges of RNA sequencing of saliva samples arising from the presence of oral bacteria, the heterogeneity of sample composition, and the confounding factor of degradation. Based on these observations, we formulate recommendations that might help to improve RNA biomarker discovery from the challenging but forensically relevant body fluid saliva.
Collapse
Affiliation(s)
- Annica Gosch
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Regine Banemann
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thorsten Hadrys
- State Criminal Police Office, Forensic Science Institute, Munich, Germany
| | - Nadescha Haenggi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Galina Kulstein
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cornelius Courts
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Lewis CA, Seashols-Williams SJ. A combined molecular approach utilizing microbial DNA and microRNAs in a qPCR multiplex for the classification of five forensically relevant body fluids. J Forensic Sci 2024; 69:282-290. [PMID: 37818748 DOI: 10.1111/1556-4029.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Body fluid identification is an essential step in the forensic biology workflow that can assist DNA analysts in determining where to collect DNA evidence. Current presumptive tests lack the specificity that molecular techniques can achieve; therefore, molecular methods, including microRNA (miRNA) and microbial signature characterization, have been extensively researched in the forensic community. Limitations of each method suggest combining molecular markers to increase the discrimination efficiency of multiple body fluids from a single assay. While microbial signatures have been successful in identifying fluids with high bacterial abundances, microRNAs have shown promise in fluids with low microbial abundance (blood and semen). This project synergized the benefits of microRNAs and microbial DNA to identify multiple body fluids using DNA extracts. A reverse transcription (RT)-qPCR duplex targeting miR-891a and let-7g was validated, and miR-891a differential expression was significantly different between blood and semen. The miRNA duplex was incorporated into a previously reported qPCR multiplex targeting 16S rRNA genes of Lactobacillus crispatus, Bacteroides uniformis, and Streptococcus salivarius to presumptively identify vaginal/menstrual secretions, feces, and saliva, respectively. The combined classification regression tree model resulted in the presumptive classification of five body fluids with 94.6% overall accuracy, now including blood and semen identification. These results provide proof of concept that microRNAs and microbial DNA can classify multiple body fluids simultaneously at the quantification step of the current forensic DNA workflow.
Collapse
Affiliation(s)
- Carolyn A Lewis
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
8
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
9
|
Tambuzzi S, Maciocco F, Gentile G, Boracchi M, Bailo P, Marchesi M, Zoja R. Applications of microbiology to different forensic scenarios - A narrative review. J Forensic Leg Med 2023; 98:102560. [PMID: 37451142 DOI: 10.1016/j.jflm.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
In contrast to other forensic disciplines, forensic microbiology is still too often considered a "side activity" and is not able to make a real and concrete contribution to forensic investigations. Indeed, the various application aspects of this discipline still remain a niche activity and, as a result, microbiological investigations are often omitted or only approximated, in part due to poor report in the literature. However, in certain situations, forensic microbiology can prove to be extremely effective, if not crucial, when all other disciplines fail. Precisely because microorganisms can represent forensic evidence, in this narrative review all the major pathological forensic applications described in the literature have been presented. The goal of our review is to highlight the versatility and transversality of microbiology in forensic science and to provide a comprehensive source of literature to refer to when needed.
Collapse
Affiliation(s)
- Stefano Tambuzzi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | - Francesca Maciocco
- Azienda Ospedaliera "San Carlo Borromeo", Servizio di Immunoematologia e Medicina Trasfusionale (SIMT), Via Pio II°, n. 3, Milano, Italy
| | - Guendalina Gentile
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy.
| | - Michele Boracchi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | | | - Matteo Marchesi
- ASST Papa Giovanni XXIII, Piazza OMS 1, 24127, Bergamo, Italy
| | - Riccardo Zoja
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| |
Collapse
|
10
|
Johannessen H, Hanson E, Gill P, Haas C, Bergseth EF, Ballantyne J, Fonneløp AE. Body Fluid Identification in Samples Collected after Intimate and Social Contact: A Comparison of Two mRNA Profiling Methods and the Additional Information Gained by cSNP Genotypes. Genes (Basel) 2023; 14:genes14030636. [PMID: 36980908 PMCID: PMC10048544 DOI: 10.3390/genes14030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The ability to associate a contributor with a specific body fluid in a crime stain can aid casework investigation. The detection of body fluids combined with DNA analyses may supply essential information, but as the two tests are independent, they may not be associated. Recently, the analysis of coding region SNPs (cSNPs) within the RNA transcript has been proven to be a promising method to face this challenge. In this study, we performed targeted RNA sequencing of 158 samples (boxershorts, fingernail swabs and penile swabs) collected from 12 couples at different time points post-intimate contact and after non-intimate contact, using the Ion S5™ System and BFID-cSNP-6F assay. The aim of the study was to compare the performance of the MPS and CE methods in the detection of mRNA markers, and to associate body fluids with contributors by their cSNP genotypes. The results of the study show a lower success rate in the detection of vaginal mucosa by the MPS compared to the CE method. However, the additional information obtained with the cSNP genotypes could successfully associate body fluids with contributors in most cases.
Collapse
Affiliation(s)
- Helen Johannessen
- Department of Forensic Medicine, University of Oslo, 0315 Oslo, Norway
- Correspondence: or
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Peter Gill
- Department of Forensic Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Forensic Sciences, Oslo University Hospital, 0372 Oslo, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland
| | | | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, 0372 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
11
|
Suarez Arbelaez MC, Israeli JM, Tipton CD, Loloi J, Deebel N, Leong JY, Ramasamy R. Pilot Study: Next-generation Sequencing of the Semen Microbiome in Vasectomized Versus Nonvasectomized Men. Eur Urol Focus 2023; 9:75-82. [PMID: 36396563 DOI: 10.1016/j.euf.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Approximately half a million vasectomies are performed every year in the USA. There is a paucity of literature on the impact of male sterilization on the semen microbiome and whether it prompts microbiota dysbiosis. OBJECTIVE To investigate if vasectomy induces changes in the seminal microbiome via comparison of semen samples from men before and after vasectomy, and if the seminal microbiome profiles for vasectomized men follow a particular pattern with respect to diversity and abundance. DESIGN, SETTING, AND PARTICIPANTS From July 2021 to February 2022, we prospectively collected and analyzed semen samples from 58 men at one outpatient clinic. Eighteen men provided a semen sample before and 3 mo after vasectomy. We also collected semen samples from 22 fertile nonvasectomized men and from a further 18 vasectomized men at 3 mo after vasectomy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Semen microbiome α-diversity, beta-diversity, and relative abundance were compared initially between paired and then between unpaired vasectomized and nonvasectomized samples. Analysis of variance (ANOVA), permutational multivariate ANOVA, and analysis of the composition of microbiomes with bias correction were used to assess differences. RESULTS AND LIMITATIONS In both paired and unpaired sets of samples, a decreasing trend for α-diversity in semen after vasectomy was observed. Shannon diversity, the relative abundance of species with an abundance >2%, and composition were not significantly changed. Sphingomonas, Brevundimonas, and Paracoccus abundance decreased after vasectomy, while Corynebacterium abundance increased. The results may be limited by the sample size and lack of demographic heterogeneity. CONCLUSIONS Vasectomy is followed by a decrease in α-diversity and changes in the relative abundance of bacterial species in the semen microbiome. Further investigation is necessary to understand the clinical significance of these changes after vasectomy. PATIENT SUMMARY We evaluated changes in the bacteria species in semen after vasectomy. We found that vasectomy decreased the richness and evenness of bacteria species in semen, but the overall bacterial community remained similar. Further studies are needed to assess the implications of changes in semen bacteria after vasectomy.
Collapse
Affiliation(s)
| | - Joseph M Israeli
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Craig D Tipton
- RTL Genomics, MicroGen DX, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Justin Loloi
- Department of Urology, Montefiore Medical Center, The Bronx, NY, USA
| | - Nicholas Deebel
- Department of Urology, Wake Forest University School of Medicine, Salem, NC, USA
| | - Joon Yau Leong
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Kumari P, Prakash P, Yadav S, Saran V. Microbiome analysis: An emerging forensic investigative tool. Forensic Sci Int 2022; 340:111462. [PMID: 36155349 DOI: 10.1016/j.forsciint.2022.111462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Microbial diversity's potential has been investigated in medical and therapeutic studies throughout the last few decades. However, its usage in forensics is increasing due to its effectiveness in circumstances when traditional approaches fail to provide a decisive opinion or are insufficient in forming a concrete opinion. The application of human microbiome may serve in detecting the type of stains of saliva and vaginal fluid, as well as in attributing the stains to the individual. Similarly, the microbiome makeup of a soil sample may be utilised to establish geographic origin or to associate humans, animals, or things with a specific area, additionally microorganisms influence the decay process which may be used in depicting the Time Since death. Further in detecting the traces of the amount and concentration of alcohol, narcotics, and other forensically relevant compounds in human body or visceral tissues as they also affect the microbial community within human body. Beside these, there is much more scope of microbiomes to be explored in terms of forensic investigation, this review focuses on multidimensional approaches to human microbiomes from a forensic standpoint, implying the potential of microbiomes as an emerging tool for forensic investigations such as individual variability via skin microbiomes, reconstructing crime scene, and linking evidence to individual.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Poonam Prakash
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
13
|
Lewis C, Seashols-Williams SJ. Design and optimization of a 16S microbial qPCR multiplex for the presumptive identification of feces, saliva, vaginal and menstrual secretions. J Forensic Sci 2022; 67:1660-1667. [PMID: 35352345 PMCID: PMC9310585 DOI: 10.1111/1556-4029.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Molecular methods for body fluid identification have been extensively researched in the forensic community over the last decade, mostly focusing on RNA‐based methods. Microbial DNA analysis has long been used for forensic applications, such as postmortem interval estimations, but only recently has it been applied to body fluid identification. High‐throughput sequencing of the 16S ribosomal RNA gene by previous research groups revealed that microbial signatures and abundances vary across human body fluids at the genus and/or species taxonomic level. Since quantitative PCR is still the current technique used in forensic DNA analysis, the purpose of this study was to design a qPCR multiplex targeting the 16S gene of Bacteroides uniformis, Streptococcus salivarius, and Lactobacillus crispatus that can distinguish between feces, saliva, and vaginal/menstrual secretions, respectively. Primers and probes were designed at the species level because these bacteria are highly abundant within their respective fluid. The validated 16S triplex was evaluated in DNA extracts from thirty donors of each body fluid. A classification regression tree model resulted in 96.5% classification accuracy of the population data, which demonstrates the ability of this 16S triplex to presumptively identify these fluids with high confidence at the quantification step of the forensic workflow using minimal input volume of DNA extracted from evidentiary samples.
Collapse
Affiliation(s)
- Carolyn Lewis
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
14
|
A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet 2021; 57:102656. [PMID: 34973557 DOI: 10.1016/j.fsigen.2021.102656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis. However, technical validation of any developed assays is crucial for their proper integration into routine forensic workflow. In the present collaborative exercise, two SNaPshot multiplex assays for age prediction and a SNaPshot multiplex for body fluid identification were tested in twelve laboratories. The experimental set-up of the exercise was designed to reflect the entire workflow of SNaPshot-based methylation analysis and involved four increasingly complex tasks designed to detect potential factors influencing methylation measurements. The results of body fluid identification from each laboratory provided sufficient information to determine appropriate age prediction methods in subsequent analysis. In age prediction, systematic measurement differences resulting from the type of genetic analyzer used were identified as the biggest cause of DNA methylation variation between laboratories. Also, the use of a buffer that ensures a high ratio of specific to non-specific primer binding resulted in changes in DNA methylation measurement, especially when using degenerate primers in the PCR reaction. In addition, high input volumes of bisulfite-converted DNA often caused PCR failure, presumably due to carry-over of PCR inhibitors from the bisulfite conversion reaction. The proficiency of the analysts and experimental conditions for efficient SNaPshot reactions were also important for consistent DNA methylation measurement. Several bisulfite conversion kits were used for this study, but differences resulting from the use of any specific kit were not clearly discerned. Even when different experimental settings were used in each laboratory, a positive outcome of the study was a mean absolute age prediction error amongst participant's data of only 2.7 years for semen, 5.0 years for blood and 3.8 years for saliva.
Collapse
|
15
|
Vibrational spectroscopic approaches for semen analysis in forensic investigation: State of the art and way forward. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Mei S, Zhao M, Liu Y, Zhao C, Xu H, Fang Y, Zhu B. Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods. Forensic Sci Int 2021; 331:111128. [PMID: 34959019 DOI: 10.1016/j.forsciint.2021.111128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Body fluids are one of the common biological traces at crime scenes. Understanding the types of these biological traces could provide key clues for the investigations of the forensic cases. In recent years, partial hypervariable regions of 16S rRNA gene sequencing and full-length 16S rRNA gene sequencing have attracted the interests of researchers and we intend to explore which method can be better applied to forensic researches. METHODS In this study, the 16S rRNA gene V3-V4 (short-read) sequencing based on next-generation sequencing and the full-length 16S rRNA gene sequencing based on single molecule real-time sequencing were used to classify microbes in saliva, peripheral blood, vaginal secretion and menstrual blood samples. RESULTS Alpha diversity metrics in short-read sequencing were larger than those of full-length sequencing. Phylum-level bacteria in four kinds of body fluids obtained from the two platforms were similar, while their abundances were different. The results of principal coordinates analysis and analysis of molecular variance indicated the microbial compositions of vaginal secretion and menstrual blood samples were similar, and the microbial compositions among saliva, peripheral blood, vaginal secretion or menstrual blood samples were significantly different. The linear discriminant analysis effect size showed the differential bacteria screened among the four kinds of body fluids were variant in two sequencing results. CONCLUSION Both sequencing methods could be used to detect bacterial diversities in four different types of body fluids and provide potential tools for microbes to identify the four kinds of body fluids in forensic investigation, in which full-length sequencing could provide more accurate taxonomy.
Collapse
Affiliation(s)
- Shuyan Mei
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ming Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanfang Liu
- School of Nursing, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Congying Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hui Xu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bofeng Zhu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China.
| |
Collapse
|
17
|
Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions. Forensic Sci Int Genet 2021; 56:102627. [PMID: 34742094 DOI: 10.1016/j.fsigen.2021.102627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Over the last few years, advances in massively parallel sequencing technologies (also referred to next generation sequencing) and bioinformatics analysis tools have boosted our knowledge on the human microbiome. Such insights have brought new perspectives and possibilities to apply human microbiome analysis in many areas, particularly in medicine. In the forensic field, the use of microbial DNA obtained from human materials is still in its infancy but has been suggested as a potential alternative in situations when other human (non-microbial) approaches present limitations. More specifically, DNA analysis of a wide variety of microorganisms that live in and on the human body offers promises to answer various forensically relevant questions, such as post-mortem interval estimation, individual identification, and tissue/body fluid identification, among others. However, human microbiome analysis currently faces significant challenges that need to be considered and overcome via future forensically oriented human microbiome research to provide the necessary solutions. In this perspective article, we discuss the most relevant biological, technical and data-related issues and propose future solutions that will pave the way towards the integration of human microbiome analysis in the forensic toolkit.
Collapse
|
18
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Salzmann AP, Arora N, Russo G, Kreutzer S, Snipen L, Haas C. Assessing time dependent changes in microbial composition of biological crime scene traces using microbial RNA markers. Forensic Sci Int Genet 2021; 53:102537. [PMID: 34090061 DOI: 10.1016/j.fsigen.2021.102537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/16/2023]
Abstract
Current body fluid identification methods do not reveal any information about the time since deposition (TsD) of biological traces, even though determining the age of traces could be crucial for the investigative process. To determine the utility of microbial RNA markers for TsD estimation, we examined RNA sequencing data from five forensically relevant body fluids (blood, menstrual blood, saliva, semen, and vaginal secretion) over seven time points, ranging from fresh to 1.5 years. One set of samples was stored indoors while another was exposed to outdoor conditions. In outdoor samples, we observed a consistent compositional shift, occurring after 4 weeks: this shift was characterized by an overall increase in non-human eukaryotic RNA and an overall decrease in prokaryotic RNA. In depth analyses showed a high fraction of tree, grass and fungal signatures, which are characteristic for the environment the samples were exposed to. When examining the prokaryotic fraction in more detail, three bacterial phyla were found to exhibit the largest changes in abundance, namely Actinobacteria, Proteobacteria and Firmicutes. More detailed analyses at the order level were done using a Lasso regression analysis to find a predictive subset of bacterial taxa. We found 26 bacterial orders to be indicative of sample age. Indoor samples did not reveal such a clear compositional change at the domain level: eukaryotic and prokaryotic abundance remained relatively stable across the assessed time period. Nonetheless, a Lasso regression analysis identified 32 bacterial orders exhibiting clear changes over time, enabling the prediction of TsD. For both indoor and outdoor samples, a larger number (around 60%) of the bacterial orders identified as indicative of TsD are part of the Actinobacteria, Proteobacteria and Firmicutes. In summary, we found that the observed changes across time are not primarily due to changes associated with body fluid specific bacteria but mostly due to accumulation of bacteria from the environment. Orders of these environmental bacteria could be evaluated for TsD prediction, considering the location and environment of the crime scene. However, further studies are needed to verify these findings, determine the applicability across samples, replicates, donors, and other variables, and also to further assess the effect of different seasons and locations on the samples.
Collapse
Affiliation(s)
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
20
|
Evaluation of one-step RT-PCR multiplex assay for body fluid identification. Int J Legal Med 2021; 135:1727-1735. [PMID: 33666691 DOI: 10.1007/s00414-021-02535-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 01/27/2023]
Abstract
The discrimination of body fluid stains provides crucial evidence during the investigation of criminal cases. Previous studies have demonstrated the practical value of mRNA profiling in body fluid identification. Conventional strategy of mRNA profiling entails reverse transcription and PCR amplification in two separate procedures with different buffer systems. In this study, we subjected the one-step multiplex reverse transcription PCR strategy to mRNA profiling with the inclusion of the same 18 tissue-specific biomarkers in the F18plex system targeting peripheral blood, menstrual blood, vaginal secretion, saliva, semen, and urine. The Qiagen OneStep RT-PCR kit and Titanium One-Step RT-PCR kit were applied to multiplex construction, while reproducible profiling results were obtained with both kits. Compared to the F18plex system, similar expression profiles of biomarkers were obtained in targeted tissues, while expected cross-reaction was observed in non-targeted body fluids. However, CYP2B7P1 and SPINK5 were detected in menstrual blood samples, which was not observed using the F18plex system. Full-profiling results were obtained in all samples using 0.1 ng peripheral blood and semen RNA, and 1 ng menstrual blood, vaginal secretion, saliva, and urine RNA. In conclusion, the application of one-step mRNA profiling strategy could be a reliable and economical method for the simplified, specific, and simultaneous analysis of tissue-specific biomarkers for the discrimination of body fluid origin.
Collapse
|
21
|
Sakurada K, Watanabe K, Akutsu T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics (Basel) 2020; 10:diagnostics10090693. [PMID: 32937964 PMCID: PMC7555023 DOI: 10.3390/diagnostics10090693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022] Open
Abstract
Although, DNA typing plays a decisive role in the identification of persons from blood and body fluid stains in criminal investigations, clarifying the origin of extracted DNA has also been considered an essential task in proving a criminal act. This review introduces the importance of developing precise methods for body fluid identification. Body fluid identification has long relied on enzymatic methods as a presumptive assay and histological or serological methods as a confirmatory assay. However, because the latest DNA typing methods can rapidly obtain results from very small and even old, poorly preserved samples, the development of a novel corresponding body fluid identification method is required. In particular, an immunochromatographic method has been introduced to identify saliva and semen from sexual crimes. In addition, for vaginal fluid identification, attempts have been made in the past decade to introduce a method relying on body fluid-specific mRNA expression levels. At present, the development of molecular biological methods involving microRNA, DNA methylation, and resident bacterial DNA is ongoing. Therefore, in criminal investigations, body fluid identification is an essential task for correctly applying the results of DNA typing, although further research and development are required.
Collapse
Affiliation(s)
- Koichi Sakurada
- Department of Forensic Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: ; Tel.: +81-3-5803-4387
| | - Ken Watanabe
- First Department of Forensic Science, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (K.W.); (T.A.)
| | - Tomoko Akutsu
- First Department of Forensic Science, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan; (K.W.); (T.A.)
| |
Collapse
|
22
|
Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy. Int J Legal Med 2020; 134:1591-1602. [DOI: 10.1007/s00414-020-02333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
|
23
|
Akutsu T, Yokota I, Watanabe K, Sakurada K. Development of a multiplex RT-PCR assay and statistical evaluation of its use in forensic identification of vaginal fluid. Leg Med (Tokyo) 2020; 45:101715. [PMID: 32413723 DOI: 10.1016/j.legalmed.2020.101715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023]
Abstract
The identification of vaginal fluid from casework samples of sexual assaults provides important probative evidence of vaginal intercourse. The aim of this study was to establish a more specific procedure for identifying vaginal fluids for forensic purposes. Vaginal fluid marker candidates have been evaluated quantitatively and five of these markers (ESR1, SERPINB13, KLK13, CYP2B7P1, MUC4) have been amplified simultaneously by a multiplex reverse transcription-polymerase chain reaction (RT-PCR) procedure. Each amplicon has been separated and quantified automatically using chip electrophoresis. Subsequently, in the present study, detectability and cross-reactivity of the developed multiplex procedure were assessed in detail using various forensically relevant body fluids. Then, a cutoff value for the positive detection of vaginal fluids was set for each marker by Youden index. The ability of the multiplex RT-PCR assay to distinguish between vaginal and other body fluids was evaluated statistically using a likelihood ratio (LR) that was estimated using a Bayesian estimation approach to consider the infrequency of detection. A high LR was obtained when all five markers showed positive results (LR = 4.33 × 109; 95% credible interval, 3.95 × 107 -2.87 × 1012). The developed procedure was validated using vaginal fluid samples under various conditions. High LRs were found for aged vaginal fluid stains, although each amplicon peak was low. It was also able to identify vaginal stains mixed with other body fluids. In conclusion, the multiplex RT-PCR-based procedure followed by the statistical evaluation using LR could be a powerful tool for the objective identification of vaginal fluids.
Collapse
Affiliation(s)
- Tomoko Akutsu
- First Department of Forensic Science, National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Nishi 15, Kita 7, Sapporo, Hokkaido 060-8638, Japan
| | - Ken Watanabe
- First Department of Forensic Science, National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Koichi Sakurada
- Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
24
|
Bishop AH. The signatures of microorganisms and of human and environmental biomes can now be used to provide evidence in legal cases. FEMS Microbiol Lett 2019; 366:5303725. [PMID: 30689874 DOI: 10.1093/femsle/fnz021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/26/2019] [Indexed: 12/28/2022] Open
Abstract
The microorganisms with which we share our world go largely unnoticed. We are, however, beginning to be able to exploit their apparently silent presence as witnesses to events that are of legal concern. This information can be used to link forensic samples to criminal events and even perpetrators. Once dead, our bodies are rapidly colonised, internally and externally. The progress of these events can be charted to inform how long and even by what means a person has died. A small number of microbial species could actually be the cause of such deaths as a result of biocrime or bioterrorism. The procedures and techniques to respond to such attacks have matured in the last 20 years. The capability now exists to identify malicious intent, characterise the threat agent to isolate level and potentially link it to perpetrators with a high level of confidence.
Collapse
Affiliation(s)
- A H Bishop
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Devon, PL4 8AA, UK
| |
Collapse
|
25
|
Lactobacillus DNA usage in differentiation of normal vaginal fluids in premenopausal and postmenopausal females. J Forensic Leg Med 2019; 66:58-64. [DOI: 10.1016/j.jflm.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023]
|
26
|
Developmental validation of an enhanced mRNA-based multiplex system for body fluid and cell type identification. Sci Justice 2019; 59:217-227. [DOI: 10.1016/j.scijus.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/16/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
|
27
|
Díez López C, Vidaki A, Ralf A, Montiel González D, Radjabzadeh D, Kraaij R, Uitterlinden AG, Haas C, Lao O, Kayser M. Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials. Forensic Sci Int Genet 2019; 41:72-82. [PMID: 31003081 DOI: 10.1016/j.fsigen.2019.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Correct identification of different human epithelial materials such as from skin, saliva and vaginal origin is relevant in forensic casework as it provides crucial information for crime reconstruction. However, the overlap in human cell type composition between these three epithelial materials provides challenges for their differentiation and identification when using previously proposed human cell biomarkers, while their microbiota composition largely differs. By using validated 16S rRNA gene massively parallel sequencing data from the Human Microbiome Project of 1636 skin, oral and vaginal samples, 50 taxonomy-independent deep learning networks were trained to classify these three tissues. Validation testing was performed in de-novo generated high-throughput 16S rRNA gene sequencing data using the Ion Torrent™ Personal Genome Machine from 110 test samples: 56 hand skin, 31 saliva and 23 vaginal secretion specimens. Body-site classification accuracy of these test samples was very high as indicated by AUC values of 0.99 for skin, 0.99 for oral, and 1 for vaginal secretion. Misclassifications were limited to 3 (5%) skin samples. Additional forensic validation testing was performed in mock casework samples by de-novo high-throughput sequencing of 19 freshly-prepared samples and 22 samples aged for 1 up to 7.6 years. All of the 19 fresh and 20 (91%) of the 22 aged mock casework samples were correctly tissue-type classified. Moreover, comparing the microbiome results with outcomes from previous human mRNA-based tissue identification testing in the same 16 aged mock casework samples reveals that our microbiome approach performs better in 12 (75%), similarly in 2 (12.5%), and less good in 2 (12.5%) of the samples. Our results demonstrate that this new microbiome approach allows for accurate tissue-type classification of three human epithelial materials of skin, oral and vaginal origin, which is highly relevant for future forensic investigations.
Collapse
Affiliation(s)
- Celia Díez López
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
28
|
Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing. Int J Legal Med 2019; 133:699-710. [DOI: 10.1007/s00414-018-1986-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023]
|
29
|
Eom YB. Microbial Forensics: Human Identification. BIOMEDICAL SCIENCE LETTERS 2018; 24:292-304. [DOI: 10.15616/bsl.2018.24.4.292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 09/01/2023]
Affiliation(s)
- Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
| |
Collapse
|
30
|
Plesivkova D, Richards R, Harbison S. A review of the potential of the MinION™ single‐molecule sequencing system for forensic applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/wfs2.1323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diana Plesivkova
- Forensic Science Programme, School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Rebecca Richards
- Forensic Science Programme, School of Chemical Sciences University of Auckland Auckland New Zealand
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Ltd Auckland New Zealand
| |
Collapse
|
31
|
Environmental microbiology: Perspectives for legal and occupational medicine. Leg Med (Tokyo) 2018; 35:34-43. [DOI: 10.1016/j.legalmed.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/09/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022]
|
32
|
Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Tamaki K. Optimal small-molecular reference RNA for RT-qPCR-based body fluid identification. Forensic Sci Int Genet 2018; 37:135-142. [PMID: 30172170 DOI: 10.1016/j.fsigen.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) -based body fluid identification (BFID) plays a prominent role in a forensic practice, and the selected reference RNA is indispensable for a robust normalization in BFID performed using reverse transcription-quantitative PCR. In this study, we first examined sample quality using RNA integrity number, then evaluated the consistency of expression of candidate reference RNAs in 4 forensically relevant body fluids using NormFinder and BestKeeper, and lastly used each rank and index output from these tools for selecting the optimal reference RNA and the combination of the multiple RNAs using the RankAggreg package of R. We found that RNA integrity number was small in our samples, despite the use of pristine body fluids; 5S-rRNA was the optimal reference RNA for the identification of forensically relevant body fluids; and the combination of 5S-rRNA and miR-92a-3p and/or miR-484 enhanced the normalization quality. Our findings enable us to perform stringent normalization of the expression of body fluid-specific RNAs, and thus, can contribute to the development of small RNA-based BFID systems.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Munetaka Ozeki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Forensic Science Laboratory, Kyoto Prefectural Police Headquaters, 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto 602-8550, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
33
|
Dash HR, Das S. Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing. Mol Biotechnol 2018; 60:141-153. [PMID: 29214499 DOI: 10.1007/s12033-017-0052-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, State Forensic Science Laboratory, Sagar, Madhya Pradesh, 470001, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
34
|
Hanssen EN, Liland KH, Gill P, Snipen L. Optimizing body fluid recognition from microbial taxonomic profiles. Forensic Sci Int Genet 2018; 37:13-20. [PMID: 30071492 DOI: 10.1016/j.fsigen.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
In forensics the DNA-profile is used to identify the person who left a biological trace, but information on body fluid can also be essential in the evidence evaluation process. Microbial composition data could potentially be used for body fluid recognition as an improved alternative to the currently used presumptive tests. We have developed a customized workflow for interpretation of bacterial 16S sequence data based on a model composed of Partial Least Squares (PLS) in combination with Linear Discriminant Analysis (LDA). Large data sets from the Human Microbiome Project (HMP) and the American Gut Project (AGP) were used to test different settings in order to optimize performance. From the initial cross-validation of body fluid recognition within the HMP data, the optimal overall accuracy was close to 98%. Sensitivity values for the fecal and oral samples were ≥0.99, followed by the vaginal samples with 0.98 and the skin and nasal samples with 0.96 and 0.81 respectively. Specificity values were high for all 5 categories, mostly >0.99. This optimal performance was achieved by using the following settings: Taxonomic profiles based on operational taxonomic units (OTUs) with 0.98 identity (OTU98), Aitchisons simplex transform with C = 1 pseudo-count and no regularization (r = 1) in the PLS step. Variable selection did not improve the performance further. To test for robustness across sequencing platforms, we also trained the classifier on HMP data and tested on the AGP data set. In this case, the standard OTU based approach showed moderately decline in accuracy. However, by using taxonomic profiles made by direct assignment of reads to a genus, we were able to nearly maintain the high accuracy levels. The optimal combination of settings was still used, except the taxonomic level being genus instead of OTU98. The performance may be improved even further by using higher resolution taxonomic bins.
Collapse
Affiliation(s)
- Eirik Nataas Hanssen
- Department of Forensic Biology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway; Department of Forensic Medicine, University of Oslo, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway.
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Peter Gill
- Department of Forensic Biology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway; Department of Forensic Medicine, University of Oslo, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
35
|
Human-associated microbial populations as evidence in forensic casework. Forensic Sci Int Genet 2018; 36:176-185. [PMID: 30036744 DOI: 10.1016/j.fsigen.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 01/26/2023]
Abstract
In forensic investigations involving human biological traces, cell type identification is often required. Identifying the cell type from which a human STR profile has originated can assist in verifying scenarios. Several techniques have been developed for this purpose, most of which focus on molecular characteristics of human cells. Here we present a microarray method focusing on the microbial populations that are associated with human cell material. A microarray with 863 probes targeting (sets of) species, specific genera, groups of genera or families was designed for this study and evaluated with samples from different body sites: hand, foot, groin, penis, vagina, mouth and faeces. In total 175 samples from healthy individuals were analysed. Next to human faeces, 15 feline and 15 canine faeces samples were also included. Both clustering and classification analysis were used for data analysis. Faecal and oral samples could clearly be distinguished from vaginal and skin samples, and also canine and feline faeces could be differentiated from human faeces. Some penis samples showed high similarity to vaginal samples, others to skin samples. Discriminating between skin samples from different skin sites proved to be challenging. As a proof of principle, twenty-one mock case samples were analysed with the microarray method. All mock case samples were clustered or classified within the correct main cluster/group. Only two of the mock case samples were assigned to the wrong sub-cluster/class; with classification one additional sample was classified within the wrong sub-class. Overall, the microarray method is a valuable addition to already existing cell typing techniques. Combining the results of microbial population analysis with for instance mRNA typing can increase the evidential value of a trace, since both techniques focus on independent targets within a sample.
Collapse
|
36
|
van den Berge M, Sijen T. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids. Electrophoresis 2017; 38:3155-3160. [DOI: 10.1002/elps.201700241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Margreet van den Berge
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| | - Titia Sijen
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| |
Collapse
|
37
|
Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 2017; 30:10-17. [DOI: 10.1016/j.fsigen.2017.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 01/25/2023]
|
38
|
Budowle B, Schmedes SE, Wendt FR. Increasing the reach of forensic genetics with massively parallel sequencing. Forensic Sci Med Pathol 2017. [DOI: 10.1007/s12024-017-9882-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Zou KN, Ren LJ, Ping Y, Ma K, Li H, Cao Y, Zhou HG, Wei YL. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Leg Med 2016; 43:126-131. [PMID: 27570236 DOI: 10.1016/j.jflm.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces.
Collapse
Affiliation(s)
- Kai-Nan Zou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China; Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China
| | - Li-Jie Ren
- The 519th Hospital of the People's Liberation Army, Wenchang, 300457, Hainan, People's Republic of China
| | - Yuan Ping
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Ke Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Huai-Gu Zhou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China.
| | - Yi-Liang Wei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China.
| |
Collapse
|
40
|
Abstract
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes.
Collapse
Affiliation(s)
- Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Cheng JY, Feng MJ, Wu CC, Wang J, Chang TC, Cheng CM. Development of a Sampling Collection Device with Diagnostic Procedures. Anal Chem 2016; 88:7591-6. [PMID: 27338148 DOI: 10.1021/acs.analchem.6b01269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cervicovaginal fluid plays an important role in the detection of many female genital diseases, but the lack of suitable collection devices in the market severely challenges test success rate. Appropriate clinical sampling devices for cervicovaginal fluid collection would help physicians detect diseases and disease states more rapidly, efficiently, and accurately. The objective of this study was to develop a readily usable sampling collection device that would eliminate macromolecular interference and accurately provide specimens for further studies. This study was designed to develop an effective device to collect cervicovaginal fluid from women with symptoms of endometrial lesions, women appearing in the clinic for a routine Papanicolaou smear, and/or women seeking a routine gynecologic checkup. Paper-based assay, ELISA, and qNano were used to provide accurate diagnoses. A total of 103 patients successfully used the developed device to collect cervicovaginal fluid. Some of the collected specimens were used to detect glycogen, lactate, and pH for determining pathogen infection. Other specimen samples were tested for the presence of female genital cancer by comparing interleukin 6 concentration and microvesicle concentration. We proposed a noninvasive screening test for the diagnosis of female genital diseases using a dual-material collection device. The outer, nonwoven fabric portion of this device was designed to filter macromolecules, and the inner cotton portion was designed to absorb cervicovaginal fluid.
Collapse
Affiliation(s)
| | - Mow-Jung Feng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Branch , Taoyuan 333, Taiwan
| | - Chia-Chi Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Branch , Taoyuan 333, Taiwan
| | | | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Branch , Taoyuan 333, Taiwan
| | | |
Collapse
|
42
|
Abstract
Recently mRNA profiling has been widely proposed as a universal tool for biological fluids identification. Here, we describe a test for vaginal fluid identification that combines detection of five markers: vaginal mRNAs and Lactobacilli in end-point PCR reaction. The test detects the following transcripts: HBD1 (Human beta-defensin 1), MUC4 (Mucin 4), MMP11 (Matrix metalloproteinase 11), housekeeping gene G6PDH (glucose 6-phosphate dehydrogenase), and the 16S-23S rRNA intergenic spacer regions of L. crispatus and L. gasseri/L. johnsonii. Simultaneous analysis of five vaginal markers and a housekeeping gene ensures high specificity and reliability in the detection of vaginal material, which could not be obtained using detection of a single marker.
Collapse
|
43
|
Nakanishi H, Ohmori T, Hara M, Takahashi S, Kurosu A, Takada A, Saito K. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA. J Forensic Sci 2016; 61:618-22. [PMID: 27122397 DOI: 10.1111/1556-4029.13028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
Abstract
A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takeshi Ohmori
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Shirushi Takahashi
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Akira Kurosu
- Department of Legal Medicine, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
44
|
Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci Int Genet 2016; 21:81-9. [DOI: 10.1016/j.fsigen.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022]
|
45
|
Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci Int Genet 2015; 20:119-129. [PMID: 26590860 DOI: 10.1016/j.fsigen.2015.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/12/2015] [Accepted: 10/31/2015] [Indexed: 11/23/2022]
Abstract
The forensic identification of human body fluids and tissues by means of messenger RNA (mRNA) profiling is a long studied methodology that is increasingly applied to casework samples. Previously, we have described an mRNA multiplex system that targets blood, saliva, semen, menstrual secretion, vaginal mucosa and skin (Lindenbergh et al. and van den Berge et al.). In this study we consider various topics to improve this mRNA profiling system or its use and adapt the method accordingly. Bodily secretions that may be encountered at a crime scene whilst not targeted by the multiplex-id est nasal mucosa, sweat, tears, faeces and urine-were examined for false positive signals. The results prompted us to identify a nasal mucosa marker that allows the discrimination of nasal mucosa from saliva or vaginal mucosa and nosebleed blood from peripheral blood. An updated version of the multiplex was prepared to which the nasal mucosa marker was added and in which markers for semen, vaginal mucosa and blood were replaced. Lactobacillus markers were regarded unsuitable as replacement for vaginal mucosa mRNA markers because of background signals on penile swabs that appeared devoid of female DNA. Furthermore, we provide approaches to deal with highly unbalanced mixtures. First, a differential extraction protocol was incorporated into a co-extraction protocol to allow DNA and RNA analysis of separated non-sperm and sperm fractions. In a second approach, besides the standard multiplex, a customized multiplex is used which excludes markers for prevailing cell types. This allows the use of lower cDNA inputs for the prevailing cell types and higher inputs for cell types that appear masked. Additionally, we assessed the relation between the percentage of alleles or markers detected in DNA or RNA profiles when decreasing sample amounts are analysed. While blood, saliva, semen and menstrual secretion show the trend that DNA profiling is more sensitive than RNA profiling, the reverse is seen for skin and variable results occur for vaginal and nasal mucosa. Lastly, we show that replicates are useful for interpretation of RNA data, as variations can be found even for true technical replicates. Increased numbers of replicates (over four) do, however, not cancel out the impact of this variation on data interpretation. Overall, the results of this study further forensic RNA profiling.
Collapse
|
46
|
Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 2015; 18:21-32. [DOI: 10.1016/j.fsigen.2014.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
|
47
|
Song F, Luo H, Hou Y. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population. J Forensic Leg Med 2015; 35:73-80. [PMID: 26311108 DOI: 10.1016/j.jflm.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
In forensic casework, identification the cellular origin from a biological sample is crucial to the case investigation and reconstruction in crime scene. DNA/RNA co-extraction for STR typing and human body fluids identification has been proposed as an efficient and comprehensive assay for forensic analysis. Several cell-specific messenger RNA (mRNA) markers for identification of the body fluids have been proposed by previous studies. In this study, a novel multiplex mRNA profiling system included 19 markers was developed and performed by reverse transcription endpoint polymerase chain reaction (RT-PCR). The multiplex combined 3 housekeeping gene markers and 16 cell-specific markers that have been used to identify five types of human body fluids: peripheral blood, semen, saliva, vaginal secretions and menstrual blood. The specificity, sensitivity, stability and detectability of the mixture were explored in our study. Majority of the cell-specific mRNA markers showed high specificity, although cross-reactivity was observed sporadically. Specific profiling for per body fluid was obtained. Moreover, the interpretation guidelines for inference of body fluid types were performed according to the A. Lindenbergh et al. The scoring guidelines can be applied to any RNA multiplex, which was based on six different scoring categories (observed, observed and fits, sporadically observed and fits, not observed, sporadically observed, not reliable, and non-specific due to high input). The simultaneous extraction of DNA showed positive full or partial profiling results of all samples. It demonstrated that the approach of combined STR-profiling and RNA profiling was suitable and reliable to detect the donor and origin of human body fluids in Chinese Han population.
Collapse
Affiliation(s)
- Feng Song
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China.
| |
Collapse
|
48
|
Lin MH, Jones DF, Fleming R. Transcriptomic analysis of degraded forensic body fluids. Forensic Sci Int Genet 2015; 17:35-42. [DOI: 10.1016/j.fsigen.2015.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
49
|
Haas C, Hanson E, Banemann R, Bento A, Berti A, Carracedo Á, Courts C, Cock GD, Drobnic K, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison S, Hjort B, Hollard C, Hoff-Olsen P, Keyser C, Kondili A, Maroñas O, McCallum N, Miniati P, Morling N, Niederstätter H, Noël F, Parson W, Porto M, Roeder A, Sauer E, Schneider P, Shanthan G, Sijen T, Syndercombe Court D, Turanská M, van den Berge M, Vennemann M, Vidaki A, Zatkalíková L, Ballantyne J. RNA/DNA co-analysis from human skin and contact traces – results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 2015; 16:139-147. [DOI: 10.1016/j.fsigen.2015.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 11/25/2022]
|
50
|
Danaher P, White RL, Hanson EK, Ballantyne J. Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets. Forensic Sci Int Genet 2015; 14:18-30. [DOI: 10.1016/j.fsigen.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/27/2014] [Accepted: 09/07/2014] [Indexed: 11/25/2022]
|