1
|
Li S, Liu J, Xu W, Zhang S, Zhao M, Miao L, Hui M, Wang Y, Hou Y, Cong B, Wang Z. A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification. Forensic Sci Int Genet 2025; 75:103180. [PMID: 39591840 DOI: 10.1016/j.fsigen.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
MicroRNAs (miRNAs) are promising biomarkers for forensic body fluid identification owing to their small size, stability against degradation, and differential expression patterns. However, the expression of most body fluid-miRNAs is relative (differentially expressed in certain body fluids) rather than absolute (exclusively expressed in a specific body fluid). Moreover, different body fluids contain heterogeneous cell types, complicating their identification. Therefore, appropriate normalization strategies to eliminate non-biological variations and robust models to interpret expression levels accurately are necessary prerequisites for applying miRNAs in body fluid identification. In this study, the expression stability of six candidate reference genes (RGs) across five body fluids was validated using geNorm, NormFinder, BestKeeper and RankAggreg, and the most suitable combination of RGs (hsa-miR-484 and hsa-miR-191-5p) was identified under our experimental conditions. Subsequently, we systematically evaluated the expression patterns of the 28 most promising body fluid-specific miRNA markers using TaqMan RT-qPCR and selected the optimal combination of markers (12 miRNAs) to establish a multi-class support vector machine (MSVM) classification model. An independent test set (60 samples) was used to validate the accuracy of the proposed classification model, while an additional 30 casework samples were used to assess its robustness. The MSVM model accurately predicted the body fluid origin for almost all (59/60) single-source samples. Moreover, this model demonstrated the capability to identify aged forensic samples and to predict the primary components of mixed stains to a certain extent. In summary, this study presented a miRNA-based MSVM classification model for forensic body fluid identification using the qPCR platform. However, extensive validation, especially inter-laboratory collaborative exercises, is necessary before miRNA can be routinely applied in forensic identification practice.
Collapse
Affiliation(s)
- Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Wei Xu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Shuyuan Zhang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Miao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Minxiao Hui
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuan Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Anhui Hopegenerich Biotechnology, Hefei 230031, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun 2024; 15:9149. [PMID: 39443444 PMCID: PMC11500171 DOI: 10.1038/s41467-024-49813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
Collapse
Affiliation(s)
- Diego Galeano
- Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
- COVID-19 International Research Team, Medford, MA, USA.
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jeffrey Haltom
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Aliza Yousey
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Clever Research Lab, Springfield, IL, USA
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Stephen B Baylin
- COVID-19 International Research Team, Medford, MA, USA
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Van Andel Institute, Grand Rapids, MI, USA
| | - Douglas C Wallace
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA
- Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
4
|
Kim SY, Lee S, Park JT, Lee SJ, Kim HS. Postmortem-Derived Exosomal MicroRNA 486-5p as Potential Biomarkers for Ischemic Heart Disease Diagnosis. Int J Mol Sci 2024; 25:9619. [PMID: 39273565 PMCID: PMC11395318 DOI: 10.3390/ijms25179619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Exosomes are nanovesicles 30-150 nm in diameter released extracellularly. Those isolated from human body fluids reflect the characteristics of their cells or tissues of origin. Exosomes carry extensive biological information from their parent cells and have significant potential as biomarkers for disease diagnosis and prognosis. However, there are limited studies utilizing exosomes in postmortem diagnostics. In this study, we extended our initial research which identified the presence and established detection methodologies for exosomes in postmortem fluids. We analyzed exosomal miRNA extracted from plasma and pericardial fluid samples of a control group (n = 13) and subjects with acute myocardial infarction (AMI; n = 24). We employed next-generation sequencing (NGS) to investigate whether this miRNA could serve as biomarkers for coronary atherosclerosis leading to acute myocardial infarction. Our analysis revealed 29 miRNAs that were differentially expressed in the AMI group compared to the control group. Among these, five miRNAs exhibited more than a twofold increase in expression across all samples from the AMI group. Specifically, miR-486-5p levels were significantly elevated in patients with high-grade (type VI or above) atherosclerotic plaques, as per the American Heart Association criteria, highlighting its potential as a predictive biomarker for coronary atherosclerosis progression. Our results indicate that postmortem-derived exosomal microRNAs can serve as potential biomarkers for various human diseases, including cardiovascular disorders. This finding has profound implications for forensic diagnostics, a field critically lacking diagnostic markers.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Sookyoung Lee
- Department of Forensic Medicine, National Forensic Service, 10, Ipchun-ro, Wonju-si 61469, Republic of Korea;
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Su-Jin Lee
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| |
Collapse
|
5
|
Rasheed M, Tahir A, Maazouzi M, Wang H, Li Y, Chen Z, Deng Y. Interplay of miRNAs and molecular pathways in spaceflight-induced depression: Insights from a rat model using simulated complex space environment. FASEB J 2024; 38:e23831. [PMID: 39037540 DOI: 10.1096/fj.202400420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Adnan Tahir
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Han Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yumeng Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Yuen ZWS, Shanmuganandam S, Stanley M, Jiang S, Hein N, Daniel R, McNevin D, Jack C, Eyras E. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci Int Genet 2024; 71:103048. [PMID: 38640705 DOI: 10.1016/j.fsigen.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
DNA methylation plays essential roles in regulating physiological processes, from tissue and organ development to gene expression and aging processes and has emerged as a widely used biomarker for the identification of body fluids and age prediction. Currently, methylation markers are targeted independently at specific CpG sites as part of a multiplexed assay rather than through a unified assay. Methylation detection is also dependent on divergent methodologies, ranging from enzyme digestion and affinity enrichment to bisulfite treatment, alongside various technologies for high-throughput profiling, including microarray and sequencing. In this pilot study, we test the simultaneous identification of age-associated and body fluid-specific methylation markers using a single technology, nanopore adaptive sampling. This innovative approach enables the profiling of multiple CpG marker sites across entire gene regions from a single sample without the need for specialized DNA preparation or additional biochemical treatments. Our study demonstrates that adaptive sampling achieves sufficient coverage in regions of interest to accurately determine the methylation status, shows a robust consistency with whole-genome bisulfite sequencing data, and corroborates known CpG markers of age and body fluids. Our work also resulted in the identification of new sites strongly correlated with age, suggesting new possible age methylation markers. This study lays the groundwork for the systematic development of nanopore-based methodologies in both age prediction and body fluid identification, highlighting the feasibility and potential of nanopore adaptive sampling while acknowledging the need for further validation and expansion in future research.
Collapse
Affiliation(s)
- Zaka Wing-Sze Yuen
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Somasundhari Shanmuganandam
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Maurice Stanley
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Simon Jiang
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia; Department of Renal Medicine, The Canberra Hospital, Canberra, ACT 2605, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Runa Daniel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
7
|
Alsaeed SA, Elrewieny NM, Eltokhy RAA, Mohamed MS, Khalil WKB, Shalby AB, Booles HF, Aboubakr HM. Analysis of MiR-20b, MIR-197 markers for differentiation between forensic body fluids encountered in sexual assault cases. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00831-6. [PMID: 38856935 DOI: 10.1007/s12024-024-00831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
Identifying body fluids can be a critical clue that aids in reconstructing the crime scene. Semen and vaginal fluid identification is crucial, especially in cases of sexual assault. The majority of forensic studies focused on identifying normal body fluids and neglected the expression variation of semen in pathology. To differentiate between vaginal fluids, fertile and infertile semen samples (oligospermia and azoospermia) using miR 20b and miR197. A total of 48 body fluid samples, divided as 16 vaginal fluids, 16 fertile semen, and 16 infertile semen samples (8 with oligospermia and 8 with azoospermia), were collected, and the expression levels of miR-20b and miR-197 were detected by the SYBR Green real-time quantitative PCR technique. Our results showed significant different expression of these miRNAs in normal semen compared to vaginal and infertile semen. Moreover, we designed a model based on Fisher's discriminant function to forecast the group affiliations of unidentified samples. With three novel equations, we were able to accurately distinguish between semen and vaginal fluid, fertile and infertile semen, and oligospermia and azoospermia semen samples with validation accuracy of 81.3%, 100%, and 100%, respectively. MiR-20b and miR-197 expression levels are efficient and appropriate markers to distinguish semen from vaginal fluid and to differentiate between fertile and infertile semen samples. However, the present study is a preliminary study based on clinical samples, and the potential role of these markers in differentiating real crime scene samples is still unknown, so we recommend further research to investigate these markers expression while using forensic samples.
Collapse
Affiliation(s)
- Shimaa Ahmed Alsaeed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt.
| | - Noha Maher Elrewieny
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Rabab Abdulmoez Amin Eltokhy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Mohamed Shokr Mohamed
- Department of Andrology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, P.O. Box 12622, Dokki, Cairo, Egypt
| | - Aziza B Shalby
- Hormones Department, National Research Center, P.O. Box 12622, Dokki, Cairo, Egypt
| | - Hoda F Booles
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, P.O. Box 12622, Dokki, Cairo, Egypt
| | - Heba Mohamed Aboubakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Wang L, Pu G, Liu T, Chen G, Li H, Amuda TO, Cao S, Yan H, Yin H, Fu B, Luo X. Parasite-derived microRNA let-7-5p detection for metacestodiasis based on rolling circular amplification-assisted CRISPR/Cas9. FASEB J 2024; 38:e23708. [PMID: 38805151 DOI: 10.1096/fj.202302449r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).
Collapse
Affiliation(s)
- Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guoliang Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Tharheer Oluwashola Amuda
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Shanling Cao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongbin Yan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baoquan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
10
|
Tidwell TL. Life in Suspension with Death: Biocultural Ontologies, Perceptual Cues, and Biomarkers for the Tibetan Tukdam Postmortem Meditative State. Cult Med Psychiatry 2024:10.1007/s11013-023-09844-2. [PMID: 38393648 DOI: 10.1007/s11013-023-09844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/25/2024]
Abstract
This article presents two cases from a collaborative study among Tibetan monastic populations in India on the postdeath meditative state called tukdam (thugs dam). Entered by advanced Tibetan Buddhist practitioners through a variety of different practices, this state provides an ontological frame that is investigated by two distinct intellectual traditions-the Tibetan Buddhist and medical tradition on one hand and the Euroamerican biomedical and scientific tradition on the other-using their respective means of inquiry. Through the investigation, the traditions enact two paradigms of the body at the time of death alongside attendant conceptualizations of what constitutes life itself. This work examines when epistemologies of these two traditions might converge, under what ontological contexts, and through which correlated indicators of evidence. In doing so, this work explores how these two intellectual traditions might answer how the time course and characteristics of physiological changes during the postmortem period might exhibit variation across individuals. Centrally, this piece presents an epistemological inquiry delineating the types of valid evidence that constitute exceptional processes post-clinical death and their potential ontological implications.
Collapse
Affiliation(s)
- Tawni L Tidwell
- Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI, 53703, USA.
| |
Collapse
|
11
|
Chen X, Xu H, Zhu B. Forensic validation of a combined analysis of mRNA and miRNA markers for precise tissue origin inferences of five kinds of body fluids by RT-qPCR. Electrophoresis 2023; 44:1714-1724. [PMID: 37847880 DOI: 10.1002/elps.202300059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023]
Abstract
Correctly inferring the tissue origin types of forensic-relevant body fluids left at a crime scene is beneficial for reconstructing a crime scene. However, it is still a challenge to accurately identify different kinds of body fluids at a crime scene. Shorter sequence length and anti-degradation microRNA (miRNA) can be used to infer the tissue sources of biological fluid traces, but a limited number of miRNAs are tissue specific. The application of messenger RNA (mRNA) has been confirmed by different studies based on its high tissue specificity. According to the differential expression features of mRNA or miRNA in forensically relevant body fluids, this study developed a simultaneously reversed mRNA and miRNA system and then used these two types of RNAs for the determinations of five common kinds of body fluids. Compared with previously reported single kind of mRNA or miRNA assay, the combined mRNA and miRNA system showed good advantages for human body fluid identifications, especially it could be applied in mixed samples. In conclusion, the obtained results indicated that this combined mRNA and miRNA system might provide a scientific and accurate reference for body fluid identifications.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
12
|
Bonin S, D’Errico S, Medeot C, Moreschi C, Ciglieri SS, Peruch M, Concato M, Azzalini E, Previderè C, Fattorini P. Evaluation of a Set of miRNAs in 26 Cases of Fatal Traumatic Brain Injuries. Int J Mol Sci 2023; 24:10836. [PMID: 37446013 PMCID: PMC10341445 DOI: 10.3390/ijms241310836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In forensic medicine, identifying novel biomarkers for use as diagnostic tools to ascertain causes of death is challenging because of sample degradation. To that aim, a cohort (n = 26) of fatal traumatic brain injuries (TBIs) were tested for three candidate miRNAs (namely, miR-124-3p, miR-138-5p, and miR144-3p). For each case, three FFPE specimens (coup area (CA), contrecoup area (CCA), and the corpus callosum (CC)) were investigated, whereas the FFPE brain tissues of 45 subjects (deceased due to acute cardiovascular events) were used as controls. Relative quantification via the ∆∆Ct method returned significantly higher expression levels of the three candidate miRNAs (p < 0.01) in the TBI cases. No difference was detected in the expression levels of any miRNA investigated in the study among the CA, CCA, and CC. Furthermore, the analyzed miRNAs were unrelated to the TBI samples' post-mortem intervals (PMIs). On the contrary, has-miR-124-3p ahashsa-miR-144-3p were significantly correlated (p < 0.01) with the agonal time in TBI deaths. Since the RNA was highly degraded in autoptic FFPE tissues, it was impossible to analyze the mRNA targets of the miRNAs investigated in the present study, highlighting the necessity of standardizing pre-analytical processes even for autopsy tissues.
Collapse
Affiliation(s)
- Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Stefano D’Errico
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Caterina Medeot
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Carlo Moreschi
- DAME—Department of Medical Area, University of Udine, 33100 Udine, Italy;
| | - Solange Sorçaburu Ciglieri
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Michela Peruch
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Monica Concato
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Eros Azzalini
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Carlo Previderè
- Department of Public Health, Experimental, and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Paolo Fattorini
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| |
Collapse
|
13
|
Mildeberger L, Bueto J, Wilmes V, Scheiper-Welling S, Niess C, Gradhand E, Verhoff MA, Kauferstein S. Suitable biomarkers for post-mortem differentiation of cardiac death causes: Quantitative analysis of miR-1, miR-133a and miR-26a in heart tissue and whole blood. Forensic Sci Int Genet 2023; 65:102867. [PMID: 37178622 DOI: 10.1016/j.fsigen.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Cardiovascular diseases are the most common causes of death worldwide. Cardiac death can occur as reaction to myocardial infarction (MI). A diagnostic challenge arises for sudden unexpected death (SUD) cases with structural abnormalities (SA) or without any structural abnormalities (without SA). Therefore, the identification of reliable biomarkers to differentiate cardiac cases from each other is necessary. In the current study, the potential of different microRNAs (miRNAs) as biomarkers in tissue and blood samples of cardiac death cases was analyzed. Blood and tissue samples of 24 MI, 21 SUD and 5 control (C) cases were collected during autopsy. Testing for significance and receiver operating characteristic analysis (ROC) were performed. The results show that miR-1, miR-133a and miR-26a possess a high diagnostic power to discriminate between different cardiac death causes in whole blood and in tissue.
Collapse
|
14
|
Wei S, Hu S, Han N, Wang G, Chen H, Yao Q, Zhao Y, Ye J, Ji A, Sun Q. Screening and evaluation of endogenous reference genes for miRNA expression analysis in forensic body fluid samples. Forensic Sci Int Genet 2023; 63:102827. [PMID: 36642061 DOI: 10.1016/j.fsigen.2023.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
MicroRNA (miRNA)-based methods for body fluid identification are promising tools in the practice of forensic science. The selection of appropriate endogenous reference genes as normalizers for the relative quantification of miRNA expression levels using quantitative reverse transcription-polymerase chain reaction (RTqPCR) is essential to avoid errors and improve the comparability of miRNA expression level data among different body fluids. In this study, small RNAs were isolated from individual donations of five forensically relevant body fluids (peripheral blood, menstrual blood, saliva, semen and vaginal secretions). Thirty-seven samples were subjected to high-throughput miRNA sequencing. By combining our results with those obtained through a literature investigation, 28 candidate RNAs were identified. Following RTqPCR validation, the candidate RNAs were preliminarily evaluated in 15 samples to exclude miRNAs with low expression and high variation. Then, the expression levels of 10 relatively stable candidate reference RNAs in 100 samples were determined and further analysed using four commonly employed programs (geNorm, NormFinder, BestKeeper and ΔCq). According to the comprehensive stability rankings of the four algorithms, miR-320a-3p was validated as the most stable endogenous reference gene among the five forensically relevant body fluids, followed by miR-484, SNORD43, miR-320c and RNU6b. Moreover, the combined application of miR-320a-3p with RNU6b could increase the normalization effect. In addition, a total of 56 mock samples placed outdoors and indoors for different times were prepared to further evaluate the stability of candidate reference RNAs, and miR-320a-3p remained the preferred reference gene. Furthermore, the relative expression levels of publicly accepted body fluid-specific miRNAs were determined in 30 samples to verify the practicality and effectiveness of the reference genes. Our results revealed a set of alternative reference genes and could promote the development and application of miRNA-based body fluid identification by determining optional reference genes for strict normalization.
Collapse
Affiliation(s)
- Sunxiang Wei
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Na Han
- Chinese Center For Disease Control And Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Guoli Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Marine College, Shandong University, Weihai 264209, Shandong, China
| | - Huixiang Chen
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Qianwei Yao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Jian Ye
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
15
|
Wenzlow N, Mills D, Byrd J, Warren M, Long MT. Review of the current and potential use of biological and molecular methods for the estimation of the postmortem interval in animals and humans. J Vet Diagn Invest 2023; 35:97-108. [PMID: 36744749 PMCID: PMC9999395 DOI: 10.1177/10406387231153930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We provide here an overview of the state of applied techniques in the estimation of the early period of the postmortem interval (PMI). The biological methods included consist of body cooling, CSF potassium, body cooling combined with CSF potassium, and tissue autolysis. For each method, we present its application in human and veterinary medicine and provide current methodology, strengths, and weaknesses, as well as target areas for improvement. We examine current and future molecular methods as they pertain to DNA and primarily to messenger RNA degradation for the estimation of the PMI, as well as the use of RNA in aging wounds, aging blood stains, and the identification of body fluids. Various types of RNA have different lengths, structures, and functions in cells. These differences in RNAs determine various intrinsic properties, such as their half-lives in cells, and, hence, their decay rate as well as their unique use for specific forensic tests. Future applications and refinements of RNA-based techniques provide opportunities for the use of molecular methods in the estimation of PMI and other general forensic applications.
Collapse
Affiliation(s)
- Nanny Wenzlow
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - DeEtta Mills
- Department of Biological Sciences and International Forensic Research Institute, Florida International University, Miami, FL, USA
| | - Jason Byrd
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Mike Warren
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Li HM, Wan XY, Zhao JY, Liang XM, Dai Y, Li HG. Promising novel biomarkers and therapy targets: The application of cell-free seminal nucleotides in male reproduction research. Transl Res 2022; 256:73-86. [PMID: 36586533 DOI: 10.1016/j.trsl.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Liquid biopsy has the advantage of diagnosing diseases in a non-invasive manner. Seminal plasma contains secretions from the bilateral testes, epididymides, seminal vesicles, bulbourethral glands, and the prostate. These organs are relatively small and contain delicate tubes that are prone to damage by invasive diagnosis. Cell-free seminal nucleic acids test is a newly emerged item in liquid biopsy. Here, we present a comprehensive overview of all known cell-free DNA and cell-free RNAs (mRNA, miRNA, lncRNA, circRNA, piRNA, YRNA, tsRNA, etc.) and discuss their roles as biomarker candidates in liquid biopsy. With great advantages, including high stability, sensitivity, representability, and non-invasiveness, cell-free DNA/RNAs may be developed as promising biomarkers for the screening, diagnosis, prognosis, and follow-up of diseases in semen-secreting organs. Moreover, RNAs in semen may participate in important processes, including sperm maturation, early embryo development, and transgenerational disease inheritance, which may be developed as potential treatment targets for future clinical use.
Collapse
Affiliation(s)
- Hui-Min Li
- Guilin Medical University, Guilin, 541004, P. R. China
| | - Xiao-Yan Wan
- Department of Obstetrics and gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, P. R. China
| | - Jie-Yi Zhao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu-Ming Liang
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Yun Dai
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China.
| |
Collapse
|
17
|
Do Circulating Redox Biomarkers Have Diagnostic Significance in Alcohol-Intoxicated People? Int J Mol Sci 2022; 23:ijms231911808. [PMID: 36233115 PMCID: PMC9569923 DOI: 10.3390/ijms231911808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
The toxic properties of ethanol are inextricably linked to oxidative stress. Despite many reports on the effects of alcohol dependence on blood redox homeostasis, there are no data on the oxidative stress profile in alcohol-poisoned cases. There are also no data on the diagnostic usefulness of redox biomarkers determined post-mortem in various biological fluids. This work investigates the utility of enzymatic and non-enzymatic antioxidant barrier, redox status, and oxidative/nitrosative stress biomarkers in different biological fluids (such as blood, urine, vitreous humor, and cerebrospinal fluid) in the post-mortem study of patients with acute alcohol intoxication. The study group included those who died due to acute ethanol intoxication (n = 22). The research showed a significant increase in glutathione peroxidase activity, total antioxidant status, ferric reducing antioxidant power, and tryptophan concentration only in the study group’s urine compared to the control. In other circulating fluids, both antioxidant enzyme activities and glycoxidation product concentrations were not significantly different in individuals who died of alcohol overdose compared with those who died suddenly. We also did not observe a connection between oxidation–reduction balance and the amount of alcohol consumed before death. These unexpected observations may be caused by irreversible post-mortem changes occurring at the cellular level due to autolysis and putrefaction. In summary, the use of circulating body fluids to assess redox homeostasis is limited in the post-mortem analysis. Our results indicate the increased stability of urine collected post mortem compared to other circulating bioliquids. Further studies are needed to assess the intensity of oxidative and carbonyl stress in ethanol-damaged organs and the effects of post-mortem processes on cellular redox balance.
Collapse
|
18
|
He H, Qingxia Z, Qing N, Yeming L, Qifan S, Dong Z. Estimating bloodstain formation time by quantitative analysis of mtDNA degradation. Forensic Sci Int 2022; 339:111411. [DOI: 10.1016/j.forsciint.2022.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
19
|
Gauchotte G, Bochnakian A, Campoli P, Lardenois E, Brix M, Simon E, Colomb S, Martrille L, Peyron PA. Myeloperoxydase and CD15 With Glycophorin C Double Staining in the Evaluation of Skin Wound Vitality in Forensic Practice. Front Med (Lausanne) 2022; 9:910093. [PMID: 35665361 PMCID: PMC9156797 DOI: 10.3389/fmed.2022.910093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background The determination of skin wound vitality based on tissue sections is a challenge for the forensic pathologist. Histology is still the gold standard, despite its low sensitivity. Immunohistochemistry could allow to obtain a higher sensitivity. Upon the candidate markers, CD15 and myeloperoxidase (MPO) may allow to early detect polymorphonuclear neutrophils (PMN). The aim of this study was to evaluate the sensitivity and the specificity of CD15 and MPO, with glycophorin C co-staining, compared to standard histology, in a series of medicolegal autopsies, and in a human model of recent wounds. Methods Twenty-four deceased individuals with at least one recent open skin wound were included. For each corpse, a post-mortem wound was performed in an uninjured skin area. At autopsy, a skin sample from the margins of each wound and skin controls were collected (n = 72). Additionally, the cutaneous surgical margins of abdominoplasty specimens were sampled as a model of early intravital stab wound injury (scalpel blade), associated with post-devascularization wounds (n = 39). MPO/glycophorin C and CD15/glycophorin C immunohistochemical double staining was performed. The number of MPO and CD15 positive cells per 10 high power fields (HPF) was evaluated, excluding glycophorin C—positive areas. Results With a threshold of at least 4 PMN/10 high power fields, the sensitivity and specificity of the PMN count for the diagnostic of vitality were 16 and 100%, respectively. With MPO/glycophorin C as well as CD15/glycophorin C IHC, the number of positive cells was significantly higher in vital than in non-vital wounds (p < 0.001). With a threshold of at least 4 positive cells/10 HPF, the sensitivity and specificity of CD15 immunohistochemistry were 53 and 100%, respectively; with the same threshold, MPO sensitivity and specificity were 28 and 95%. Conclusion We showed that combined MPO or CD15/glycophorin C double staining is an interesting and original method to detect early vital reaction. CD15 allowed to obtain a higher, albeit still limited, sensitivity, with a high specificity. Confirmation studies in independent and larger cohorts are still needed to confirm its accuracy in forensic pathology.
Collapse
Affiliation(s)
- Guillaume Gauchotte
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Legal Medicine, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,INSERM U1256, NGERE, Vandoeuvre-lès-Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU, Nancy, France
| | - Agathe Bochnakian
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Philippe Campoli
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Emilie Lardenois
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Muriel Brix
- Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Maxillofacial and Plastic Surgery, CHRU, Nancy, France
| | - Etienne Simon
- Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Maxillofacial and Plastic Surgery, CHRU, Nancy, France
| | - Sophie Colomb
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,EDPFM, University of Montpellier, Département de Médecine Légale, Montpellier, France
| | - Laurent Martrille
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,EDPFM, University of Montpellier, Département de Médecine Légale, Montpellier, France
| | - Pierre-Antoine Peyron
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,IRMB, INM, University of Montpellier, INSERM, CHU Montpellier (LBPC-PPC), Montpellier, France
| |
Collapse
|
20
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
21
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
22
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
23
|
Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang G, Wang Z, Wei S, Wang D, Ji A, Zhang W, Sun Q. A new strategy for distinguishing menstrual blood from peripheral blood by the miR-451a/miR-21-5p ratio. Forensic Sci Int Genet 2021; 57:102654. [PMID: 34954475 DOI: 10.1016/j.fsigen.2021.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Distinction between menstrual blood and peripheral blood is vital for forensic casework, as it could provide strong evidence to figure out the nature of some criminal cases. However, to date no single blood-specific gene, including the most variable microRNAs (miRNAs) could work well in identification of blood source. In this study, we developed a new strategy for identification of human blood samples by using the copy number ratios of miR-451a to miR-21-5p based on 133 samples, including 56 menstrual blood and 47 peripheral blood, as well as 30 non-blood samples of saliva (10), semen (10) and vaginal secretion (10). The cut-off value and efficacy of the identification strategy were determined through receiver operating characteristic (ROC) analysis. Our results showed that when the miR-451a/miR-21-5p ratio below 0.929, the sample should be non-blood. In contrast, when the miR-451a/miR-21-5p ratio above 0.929 and below 10.201, the sample should be menstrual blood; and when this ratio above 10.201, the sample should be peripheral blood. External validation using 86 samples (62 menstrual blood and 24 peripheral blood samples) fully supported this strategy with the 100% sensitivity and 100% specificity. We confirmed that this result accuracy was not affected by various potential confounding factors of samples and different experimental platforms. We showed that 0.2 ng of total RNA from menstrual blood and peripheral blood was sufficient for qPCR quantification. In conclusion, our results provide an accurate reference to distinguish menstrual blood from peripheral blood for forensic authentication.
Collapse
Affiliation(s)
- Guoli Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Marine College, Shandong University, Weihai 264209, Shandong, China
| | - Zhe Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Sunxiang Wei
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Di Wang
- National Institute of Metrology, Beijing 100029, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai 264209, Shandong, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
25
|
Wang S, Shanthan G, Bouzga MM, Thi Dinh HM, Haas C, Fonneløp AE. Evaluating the performance of five up-to-date DNA/RNA co-extraction methods for forensic application. Forensic Sci Int 2021; 328:110996. [PMID: 34592582 DOI: 10.1016/j.forsciint.2021.110996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
The importance of RNA evidence is growing with new developments in RNA profiling methods and purposes. As forensic samples often can be of small quantity, extraction methods with high yields of both DNA and RNA are desirable. In order to identify the optimal DNA/RNA co-extraction workflow for forensic samples, we evaluated the performance of three frequently-used methods, two new approaches for DNA/RNA co-extraction and a manual phenol/chloroform RNA-only extraction method on blood and saliva samples. Based on a comprehensive analysis of the RNA and DNA quantities, as well as the STR genotyping and mRNA profiling results, we conclude that the two frequently-used co-extraction methods, combining commercially available DNA and RNA extraction kits, achieved the best performance. However, not any combination of commercially available DNA and RNA extraction kits works well and extensive optimization is necessary, as seen in the poor results of the two new approaches.
Collapse
Affiliation(s)
- Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland; Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | | | | | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Ma H, Li M, Jia Z, Chen X, Bu N. miR-876-3p suppresses the progression of colon cancer and correlates the prognosis of patients. Exp Mol Pathol 2021; 122:104682. [PMID: 34509500 DOI: 10.1016/j.yexmp.2021.104682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND miR-876-3p has been identified to be downregulated in colon cancer, implying the potential biological function in the progression and prognosis of colon cancer. The clinical significance and the biological function of miR-876-3p were investigated in this study to assess the potential of miR-876-3p in acting as a novel biomarker of the progression of colon cancer. METHODS The expression of miR-876-3p in colon cancer was evaluated by RT-qPCR. The clinical significance of miR-876-3p was assessed by associated its expression level with the clinical features and prognosis of patients. The biological function of miR-876-3p was estimated by the CCK8 and Transwell assay in vitro. RESULTS The significant downregulation of miR-876-3p was observed in colon cancer tissues and cells, which was closely associated with the lymph node metastasis status, TNM stage, and the perineural invasion of patients. miR-876-3p served as an independent indicator that was negatively associated with the prognosis of patients. In colon cancer cells, miR-876-3p showed significant inhibitory effects on cell proliferation, migration, and invasion, indicating its tumor suppressor role in the progression of colon cancer. CONCLUSION miR-876-3p might be involved in colon cancer development, which provides a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Huili Ma
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China.
| | - Mintao Li
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Zhuting Jia
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Xi Chen
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| | - Naitong Bu
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 256603, China
| |
Collapse
|
27
|
Jamshidi S, Bokharaei-Salim F, Nahand JS, Monavari SH, Moghoofei M, Garshasbi S, Kalantari S, Esghaei M, Mirzaei H. Evaluation of the expression pattern of 4 microRNAs and their correlation with cellular/viral factors in PBMCs of Long Term non-progressors and HIV infected naïve Individuals. Curr HIV Res 2021; 20:42-53. [PMID: 34493187 DOI: 10.2174/1570162x19666210906143136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long-term non-progressors (LTNPs) are small subsets of HIV-infected subjects that can control HIV-1 replication for several years without receiving ART. The exact mechanism of HIV-1 suppression has not yet been completely elucidated. Although the modulatory role of microRNAs (miRNAs) in HIV-1 replication has been reported, their importance in LTNPs is unclear. OBJECTIVE The aim of this cross-sectional study was to assess the expression pattern of miR-27b, -29, -150, and -221, as well as their relationship with CD4+ T-cell count, HIV-1 viral load, and nef gene expression in peripheral blood mononuclear cells (PBMCs) of untreated viremic patients and in LTNPs. METHODS MiRNAs expression levels were evaluated with real-time PCR assay using RNA isolated from PBMCs of LTNPs, HIV-1 infected naive patients, and healthy people. Moreover, CD4 T-cell count, HIV viral load, and nef gene expression were assessed. RESULTS The expression level of all miRNAs significantly decreased in the HIV-1 patient group compared to the control group, while the expression pattern of miRNAs in the LNTPs group was similar to that in the healthy subject group. In addition, there were significant correlations between some miRNA expression with viral load, CD4+ T-cell count, and nef gene expression. CONCLUSION The significant similarity and difference of the miRNA expression pattern between LNTPs and healthy individuals as well as between elite controllers and HIV-infected patients, respectively, showed that these miRNAs could be used as diagnostic biomarkers. Further, positive and negative correlations between miRNAs expression and viral/cellular factors could justify the role of these miRNAs in HIV-1 disease monitoring.
Collapse
Affiliation(s)
- Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Seyed Hamidreza Monavari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah. Iran
| | | | - Saeed Kalantari
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Hamed Mirzaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
28
|
Tian H, Huang S, Bai P, Xiao X, Peng D, Zhao H, Liu Y, Feng Q, Liao M, Li F, Liang W. The effect of infertile semen on the mRNA-based body fluid identification. Electrophoresis 2021; 42:1614-1622. [PMID: 34233021 DOI: 10.1002/elps.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 11/08/2022]
Abstract
In the past decade, mRNA markers have been well demonstrated as promising molecular markers in forensic body fluid identification (BFI), and successfully used in wide applications. Several studies have assessed the performance of semen-specific mRNA markers in distinguishing semen from other common body fluids at the crime scene. Infertility has been reported as a global health problem that is affecting approximately 15% of couples worldwide. Therefore, it is important for forensic researchers to consider the impact of infertility on semen identification. This study aimed to explore the effect of semen from infertile men (hereinafter "infertile semen") on BFI and to identify semen-specific mRNAs that can efficiently and accurately distinguish normal and infertile semen samples from other body fluids. Results showed that the selected five mRNAs (KLK3, TGM4, SEMG1, PRM1, and PRM2) performed a significantly high semen specificity in normal semen. Moreover, KLK3 was slightly influenced by infertile semen samples with over 98% positive results in all semen samples. The accuracy to predict normal semen reached up to 96.6% using the discrimination function Y1 with KLK3 and PRM1. However, when the infertile semen samples were included in discrimination function (function Y2 with KLK3), the accuracy rate of semen identification (including the normal and infertile semen) was down to 89.5%. Besides, the sensitivity of multiplex assay could reach down to 50pg. Our results suggest that it is important to consider the presence of infertile semen when using mRNAs to identify semen samples, which would have a far-reaching impact in forensic identification.
Collapse
Affiliation(s)
- Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Sicheng Huang
- Institute of Forensic Science, Chengdu Public Security Bureau, Chengdu, Sichuan, P. R. China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xiao Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huan Zhao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuqing Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qian Feng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
29
|
Esposito M, Licciardello G, Privitera F, Iannuzzi S, Liberto A, Sessa F, Salerno M. Forensic Post-Mortem Investigation in AAS Abusers: Investigative Diagnostic Protocol. A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11081307. [PMID: 34441242 PMCID: PMC8393338 DOI: 10.3390/diagnostics11081307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022] Open
Abstract
Anabolic–androgenic steroids (AASs) are a group of synthetic molecules derived from testosterone and its precursors. AASs are widely used illicitly by adolescents and athletes, especially by bodybuilders; AASs are among the most used drugs for improving physical performance, as well as for aesthetic purposes. The use of AASs by professional and recreational athletes is increasing worldwide. This review focused on deaths related to AAS abuse and to investigation of the autopsy results and histopathological findings using a rigorous methodology protocol covering: a complete autopsy, histological analysis, and a broad toxicological investigation. Moreover, we aimed to define an investigative diagnostic protocol supporting forensic pathologists during the post-mortem investigation of AAS abusers. This review was conducted using PubMed Central and Google Scholar databases to find articles published between 1 January 1968 and 30 June 2021, using the following key terms: “(anabolic-androgenic steroids) AND (autopsy); (anabolic-androgenic steroids) AND (forensic)”. A total of 939 articles were screened and 926 did not meet the inclusion criteria. In conclusion, 14 articles were included in this systematic review, reporting 137 fatal cases of AAS abuse in total. The histopathologic studies showed myocardial damage characterized by myocyte hypertrophy, focal myocyte damage with myofibrillar loss, interstitial fibrosis, mostly subepicardial, and small vessel disease. Indeed, in AAS-related cases, autopsy plays a pivotal role in the study of AAS adverse effects and organ damage related to their use or abuse. This systematic review aimed to define a specific workflow in death cases related to AASs, suggesting important future insights to better clarify sudden deaths related to AASs, such as the use of miRNAs. The forensic community needs a unified approach in cases of suspected death related to the use of AASs. There are several occasions to apply this workflow, for example in cases of death of bodybuilders and of young people who die in gymnasiums or during sports activities.
Collapse
Affiliation(s)
- Massimiliano Esposito
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
| | - Gabriele Licciardello
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
| | - Federico Privitera
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
| | - Salvatore Iannuzzi
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
| | - Aldo Liberto
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence: (F.S.); (M.S.); Tel.: +39-0881-736-926 (F.S.); +39-0953-782-060 (M.S.)
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.E.); (G.L.); (F.P.); (S.I.); (A.L.)
- Correspondence: (F.S.); (M.S.); Tel.: +39-0881-736-926 (F.S.); +39-0953-782-060 (M.S.)
| |
Collapse
|
30
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
31
|
Raissi V, Zibaei M, Raiesi O, Samani Z, Yarahmadi M, Etemadi S, Istiqomah A, Alizadeh Z, Shadabi S, Sohrabi N, Ibrahim A. Parasite-derived microRNAs as a diagnostic biomarker: potential roles, characteristics, and limitations. J Parasit Dis 2021; 45:546-556. [PMID: 34295053 DOI: 10.1007/s12639-021-01395-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs), a subclass of small regulatory RNAs that present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. MiRNAs' mode of action has attracted wide attention as a result of their unique functional importance. MiRNAs play a role in diverse physiological and pathological processes ranging from organ development, immune function to apoptosis and cancer at the post-transcription gene expression. Thus, miRNAs are known to be targets for clinical treatment and therapy. The discovery of the high stability of circulating miRNA in various types of host body fluids, such as whole blood, serum, plasma, saliva, and urine has increased great interest among researchers in the potential of circulating miRNA as a prognosis/diagnosis of infectious. Some circulating miRNAs biomarkers advanced to clinical applications related to human diseases. However, this idea starts to come only in the fields of infectious disease. The goal of this review is to enhance the current understanding of these molecules and their applicability in the field of medicine. A detailed review of the available literature consulting tools performed in online repositories such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate. This review summarizes an overview of preclinical studies using circulating miRNAs biomarkers against infectious diseases affecting humans. The use of miRNA as a safe and potential tool is encouraging news, considering that until now, guidelines for the use of miRNA in clinical practice are still lacking.
Collapse
Affiliation(s)
- Vahid Raissi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Samani
- DVM Student At Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Yarahmadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soudabeh Etemadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Afrida Istiqomah
- West Java Animal Health and Veterinary Public Health, Jakarta, Indonesia
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shadabi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asmaa Ibrahim
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
32
|
Wang G, Guo Y, Liu Y, Zhou W, Wang G. Algorithm-Assisted Detection and Imaging of microRNAs in Living Cancer Cells via the Disassembly of Plasmonic Core-Satellite Probes Coupled with Strand Displacement Amplification. ACS Sens 2021; 6:958-966. [PMID: 33445872 DOI: 10.1021/acssensors.0c02136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute detection and high-resolution imaging of microRNAs (miRNAs) in living cancer cells have attracted great attention in clinical diagnosis and therapy. However, current methods suffer from low detection sensitivity or heavy dependence on expensive and sophisticated spectrometers. Herein, a novel algorithm-assisted system of detecting and imaging miRNAs in living cancer cells was developed via the disassembly of plasmonic core-satellite probes coupled with strand displacement amplification (SDA). The target miRNAs in the system could trigger the disassembly of plasmonic core-satellite probes, leading to the color change in the scattering light of the probes, which could be captured by dark-field microscopy (DFM). The concentration of the target miRNAs was obtained by analyzing the dark-field image based on the proposed algorithm with a detection limit of 2 pM for miRNA-21. Thus, the performance in terms of simplicity and sensitivity of the system compared with one of the conventional spectrophotometers was well presented, which could inspire more clinical applications of inexpensive, intelligent, and rapid screening of cancer cells. The application software based on the proposed algorithm running on the Android platform was also developed, demonstrating the potential of remote diagnosis.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yanbin Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yingbin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Weihang Zhou
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Guoping Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
33
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
34
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
35
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Zhao C, Zhao M, Zhu Y, Zhang L, Zheng Z, Wang Q, Li Y, Zhang P, Zhu S, Ding S, Li J. The persistence and stability of miRNA in bloodstained samples under different environmental conditions. Forensic Sci Int 2020; 318:110594. [PMID: 33276201 DOI: 10.1016/j.forsciint.2020.110594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023]
Abstract
miRNA markers have been an area of forensic interest to identify body fluid sources in recent years. In this study, reverse transcription and quantitative real time polymerase chain reaction (RT-qPCR) were performed to detect the existence of blood-specific miRNA markers in bloodstained samples under different environmental conditions, Blood samples from 6 individuals were deposited onto glass plates and exposed to different temperature, humidity, ultraviolet light intensity, and natural condition. When samples were stored to a series of estimated test times, total RNA was extracted and the Ct values of the target RNAs were detected, targets included two miRNA markers (hsa-miR-16-5p, hsa-miR-451a) and one reference gene (U6 snRNA). Analysis results showed that miR-451a represented strong stability and could be detected at all detection points. Meanwhile, each RNAs exhibited unique degradation characteristics, compared to U6, miRNAs showed stronger stability. Additionally, rain had an adverse effect on RNAs stability and accelerates its degradation rate.
Collapse
Affiliation(s)
- Congcong Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Ying Zhu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Zhe Zheng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Qi Wang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Yongguo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Peng Zhang
- Hainan Medical University, Hainan 570000, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shijia Ding
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
37
|
Salzmann AP, Bamberg M, Courts C, Dørum G, Gosch A, Hadrys T, Hadzic G, Neis M, Schneider PM, Sijen T, den Berge MV, Wiegand P, Haas C. mRNA profiling of mock casework samples: Results of a FoRNAP collaborative exercise. Forensic Sci Int Genet 2020; 50:102409. [PMID: 33220528 DOI: 10.1016/j.fsigen.2020.102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
In recent years, forensic mRNA profiling has increasingly been used to identify the origin of human body fluids. By now, several laboratories have implemented mRNA profiling and also use it in criminal casework. In 2018 the FoRNAP (Forensic RNA Profiling) group was established among a number of these laboratories with the aim of sharing experiences, discussing optimization potential, identifying challenges and suggesting solutions with regards to mRNA profiling and casework. To compare mRNA profiling methods and results a collaborative exercise was organized within the FoRNAP group. Seven laboratories from four countries received 16 stains, comprising six pure body fluid / tissue stains and ten mock casework samples. The laboratories were asked to analyze the provided stains with their in-house method (PCR/CE or MPS) and markers of choice. Five laboratories used a DNA/RNA co-extraction strategy. Overall, up to 11 mRNA markers per body fluid were analyzed. We found that mRNA profiling using different extraction and analysis methods as well as different multiplexes can be applied to casework-like samples. In general, high input samples were typed with high accuracy by all laboratories, regardless of the method used. Irrespective of the analysis strategy, samples of low input or mixed stains were more challenging to analyze and interpret since, alike to DNA profiling, a higher number of markers dropped out and/or additional unexpected markers not consistent with the cell type in question were detected. It could be shown that a plethora of different but valid analysis and interpretation strategies exist and are successfully applied in the Forensic Genetics community. Nevertheless, efforts aiming at optimizing and harmonizing interpretation approaches in order to achieve a higher consistency between laboratories might be desirable in the future. The simultaneous extraction of DNA alongside RNA showed to be an effective approach to identify not only the body fluid present but also to identify the donor(s) of the stain. This allows investigators to gain valuable information about the origin of crime scene samples and the course of events in a crime case.
Collapse
Affiliation(s)
| | - Malte Bamberg
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cornelius Courts
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Annica Gosch
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Thorsten Hadrys
- Bavarian State Criminal Police Office, Institute of Forensic Sciences, Munich, Germany
| | | | - Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Titia Sijen
- Netherlands Forensic Institute, The Hague, the Netherlands
| | | | - Peter Wiegand
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
38
|
Evaluating the use of hypoxia sensitive markers for body fluid stain age prediction. Sci Justice 2020; 60:547-554. [PMID: 33077038 DOI: 10.1016/j.scijus.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023]
Abstract
To augment DNA profiling and body fluid identification techniques efforts are being made to increase the amount of information available from a crime scene stain, which includes efforts to identify externally visible characteristics through phenotypic analysis. A key question surrounding crime scene stains is the length of time between deposition of the stain and its subsequent recovery, in that is the stain recovered related to the incident in question or from a previously deposited stain number of weeks earlier? The inability to answer this fundamental question has a detrimental effect upon the successful completion of a criminal investigation. Once a body fluid leaves the body, the oxygen concentration in the environment changes; therefore, it may be that this change could cause a change in the expression of hypoxia-sensitive biomarkers. Here, a range of bloodstains, liquid saliva and liquid semen samples were collected at 0 days, 7 days, 14 days, 21 days and 28 days of degrading at room temperature (19-22 °C), before undergoing total RNA extraction and cDNA synthesis. Blood was recovered from filter paper with 3 mm2, with saliva and semen being left in their tubes and swabbed at the appropriate times. All samples then underwent quantitative PCR targeting Vascular Endothelial Growth Factor A (VEGFA) and Hypoxia-Inducible Factor 1 Alpha (HIF1A), with B-Actin (ACTB) as a reference gene. A range of linear and quadratic correlation values was obtained from the qPCR data and used to develop a predictive model with a mean absolute deviation (MAD) of 4.2, 2.1, and 5 days for blood, saliva, and semen respectively. Blind testing indicated that a stain age prediction model based upon VEGFA with ACTB as a reference gene could be used on samples up to four weeks old with a margin of error ranging from 2 days through to 5 days. While a sizeable potential time frame exists using this model; this represents a significant step towards the target of having an accurate stain age prediction model.
Collapse
|
39
|
Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Sci Int Genet 2020; 47:102300. [DOI: 10.1016/j.fsigen.2020.102300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022]
|
40
|
He H, Han N, Ji C, Zhao Y, Hu S, Kong Q, Ye J, Ji A, Sun Q. Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Sci Int Genet 2020; 48:102337. [PMID: 32693370 DOI: 10.1016/j.fsigen.2020.102337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
Abstract
Peripheral blood, menstrual blood, semen, saliva and vaginal secretions are the five most common body fluids found at crime scenes, and the identification of these five body fluids is of great significance to the reconstruction of a crime scene and resolution of the case. However, accurate identification of these five body fluids is still a challenge. To address this problem, a mathematical model for differentiating five types of forensic body fluids based on the differential expression characteristics of multiple miRNAs in five body fluids (peripheral blood, menstrual blood, semen, saliva and vaginal secretions) was developed. A total of 350 forensic body fluids (70 of each type) were collected and tested, and relative expression of 10 miRNAs (miR-451a, miR-205-5p, miR-203-3p, miR-214-3p, miR-144-3p, miR-144-5p, miR-654-5p, miR-888-5p, miR-891a-5p, miR-124a-3p) in all samples was detected by SYBR Green real-time qPCR. Three hundred samples (60 samples of each body fluid) were used as the training set to screen meaningful identification markers by stepwise discriminant analysis, and a discriminant function was established. Fifty samples (10 samples of each body fluid) were used as a validation set to examine the accuracy of the model, and 25 samples (the types of samples were unknown to the experimenter) were used for a blind test. Except for miR-144-3p, the other miRNAs were selected to construct discriminant analysis models. The self-validation accuracy of the model was 99.7 %, cross-validation accuracy was 99.3 %, accuracy of the identification validation set was 100 %, and accuracy of the blind test result was 100 %. This study provides a reliable and accurate identification strategy for five common body fluids (peripheral blood, menstrual blood, semen, saliva, and vaginal secretions) in forensic medicine.
Collapse
Affiliation(s)
- Hongxia He
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Na Han
- Chinese Center For Disease Control And Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Chengjie Ji
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Qinglan Kong
- Faculty of Mathematics and Statistics, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Jian Ye
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
41
|
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H, Zhao S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 2020; 20:349-359. [PMID: 32399814 DOI: 10.1007/s10238-020-00627-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with a length of 18-22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Adel Izmailov
- Regional Clinical Oncology Center, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001. .,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
42
|
Ye Z, Sun B, Xiao Z. Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma. Gene 2020; 749:144669. [PMID: 32298761 DOI: 10.1016/j.gene.2020.144669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is a common type of malignancy. The mechanism behind its tumor progression is not clear yet. The aim of this study is to use machine learning to identify the feature miRNAs, which can be reliably used as biomarkers for diagnosis LUSC. We downloaded microRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus(GEO) database to identify differences in microRNA expression of primary tumor tissues and para-carcinoma tissues from LUSC. Construction of miRNA-mRNA interaction network, GO, KEGG pathway analysis and Kaplan-Meier survival analysis were used to explore the biological functions of the identified microRNAs. 21 feature miRNAs were identified between lung SCC tumor tissues and para-carcinoma tissues with the support of SVM and PCA methods. Among them, ten feature miRNAs: mir-143, mir-100, mir-101-1, mir-101-2, mir-182, mir-183, mir-205, mir-21, mir-30a, mir30-d were identified which could be used as a feature group to separate the cancer tissues from the adjacent tissues ultimately, and cross-validation of the obtained data showed that it can achieve extremely high accuracy and recall rate. Using KEGG, Reactome, GO databases, these 10 miRNAs and their target genes were found to be highly correlated with cancer. Survival analysis found that this group of miRNAs had a significant relationship with the survival rate of cancer patients, and the expression was significantly different between tumor tissues and healthy tissues. The dysregulated feature miRNAs might be involved in the pathology of LUSC and could be used as potential diagnostic biomarkers or therapeutic targets for LUSC.
Collapse
Affiliation(s)
- Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
43
|
Zolotarenko AD, Chekalin EV, Bruskin SA. Modern Molecular Genetic Methods for Age Estimation in Forensics. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419120147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Kakimoto Y, Matsushima Y, Tanaka M, Hayashi H, Wang T, Yokoyama K, Ochiai E, Osawa M. MicroRNA profiling of gastric content from breast-fed and formula-fed infants to estimate last feeding: a pilot study. Int J Legal Med 2019; 134:903-909. [PMID: 31832755 DOI: 10.1007/s00414-019-02226-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Recently, we were consulted about a challenging case, where an infant died by poisoning and the drug-dependent mother insisted that she unintentionally gave the toxic drug through breast milk. Accordingly, we investigated the utility of immunoblotting and microRNA (miRNA) profiling of the infant's gastric content (GC) to differentiate between breast-feeding and formula-feeding. As a pilot study, we sampled the GC from breast-fed (GCB) and formula-fed (GCF) infants, as well as gastric juice (GJ) from fasted adults at autopsy. Breast milk (BM) samples were collected from volunteers within 1 year post-delivery. By immunoblotting, lactoferrin and gross cystic disease fluid protein (GCDEP) were clearly detected in BM, but could not be detected in GCB. Similarly, β-lactoglobulin was detected in formula milk, but could not be detected in GCF. Meanwhile, miRNA sequencing revealed that the miRNA expression profile of GCB was closer to BM than GCF and GJ. Especially, miR-151a and miR-186 were more abundant in BM and GCB than in GCF and GJ. Our study is the first to elucidate the human GJ miRNA profile and demonstrate the possibility that miR-151a and miR-186 in GC may be the biomarker of breast-feeding.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yutaka Matsushima
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
45
|
Sharma S, Singh R. Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics. Int J Legal Med 2019; 134:411-432. [PMID: 31814056 DOI: 10.1007/s00414-019-02222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Semen is most frequently encountered body fluid in forensic cases apart from blood especially in sexual assault cases. The presence and absence of semen can help in conviction or exoneration of a suspect by either confirming or refuting the claims put forward by the suspect and the victim. However, in the wake of limited studies on non-destructive and rapid analysis of semen, it is fairly difficult. Therefore, it is an increasing demand to pioneer the application of available analytical methods in such manner that non-destructive, automated, rapid, and reliable identification and discrimination of body fluids can be established. In the present study, such a methodological application of attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy has been put forward as one of the initial steps towards the identification and discrimination/classification of seminal fluid from vaginal fluid and other human biological as well as non-biological look-alike semen substances using chemometric tools which are principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). Effect of other simulated factors such as substrate interference, mixing with other body fluids, dilutions, and washing and chemical treatments to the samples has been studied. PCA resulted in 98.8% of accuracy for the discrimination of seminal fluid from vaginal fluid whilst 100% accuracy was obtained using LDA method. One hundred percent discrimination was achieved to discriminate semen from other biological fluids using PLSR and LDA, and from non-biological substances using PCA-LDA models. Furthermore, results of the effect of substrates, chemical treatment, mixing with vaginal secretions, and dilution have also been described.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
46
|
Abstract
Semen is crucial evidence for some sex crimes, with its sole confirmation being sperm detection. The success of sperm detection is dependent on all levels of preanalytic and analytic procedures. Specimen collection must be performed by well-trained and competent forensic physicians as well as forensic nurses, with preservation done properly before laboratory transfer. Laboratory procedures should consider archival sperm identification, by visualization, with adequate amounts separated from other cells to obtain male DNA profiles. Differential extraction is robust and accepted as the forensic standard but is time consuming and may result in male DNA loss. Thus, alternative methods and microdevices have been developed. Challenges in sperm isolation from vaginal or buccal epithelium mixes and discrimination in multiperpetrator cases have been overcome by single-cell profiling; however, problems inherent in identical twin discrimination and azoospermia have yet to be solved. Epigenetics and future molecular biomarkers may hold the key; therefore, all laboratory processes must consider DNA and RNA protection. Long-term specimen preservation should be done when possible in light of future confirmatory tests.
Collapse
|
47
|
He H, Ji A, Zhao Y, Han N, Hu S, Kong Q, Jiang L, Ye J, Liu Y, Sun Q. A stepwise strategy to distinguish menstrual blood from peripheral blood by Fisher's discriminant function. Int J Legal Med 2019; 134:845-851. [PMID: 31734726 DOI: 10.1007/s00414-019-02196-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Blood samples are the most common and important biological samples found at crime scenes, and distinguishing peripheral blood and menstrual blood samples is crucial for solving criminal cases. MicroRNAs (miRNAs) are important molecules with strong tissue specificity that can be used in forensic fields to identify the tissue properties of body fluid samples. In this study, the relative expression levels of four different miRNAs (miR-451, miR-205, miR-214 and miR-203) were analysed by real-time PCR, with 200 samples from 5 different body fluids, including two kinds of blood samples (peripheral blood and menstrual blood) and three kinds of non-blood samples (saliva, semen and vaginal secretion). Then, a strategy for identifying menstrual and peripheral blood based on Fisher's discriminant function and the relative expression of multiple miRNAs was established. Two sets of functions were used: Z1 and Z2 were used to distinguish blood samples from non-blood samples, and Y1 and Y2 were used to distinguish peripheral blood from menstrual blood. A 100% accuracy rate was achieved when 50 test samples were used. Ten samples were used to test the sensitivity of the method, and 10 ng or more of total RNA from peripheral blood samples and 10 pg or more of total RNA from menstrual blood samples were sufficient for this method. The results provide a scientific reference to address the difficult forensic problem of distinguishing menstrual blood from peripheral blood.
Collapse
Affiliation(s)
- Hongxia He
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China.,Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China
| | - Na Han
- Chinese Center For Disease Control And Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China
| | - Qinglan Kong
- Faculty of Mathematics and Statistics, Zaozhuang University, Zaozhuang, 277160, Shandong, People's Republic of China
| | - Li Jiang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China
| | - Jian Ye
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China
| | - Yao Liu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China. .,Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing, 100038, China.
| |
Collapse
|
48
|
Jiang L, Zhang L, Rui C, Liu X, Mao Z, Yan L, Luan T, Wang X, Wu Y, Li P, Zeng X. The role of the miR1976/CD105/integrin αvβ6 axis in vaginitis induced by Escherichia coli infection in mice. Sci Rep 2019; 9:14456. [PMID: 31594987 PMCID: PMC6783613 DOI: 10.1038/s41598-019-50902-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Vaginitis is very common among women, especially women of childbearing age, and is associated with significantly increased risk of preterm birth and pelvic inflammatory diseases. An imbalance in the vaginal flora, the primary cause of vaginitis, promotes the initiation and progression of vaginal infections. However, the responsible mechanisms are still poorly understood. Using a murine vaginitis model of Escherichia coli infection, we demonstrated that decreased expression of microRNA1976 and increased expression of CD105 and integrin αvβ6 were closely associated with the progression of vaginal infection. Importantly, we demonstrated for the first time that the microRNA1976/CD105/integrin αvβ6 axis regulates E. coli-mediated vaginal infection in mice, as evidenced by the finding that E. coli-induced vaginal infection was reversed by microRNA1976 overexpression and exacerbated by CD105 overexpression. The regulation of CD105 and integrin αvβ6 by microRNA1976 was further confirmed in a murine model of vaginitis with adenoviral vector treatment. Taken together, our data suggested that microRNA1976 negatively regulates E. coli-induced vaginal infection in mice at least in part by suppressing CD105 and integrin αvβ6 expression. These findings may provide new insight into the mechanisms of E. coli-induced vaginitis, identify a novel diagnostic biomarker and a potential therapeutic target for flora imbalance-associated vaginitis.
Collapse
Affiliation(s)
- Lisha Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.,Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Anhui, 230601, China
| | - Lingling Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, China
| | - Zhiyuan Mao
- Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, 210004, China
| | - Lina Yan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ying Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
49
|
Sharma S, Chophi R, Singh R. Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int J Legal Med 2019; 134:63-77. [PMID: 31388794 DOI: 10.1007/s00414-019-02134-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Body fluids are one of the most important pieces of evidence encountered in forensic cases especially in cases of sexual assault. Analysis of such evidence can help to establish a link between the perpetrator, the victim, and the crime scene and thereby assist in crime reconstruction. However, one of the biggest challenges faced by the investigators in sexual assault cases is that of ascertaining the issue of consent of the victim. In this matter, differentiation of menstrual blood (either in dried or stained form) from traumatic peripheral blood can give a potential solution on this particular aspect. A number of studies have been attempted to differentiate these two body fluids using various biochemical and serological methods. However, the methods employed are limited by factors such as sample destructivity and non-specificity, and the methods are susceptible to false positive results. In the present study, the scope of attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy in discriminating samples of menstrual blood and peripheral blood has been investigated, in combination with chemometric tools such as principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). PCA resulted in 93.3% accuracy, whereas PLSR and LDA resulted in 100% accuracy for the discrimination of peripheral blood from menstrual blood. Application of PCA for the discrimination of menstrual blood from vaginal fluid and seminal fluid delivered 100% classification. Similarly, 100% classification was achieved while differentiating between menstrual blood and blood look-alike substances. Furthermore, in the current study, the effect of substrates on the analysis of menstrual blood has also been studied and described. Graphical Abstract.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rito Chophi
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
50
|
Plasma microRNA miR-26b as a potential diagnostic biomarker of degenerative myelopathy in Pembroke welsh corgis. BMC Vet Res 2019; 15:192. [PMID: 31182094 PMCID: PMC6558770 DOI: 10.1186/s12917-019-1944-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Degenerative myelopathy (DM) is a progressive neurodegenerative disease frequently found in Pembroke Welsh Corgis (PWCs). Most DM-affected PWCs are homozygous for the mutant superoxide dismutase 1 (SOD1) allele; however, the genetic examination for the SOD1 mutation does not exclusively detect symptomatic dogs. In order to identify novel biomarkers, the plasma microRNA (miRNA) profiles of PWCs with DM were investigated. RESULTS Quantification of the plasma levels of 277 miRNAs by an RT-qPCR array identified 11 up-regulated miRNAs and 7 down-regulated miRNAs in DM-affected PWCs from those in wild-type SOD1 PWCs. A pathway analysis identified 3 miRNAs: miR-26b, miR-181a, and miR-196a, which potentially regulate several genes associated with SOD1. In order to validate the diagnostic accuracy of the candidate miRNAs in the aged PWC population, candidate miRNAs in plasma were measured by RT-qPCR and a receiver operating characteristic (ROC) curve analysis was performed. miR-26b had the largest area under the ROC curve for distinguishing DM PWCs from healthy PWCs (sensitivity, 66.7%; specificity, 87.0%). The plasma level of miR-26b was significantly higher in the DM group than in the healthy control group. A positive correlation was observed between increases in the plasma level of miR-26b and disease progression. CONCLUSIONS These results suggest that plasma miR-26b is a potential novel diagnostic biomarker of DM.
Collapse
|