1
|
De La Chica A, Birkett J, Akwei C, Lamont D, Dawnay N. Improving the forensic genetic workflow for countries with small geographical areas: What are the options and how cost effective are they? Forensic Sci Int Genet 2025; 74:103171. [PMID: 39556989 DOI: 10.1016/j.fsigen.2024.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
Forensic services worldwide often encounter considerable challenges relating to funding and infrastructure. Smaller jurisdictions or areas where forensic resources are scarce are faced with complicated choices in how they approach criminal casework, with a number of options available. Often these involve trade-offs between cost, time and data quality. Faced with such decisions it becomes important for the field to acknowledge the realities facing such jurisdictions, discuss the pros and cons of each approach, and identify a framework for making such decisions. This novel paper, reviews the available literature and identifies three main solutions for consideration: 1) the use of satellite laboratories for sample triage, 2) the use of a main regional laboratory for full forensic analysis and 3) the use of rapid DNA by police for reducing backlogs. Alongside these strategies, the impacts of cost and quality in regard to each of the stated options are considered. While the literature supports the assertion that some methods can reduce downstream costs via the reduction in turnaround times, there is limited data highlighting the business case used to support decision making when considering these options including the use of cost:benefit analyses or case studies, emphasizing the novelty of this paper. This is likely due to the commercialized nature of the forensic sector preventing the publication of a private laboratory's business approach. The lack of emphasis on the 'business case' in forensic literature has the potential to mislead R&D scientists who may consequently fail to consider such factors when performing their own research.
Collapse
Affiliation(s)
- Anabella De La Chica
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jason Birkett
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Cynthia Akwei
- Liverpool Business School, Liverpool John Moores University, Brownlow Hill, Liverpool L3 5UG, UK
| | - David Lamont
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK.
| |
Collapse
|
2
|
Han J, Zhuang B, Zou L, Wang D, Jiang L, Wei YL, Zhao L, Zhao L, Li C. A developmental validation of the Quick TargSeq 1.0 integrated system for automated DNA genotyping in forensic science for reference samples. Electrophoresis 2024; 45:814-828. [PMID: 38459798 DOI: 10.1002/elps.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Analysis of short tandem repeats (STRs) is a global standard method for human identification. Insertion/Deletion polymorphisms (DIPs) can be used for biogeographical ancestry inference. Current DNA typing involves a trained forensic worker operating several specialized instruments in a controlled laboratory environment, which takes 6-8 h. We developed the Quick TargSeq 1.0 integrated system (hereinafter abbreviated to Quick TargSeq) for automated generation of STR and DIP profiles from buccal swab samples and blood stains. The system fully integrates the processes of DNA extraction, polymerase chain reaction (PCR) amplification, and electrophoresis separation using microfluidic biochip technology. Internal validation studies were performed using RTyper 21 or DIP 38 chip cartridges with single-source reference samples according to the Scientific Working Group for DNA Analysis Methods guidelines. These results indicated that the Quick TargSeq system can process reference samples and generate STR or DIP profiles in approximately 2 h, and the profiles were concordant with those determined using traditional STR or DIP analysis methods. Thus, reproducible and concordant DNA profiles were obtained from reference samples. Throughout the study, no lane-to-lane or run-to-run contamination was observed. The Quick TargSeq system produced full profiles from buccal swabs with at least eight swipes, dried blood spot cards with two 2-mm disks, or 10 ng of purified DNA. Potential PCR inhibitors (i.e., coffee, smoking tobacco, and chewing tobacco) did not appear to affect the amplification reactions of the instrument. The overall success rate and concordance rate of 153 samples were 94.12% and 93.44%, respectively, which is comparable to other commercially available rapid DNA instruments. A blind test initiated by a DNA expert group showed that the system can correctly produce DNA profiles with 97.29% genotype concordance with standard bench-processing methods, and the profiles can be uploaded into the national DNA database. These results demonstrated that the Quick TargSeq system can rapidly generate reliable DNA profiles in an automated manner and has the potential for use in the field and forensic laboratories.
Collapse
Affiliation(s)
- Junping Han
- Technology Department of Chaoyang Sub-bureau, Beijing Public Security Bureau, Beijing, P. R. China
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, P. R. China
| | - Bin Zhuang
- Beijing CapitalBio Technology Ltd. Co., Beijing, P. R. China
| | - Lixin Zou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Daoyu Wang
- People's Public Security University of China, Beijing, P. R. China
| | - Li Jiang
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, P. R. China
| | - Yi-Liang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Lijian Zhao
- Beijing CapitalBio Technology Ltd. Co., Beijing, P. R. China
| | - Lei Zhao
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, P. R. China
| | - Caixia Li
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, P. R. China
| |
Collapse
|
3
|
Duncan GE, Avery A, Maamar MB, Nilsson EE, Beck D, Skinner MK. Epigenome-wide association study of systemic effects of obesity susceptibility in human twins. Epigenetics 2023; 18:2268834. [PMID: 37871278 PMCID: PMC10595392 DOI: 10.1080/15592294.2023.2268834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023] Open
Abstract
The current study was designed to use an epigenome-wide association approach (EWAS) to identify potential systemic DNA methylation alterations that are associated with obesity using 22 discordant twin pairs. Buccal cells (from a cheek swab) were used as a non-obesity relevant purified marker cell for the epigenetic analysis. Analysis of differential DNA methylation regions (DMRs) was used to identify epigenetic associations with metabolic and dietary measures related to obesity with discordant twins. An edgeR analysis provided a DMR signature with p < 1e-04, but statistical significance was reduced due to low sample size and known multiple origins of obesity. A weighted gene coexpression network analysis (WGCNA) was performed and identified modules (p < 0.005) of epigenetic sites that correlated with different metabolic and dietary measures. The DMR and WGCNA epigenetic sites were near genes (e.g., CIDEC, SPP1, ZFPG9, and POMC) with previously identified obesity associated pathways (e.g., metabolism, cholesterol, and fat digestion). Observations demonstrate the feasibility of identifying systemic epigenetic biomarkers for obesity, which can be further investigated for clinical relevance in future research with larger sample sizes. The availability of a systemic epigenetic biomarker for obesity susceptibility may facilitate preventative medicine and clinical management of the disease early in life.
Collapse
Affiliation(s)
- Glen E. Duncan
- Department of Nutrition and Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Ally Avery
- Department of Nutrition and Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Laurin N, Boulianne H, Frégeau C. Comparative analysis of two Rapid DNA technologies for the processing of blood and saliva-based samples. Forensic Sci Int Genet 2023; 67:102928. [PMID: 37573630 DOI: 10.1016/j.fsigen.2023.102928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Rapid DNA technologies recently gained significant momentum as a means to generate DNA profiles faster than with standard laboratory workflows. Initially developed for the analysis of buccal reference samples, applications are being considered for other types of forensic samples. In this study, an identical set of 150 blood and saliva-based samples was processed using two different Rapid DNA technologies, the Applied BioSystems™ RapidHIT™ ID System using the RapidINTEL™ sample cartridge and the ANDE™ 6C Rapid DNA Analysis™ System using the I-Chip. A subset of samples were subjected to alternative collection methods or sample pre-treatments to determine the optimal strategy for each instrument. An equivalent sample set was also processed using a conventional DNA analysis workflow. The sensitivity range of the two Rapid DNA technologies was comparable based on blood and saliva dilution series, with both technologies able to generate full profiles from samples typically yielding 5-10 ng of DNA when processed using conventional DNA analysis. The brand of cotton swabs used for Rapid DNA analysis had an impact on the results for both systems. Differences were observed in success rate between the two systems when processing blood (on fabrics, FTA paper or hard surfaces) and saliva-based samples (drink containers, FTA paper, chewing gum, cigarette butt filter paper) and depended on the sample type. Importantly, deviating from the manufacturer's instructions for sample collection and pre-treatment was more detrimental to the ANDE 6C results. The quality of DNA profiles, as assessed using heterozygote peak height ratios, interloci balance and artifact presence, confirmed the results to be reliable and acceptable for single source samples. Profiling results were obtained when samples were reprocessed using the same Rapid DNA technology or conventional DNA analysis. Secondary analysis using a substitute software (GeneMapper ID-X v1.5) to recover additional genetic information was shown to be feasible. Finally, a comparison between the Applied Biosystems™ RapidHIT™ ID System Software v1.3.1 and v1.3.2 was also performed. Findings of this study could assist those interested in using Rapid DNA technology for blood or saliva-based samples, in various settings and for different applications.
Collapse
Affiliation(s)
- Nancy Laurin
- Royal Canadian Mounted Police, Forensic Science & Identification Services, Science and Strategic Policy, 1200 Vanier Parkway, Ottawa, Ontario K1A 0R2, Canada.
| | - Hélène Boulianne
- Royal Canadian Mounted Police, Forensic Science & Identification Services, National Forensic Laboratory Services, 1200 Vanier Parkway, Ottawa, Ontario K1A 0R2, Canada
| | - Chantal Frégeau
- Royal Canadian Mounted Police, Forensic Science & Identification Services, National Forensic Laboratory Services, 1200 Vanier Parkway, Ottawa, Ontario K1A 0R2, Canada
| |
Collapse
|
5
|
Bruijns B, Knotter J, Tiggelaar R. A Systematic Review on Commercially Available Integrated Systems for Forensic DNA Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:1075. [PMID: 36772114 PMCID: PMC9919030 DOI: 10.3390/s23031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
This systematic review describes and discusses three commercially available integrated systems for forensic DNA analysis, i.e., ParaDNA, RapidHIT, and ANDE. A variety of aspects, such as performance, time-to-result, ease-of-use, portability, and costs (per analysis run) of these three (modified) rapid DNA analysis systems, are considered. Despite their advantages and developmental progress, major steps still have to be made before rapid systems can be broadly applied at crime scenes for full DNA profiling. Aspects in particular that need (further) improvement are portability, performance, the possibility to analyze a (wider) variety of (complex) forensic samples, and (cartridge) costs. Moreover, steps forward regarding ease-of-use and time-to-result will benefit the broader use of commercial rapid DNA systems. In fact, it would be a profit if rapid DNA systems could be used for full DNA profile generation as well as indicative analyses that can give direction to forensic investigators which will speed up investigations.
Collapse
Affiliation(s)
- Brigitte Bruijns
- Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands
- Politieacademie, Arnhemseweg 348, 7334 AC Apeldoorn, The Netherlands
| | - Jaap Knotter
- Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands
- Politieacademie, Arnhemseweg 348, 7334 AC Apeldoorn, The Netherlands
| | - Roald Tiggelaar
- NanoLab Cleanroom, MESA+ Institute, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Rapid DNA from a Disaster Victim Identification Perspective: is it a game changer? Forensic Sci Int Genet 2022; 58:102684. [DOI: 10.1016/j.fsigen.2022.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
|
7
|
McNeill L, Megson D, Linton PE, Norrey J, Bradley L, Sutcliffe OB, Shaw KJ. Lab-on-a-Chip approaches for the detection of controlled drugs, including new psychoactive substances: A systematic review. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Validation of the Applied Biosystems RapidHIT ID instrument and ACE GlobalFiler Express sample cartridge. Int J Legal Med 2021; 136:13-41. [PMID: 34643802 PMCID: PMC8511620 DOI: 10.1007/s00414-021-02722-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Rapid DNA platforms are fully automated systems capable of processing DNA from biological samples and interpreting the results in approximately 90 minutes with minimal human intervention. With a greater reliance on the system than on the analyst, validation data are especially needed to define the performance and limitations of commercially available Rapid DNA systems. Thus, validation studies of a Rapid DNA workflow consisting of the Applied Biosystems RapidHIT ID Instrument and RapidLINK software with a focus on the ACE GlobalFiler Express Sample Cartridge and reference buccal swabs were performed in accordance with Scientific Working Group on DNA Analysis Methods Validation Guidelines. These validation studies included assessments of sensitivity, contamination, concordance, reproducibility and repeatability, stability, inhibition, mixtures, sample reprocessing, precision, and first-pass success rate. Overall, the current Applied Biosystems RapidHIT ID Instrument with the ACE GlobalFiler Express sample cartridge was found to be a reliable tool for generation of STR profiles from reference-type buccal swabs.
Collapse
|
9
|
The upregulation of oncogenic miRNAs in swabbed samples obtained from oral premalignant and malignant lesions. Clin Oral Investig 2021; 26:1343-1351. [PMID: 34342761 DOI: 10.1007/s00784-021-04108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oncogenic miRNAs upregulated in OSCC play a range of versatile roles in oral carcinogenesis. Oral potentially malignant disorders (OPMDs) are the antecedent lesions to oral squamous carcinoma (OSCC) and they require a definitive diagnosis and early intervention. This study hypothesizes the presence of aberrant oncogenic miRNA expression in swabbed oral lesions. MATERIALS AND METHODS The expression of miR-21, miR-31, miR-134, miR-146a, and miR-211 in swabbed samples from 36 dysplastic or hyperplastic OPMDs and 10 OSCCs, relative to respective normal mucosa within the same patient, is analyzed with qRT-PCR to develop a diagnosis. RESULTS Upregulation of all tested miRNAs in OPMD and OSCC samples comparing to controls is found to have occurred. Receiver operating characteristics curve analysis shows that miR-31 gives the best diagnostic accuracy of 0.91 when differentiating OPMD/OSCC from controls. An analysis of miR-134 and miR-211 expression allows the discrimination of the dysplastic state associated with OPMD, while the use of expression of the combined miRNAs further improves the analytical performances when identifying the dysplastic state. The concordant upregulation of miR-21, miR-31, and miR-146a is found to occur during an early stage of OSCC carcinogenesis. CONCLUSION This study demonstrates the upregulation of multiple oncogenic miRNAs in swabbed OPMD and OSCC samples. miRNA expression in swabbed collectives enables the differentiation between normal mucosa and OPMD/OSCC, independent of their histopathological severity. CLINICAL RELEVANCE This conventional and convenient sampling tool, when coupled with an assessment of miR-31 expression, would seem to be an adjuvant approach to the diagnosis of OPMD and OSCC.
Collapse
|
10
|
Barnert E, Katsanis SH, Mishori R, Wagner JK, Selden RF, Madden D, Berger D, Erlich H, Hampton K, Kleiser A, La Vaccara A, Parsons TJ, Peccerelli FA, Piñero MH, Stebbins MJ, Vásquez P, Warf CW, White TJ, Stover E, Svetaz MV. Using DNA to reunify separated migrant families. Science 2021; 372:1154-1156. [PMID: 34045324 PMCID: PMC9185756 DOI: 10.1126/science.abh3979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perceived lack of tools, and fears of the sensitivity of DNA data, should not be obstacles
Collapse
Affiliation(s)
- Elizabeth Barnert
- The list of author affiliations is available in the supplementary materials
| | - Sara H Katsanis
- The list of author affiliations is available in the supplementary materials.
| | - Ranit Mishori
- The list of author affiliations is available in the supplementary materials
| | - Jennifer K Wagner
- The list of author affiliations is available in the supplementary materials
| | - Richard F Selden
- The list of author affiliations is available in the supplementary materials
| | - Diana Madden
- The list of author affiliations is available in the supplementary materials
| | - Dan Berger
- The list of author affiliations is available in the supplementary materials
| | - Henry Erlich
- The list of author affiliations is available in the supplementary materials
| | - Kathryn Hampton
- The list of author affiliations is available in the supplementary materials
| | - Andreas Kleiser
- The list of author affiliations is available in the supplementary materials
| | | | - Thomas J Parsons
- The list of author affiliations is available in the supplementary materials
| | - Fredy A Peccerelli
- The list of author affiliations is available in the supplementary materials
| | | | - Michael J Stebbins
- The list of author affiliations is available in the supplementary materials
| | - Patricia Vásquez
- The list of author affiliations is available in the supplementary materials
| | - Curren W Warf
- The list of author affiliations is available in the supplementary materials
| | - Thomas J White
- The list of author affiliations is available in the supplementary materials
| | - Eric Stover
- The list of author affiliations is available in the supplementary materials
| | - M Veronica Svetaz
- The list of author affiliations is available in the supplementary materials
| |
Collapse
|
11
|
Analytical validation of an RI sample cartridge with the RapidHIT® ID system. Int J Legal Med 2021; 135:1257-1265. [PMID: 33754178 DOI: 10.1007/s00414-021-02553-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Evaluating the short tandem repeat (STR) in the field is important for the timely identification of a suspect. Several lines showed that the RapidHIT® ID system is reliable for DNA genotyping with buccal swabs and naked DNA. However, the application of this approach with blood samples has been poorly investigated. Because blood samples are among the most common forensic samples in our laboratory, further studies should be conducted. Here, we assessed the analytical performance of 19 STR loci with a newly developed RapidINTEL (RI) Sample Cartridge Kit by using the blood samples with known genotypes. Several commonly used substrates were included in the sensitivity study, and FTA cards proved to be the most promising sample carrier for blood storage and later identification. There was superior sensitivity and specificity with a 100% concordance rate for 0.5 μL of blood or 7 ng of genomic DNA. The performance for blood samples was comparable with that for the standard protocol. High success rate (90.57%) and high-concordance (100%) genotyping were automatically achieved over a wide range of operating conditions except for TH01. No contamination was observed throughout the study. Hematin, indigo, and humic acid had limited influence on the instrument system, while urea and melanin dramatically affected the genotyping results. Generally, the newly developed RI sample cartridge provided an alternative method for the STR genotyping of single-source blood samples over a wide range of operating conditions.
Collapse
|
12
|
Li Z, Bai Y, You M, Hu J, Yao C, Cao L, Xu F. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron 2020; 177:112952. [PMID: 33453463 PMCID: PMC7774487 DOI: 10.1016/j.bios.2020.112952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Benefiting from emerging miniaturized and equipment-free nucleic acid testing (NAT) technologies, fully integrated NAT devices at point of care (POC) with the capability of "sample-in-answer-out" are proceeding at a break-neck speed to eliminate complex operations and reduce the risk of contamination. Like the development of polymerase chain reaction (PCR) technology (the standard technique for NAT), the detection signal of fully integrated NAT devices has evolved from qualitative to quantitative and recently to digital readout, aiming at expanding their extensive applications through gradually improving detection sensitivity and accuracy. This review firstly introduces the existing commercial products, and then illustrates recent fully integrated microfluidic devices for NAT at POC from the aspect of detection signals (i.e., qualitative, quantitative and digital). Importantly, the key issues of existing commercial products and the main challenges between scientific research and product development are discussed. On this basis, we envision that the MARCHED (miniaturized, automatic, reagent-preloaded, commercializable, high-throughput, environment-independent and disposable) NAT devices are expected to be realized in the near future.
Collapse
Affiliation(s)
- Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Co., Ltd, Suzhou, 215010, PR China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
13
|
Kitayama T, Fukagawa T, Watahiki H, Mita Y, Fujii K, Unuma K, Sakurada K, Uemura K, Sekiguchi K, Mizuno N. Evaluation of Rapid DNA system for buccal swab and disaster victim identification samples. Leg Med (Tokyo) 2020; 46:101713. [DOI: 10.1016/j.legalmed.2020.101713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
|
14
|
Romsos EL, French JL, Smith M, Figarelli V, Harran F, Vandegrift G, Moreno LI, Callaghan TF, Brocato J, Vaidyanathan J, Pedroso JC, Amy A, Stoiloff S, Morillo VH, Czetyrko K, Johnson ED, de Tagyos J, Murray A, Vallone PM. Results of the 2018 Rapid DNA Maturity Assessment. J Forensic Sci 2020; 65:953-959. [PMID: 31985834 PMCID: PMC11034630 DOI: 10.1111/1556-4029.14267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023]
Abstract
Three commercially available integrated rapid DNA instruments were tested as a part of a rapid DNA maturity assessment in July of 2018. The assessment was conducted with sets of blinded single-source reference samples provided to participants for testing on the individual rapid platforms within their laboratories. The data were returned to the National Institute of Standards and Technology (NIST) for review and analysis. Both FBI-defined automated review (Rapid DNA Analysis) and manual review (Modified Rapid DNA Analysis) of the datasets were conducted to assess the success of genotyping the 20 Combined DNA Index System (CODIS) core STR loci and full profiles generated by the instruments. Genotype results from the multiple platforms, participating laboratories, and STR typing chemistries were combined into a single analysis. The Rapid DNA Analysis resulted in a success rate of 80% for full profiles (85% for the 20 CODIS core loci) with automated analysis. Modified Rapid DNA Analysis resulted in a success rate of 90% for both the CODIS 20 core loci and full profiles (all attempted loci per chemistry). An analysis of the peak height ratios demonstrated that 95% of all heterozygous alleles were above 59% heterozygote balance. For base-pair sizing precision, the precision was below the standard 0.5 bp deviation for both the ANDE 6C System and the RapidHIT 200.
Collapse
Affiliation(s)
- Erica L Romsos
- Applied Genetics Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8314
| | | | - Mark Smith
- Arizona Department Public Safety, 2102 West Encanto Blvd, Phoenix, AZ, 85009
| | - Vincent Figarelli
- Arizona Department Public Safety, 2102 West Encanto Blvd, Phoenix, AZ, 85009
| | - Frederick Harran
- Bensalem Township Police Department, 2400 Byberry Road, Bensalem, PA, 19020
| | - Glenn Vandegrift
- Bensalem Township Police Department, 2400 Byberry Road, Bensalem, PA, 19020
| | - Lilliana I Moreno
- Federal Bureau of Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA, 22135
| | - Thomas F Callaghan
- Federal Bureau of Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA, 22135
| | - Joanie Brocato
- Louisiana State Police Crime Laboratory, 376 East Airport Drive, Baton Rouge, LA, 70806
| | - Janaki Vaidyanathan
- Louisiana State Police Crime Laboratory, 376 East Airport Drive, Baton Rouge, LA, 70806
| | - Juan C Pedroso
- Miami Beach Police Department, 1100 Washington Ave, Miami Beach, FL, 33139
| | - Andrea Amy
- Miami Beach Police Department, 1100 Washington Ave, Miami Beach, FL, 33139
| | - Stephanie Stoiloff
- Miami-Dade Police Department, Forensic Services Bureau, 9105 NW 25th Street, Doral, FL, 33172
| | - Victor H Morillo
- Miami-Dade Police Department, Forensic Services Bureau, 9105 NW 25th Street, Doral, FL, 33172
| | - Karina Czetyrko
- Miami-Dade Police Department, Forensic Services Bureau, 9105 NW 25th Street, Doral, FL, 33172
| | - Elizabeth D Johnson
- United States Army Criminal Investigation Laboratory Defense Forensic Science Center, 4930 North 31st Street, Forest Park, GA, 30297
| | - Jessica de Tagyos
- United States Army Criminal Investigation Laboratory Defense Forensic Science Center, 4930 North 31st Street, Forest Park, GA, 30297
| | - Ashley Murray
- United States Army Criminal Investigation Laboratory Defense Forensic Science Center, 4930 North 31st Street, Forest Park, GA, 30297
| | - Peter M Vallone
- Applied Genetics Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8314
| |
Collapse
|
15
|
Vitoševic K, Todorovic D, Slovic Z, Zivkovic-Zaric R, Todorovic M. Forensic Genetics and Genotyping. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2016-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractForensic genetics represents a combination of molecular and population genetics. Personal identification and kinship analysis (e.g. paternity testing) are the two main subjects of forensic DNA analysis. Biological specimens from which DNA is isolated are blood, semen, saliva, tissues, bones, teeth, hairs. Genotyping has become a basis in the characterization of forensic biological evidence. It is performed using a variety of genetic markers, which are divided into two large groups: bi-allelic (single-nucleotide polymorphisms, SNP) and multi-allelic polymorphisms (variable number of tandem repeats, VNTR and short tandem repeats, STR). This review describes the purpose of genetic markers in forensic investigation and their limitations. The STR loci are currently the most informative genetic markers for identity testing, but in cases without a suspect SNP can predict offender’s ancestry and phenotype traits such as skin, eyes and hair color. Nowadays, many countries worldwide have established forensic DNA databases based on autosomal short tandem repeats and other markers. In order for DNA profile database to be useful at a national or international level, it is essential to standardize genetic markers used in laboratories.
Collapse
Affiliation(s)
- Katarina Vitoševic
- Department of Anatomy and Forensic Medicine, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Danijela Todorovic
- Department of Human Genetics, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Zivana Slovic
- Department of Anatomy and Forensic Medicine, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Radica Zivkovic-Zaric
- Department of Anatomy and Forensic Medicine, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Milos Todorovic
- Department of Anatomy and Forensic Medicine, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
- Department of Forensic Medicine and Toxicology , Clinical Centre Kragujevac , Kragujevac , Serbia
| |
Collapse
|
16
|
Development of enhanced sensitivity protocols on the RapidHIT™ 200 with a view to processing casework material. Sci Justice 2019; 59:411-417. [PMID: 31256812 DOI: 10.1016/j.scijus.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 11/23/2022]
Abstract
The RapidHIT™ 200 device from IntegenX® provides a sample-to-profile platform that is capable of processing a variety of sample types. In this study we review the sensitivity of the 'Run Other' protocol for processing crime stain type samples containing various input quantities of DNA using the AmpFℓSTR® NGMSElect™ Express PCR Amplification Kit cartridges available from IntegenX®. The range of DNA inputs which achieved useable results were not as desired and therefore various enhancements to the instruments extraction processes were investigated. These studies showed an improvement in the range of DNA input templates that could by processed on the RapidHIT™ 200 by using the enhanced methods and resulted in three new run protocols.
Collapse
|
17
|
Development of RapidHIT® ID using NGMSElect™ Express chemistry for the processing of reference samples within the UK criminal justice system. Forensic Sci Int 2019; 295:179-188. [DOI: 10.1016/j.forsciint.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022]
|
18
|
Yang J, Hurth C, Nordquist A, Smith S, Zenhausern F. Integrated Microfluidic System for Rapid DNA Fingerprint Analysis: A Miniaturized Integrated DNA Analysis System (MiDAS)-Swab Sample-In to DNA Profile-Out. Methods Mol Biol 2019; 1906:207-224. [PMID: 30488395 DOI: 10.1007/978-1-4939-8964-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fully automated rapid DNA analysis system requires integrating several operational elements performing multiple steps onto one single microfluidic platform. The functions to include on the microfluidic platform consist of substrate lysis, lysate DNA extraction, single or multiplexed PCR amplification, amplicon separation, and product readout. Here we describe a fully automated integrated system for forensic short tandem repeat (STR) analysis of reference samples, achieving buccal swab-in and DNA profile-out.
Collapse
Affiliation(s)
- Jianing Yang
- Center for Applied NanoBioscience and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| | - Cedric Hurth
- Center for Applied NanoBioscience and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Alan Nordquist
- Center for Applied NanoBioscience and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stan Smith
- Center for Applied NanoBioscience and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
19
|
Morgan R, Illidge S, Wilson-Wilde L. Assessment of the potential investigative value of a decentralised rapid DNA workflow for reference DNA samples. Forensic Sci Int 2019; 294:140-149. [DOI: 10.1016/j.forsciint.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/24/2018] [Accepted: 11/18/2018] [Indexed: 11/29/2022]
|
20
|
Development and validation of the RapidHIT™ 200 utilising NGMSElect™ Express for the processing of buccal swabs. Forensic Sci Int 2018; 289:244-252. [DOI: 10.1016/j.forsciint.2018.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022]
|
21
|
Evaluation of a rapid DNA process with the RapidHIT® ID system using a specialized cartridge for extracted and quantified human DNA. Forensic Sci Int Genet 2018; 34:116-127. [DOI: 10.1016/j.fsigen.2018.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/23/2022]
|
22
|
De Nys S, Duca RC, Nawrot T, Hoet P, Van Meerbeek B, Van Landuyt KL, Godderis L. Temporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: Association with air pollution. ENVIRONMENT INTERNATIONAL 2018; 111:301-308. [PMID: 29217223 DOI: 10.1016/j.envint.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epigenetic changes, such as DNA methylation, are observed in response to environmental exposure and in the development of several chronic diseases. Consequently, DNA methylation alterations might serve as indicators of early effects. In this context, the aim of this study was to assess the temporal variability of global DNA methylation and hydroxymethylation levels in buccal cells from healthy adult volunteers. METHODS Global DNA methylation (%5mdC) and hydroxymethylation (%5hmdC) levels in human buccal cells, collected from 26 healthy adults at different time points, were quantified by UPLC-MS/MS. Associations between %5mdC and %5hmdC, respectively, and short-term exposure (1-7days) to air pollutants PM2.5 and PM10 were tested with mixed-effects models including various covariates. RESULTS/DISCUSSION Dynamic short-term changes in DNA methylation and hydroxymethylation levels in buccal cells were observed, which were inversely associated with exposure to PM2.5 and PM10. An IQR increase in PM2.5 over a 7-day moving average period was significantly associated with a decrease of -1.47% (-1.74%, -1.20%) and -0.043% (-0.054%, -0.032%) in %5mdC and %5hmdC, respectively. Likewise, for PM10, a decrease of -1.42% (-1.70, -1.13) and -0.040% (-0.051%, -0.028%) was observed. CONCLUSION Global DNA methylation and hydroxymethylatation varied over a time period of three weeks. The observed temporal variability was associated with exposure to ambient PM2.5 and PM10 levels. This should be taken into account when interpreting epigenetic alterations in buccal cells.
Collapse
Affiliation(s)
- Siemon De Nys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Radu-Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Tim Nawrot
- Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Belgium
| | - Peter Hoet
- Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium.
| |
Collapse
|
23
|
Boiso S, Dalin E, Seidlitz H, Sidstedt M, Trygg E, Hedman J, Ansell R. RapidHIT for the purpose of stain analyses – An interrupted implementation. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
de Gruijter M, Nee C, de Poot CJ. Rapid identification information and its influence on the perceived clues at a crime scene: An experimental study. Sci Justice 2017; 57:421-430. [PMID: 29173455 DOI: 10.1016/j.scijus.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/19/2017] [Accepted: 05/29/2017] [Indexed: 12/01/2022]
Abstract
Crime scenes can always be explained in multiple ways. Traces alone do not provide enough information to infer a whole series of events that has taken place; they only provide clues for these inferences. CSIs need additional information to be able to interpret observed traces. In the near future, a new source of information that could help to interpret a crime scene and testing hypotheses will become available with the advent of rapid identification techniques. A previous study with CSIs demonstrated that this information had an influence on the interpretation of the crime scene, yet it is still unknown what exact information was used for this interpretation and for the construction of their scenario. The present study builds on this study and gains more insight into (1) the exact investigative and forensic information that was used by CSIs to construct their scenario, (2) the inferences drawn from this information, and (3) the kind of evidence that was selected at the crime scene to (dis)prove this scenario. We asked 48 CSIs to investigate a potential murder crime scene on the computer and explicate what information they used to construct a scenario and to select traces for analysis. The results show that the introduction of rapid ID information at the start of an investigation contributes to the recognition of different clues at the crime scene, but also to different interpretations of identical information, depending on the kind of information available and the scenario one has in mind. Furthermore, not all relevant traces were recognized, showing that important information can be missed during the investigation. In this study, accurate crime scenarios where mainly build with forensic information, but we should be aware of the fact that crime scenes are always contaminated with unrelated traces and thus be cautious of the power of rapid ID at the crime scene.
Collapse
Affiliation(s)
- Madeleine de Gruijter
- Amsterdam University of Applied Sciences, Forensic Science Department, Weesperzijde 190, 1097 DZ Amsterdam, The Netherlands..
| | - Claire Nee
- International Centre for Research in Forensic Psychology, University of Portsmouth, King Henry Building, King Henry 1st St, Portsmouth PO1 2DY, UK
| | - Christianne J de Poot
- Amsterdam University of Applied Sciences, Forensic Science Department, Weesperzijde 190, 1097 DZ Amsterdam, The Netherlands.; Police academy of the Netherlands, Research and Development, P.O. Box 348, 7301 BB Apeldoorn, The Netherlands; VU University Amsterdam, Criminology Department, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Salceda S, Barican A, Buscaino J, Goldman B, Klevenberg J, Kuhn M, Lehto D, Lin F, Nguyen P, Park C, Pearson F, Pittaro R, Salodkar S, Schueren R, Smith C, Troup C, Tsou D, Vangbo M, Wunderle J, King D. Validation of a rapid DNA process with the RapidHIT ® ID system using GlobalFiler ® Express chemistry, a platform optimized for decentralized testing environments. Forensic Sci Int Genet 2017; 28:21-34. [DOI: 10.1016/j.fsigen.2017.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
|
26
|
Han J, Sun J, Zhao L, Zhao W, Liu Y, Li C. Validation study of a 15-plex rapid STR amplification system for human identification. Forensic Sci Int Genet 2017; 28:71-81. [DOI: 10.1016/j.fsigen.2017.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/19/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
|
27
|
Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review. MICROMACHINES 2017. [PMCID: PMC6190325 DOI: 10.3390/mi8030076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the advent of genetic analysis, electrode materials have played an irreplaceable role due to the easily-exploitable negatively-charged backbone of the DNA structure. Initially, the employment of electrophoretic movement lay only in the separation of DNA fragments of differing length; however, the widening utility of electrokinetic phenomena at the microscale in areas such as fluid transportation and multistep integration led researchers to capitalize further when translating processes to microfluidic or “lab-on-chip” devices. Over the following three decades, the field witnessed a plethora of ways in which the necessary voltages could be transmitted to the sample and reagents with many successes; however, additional demands were then placed on those hoping to bring their microdevices to the market place. A greater emphasis on the cost of all constituent parts along with the increased importance that fluidics be contained hermetically at all times meant groups would become more imaginative when incorporating electrode materials. This review will aim to exactly describe the evolution of how those materials have been employed in DNA-based microfluidic devices. It will focus on how developers began to explore other emerging uses and also discuss how their tactics reflected the progressive demands of their chosen industry.
Collapse
|
28
|
Abstract
The tools available for both infectious disease diagnostics and human identity testing have benefitted from major technological advances in the automation of nucleic acid purification, amplification, and detection methods. The seamless integration of these processes into a fully automated microscale format has led to the development of rapid, user-friendly sample-to-answer assay systems. The application of these systems for human identity testing allows for DNA profiles to be generated in a field-forward environment where they can be used to generate investigative leads in crimes or other actionable intelligence. When used for infectious disease diagnostics, the sensitivity and specificity of these assay systems meets or exceeds that of more conventional strategies for the detection of respiratory, gastrointestinal, nervous system, and sexually transmitted pathogens. The anticipated medical benefits of this technology include shorter hospital stays, the elimination of unnecessary or ineffectual treatment, improved patient outcomes, and an overall quantifiable reduction in healthcare costs.
Collapse
|
29
|
Thompson BL, Birch C, Nelson DA, Li J, DuVall JA, Le Roux D, Tsuei AC, Mills DL, Root BE, Landers JP. A centrifugal microfluidic device with integrated gold leaf electrodes for the electrophoretic separation of DNA. LAB ON A CHIP 2016; 16:4569-4580. [PMID: 27766331 DOI: 10.1039/c6lc00953k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current conventional methods utilized for forensic DNA analysis are time consuming and labor-intensive requiring large and expensive equipment and instrumentation. While more portable Rapid DNA systems have been developed, introducing them to a working laboratory still necessitates a high cost of initiation followed by the recurrent cost of the devices. This has highlighted the need for an inexpensive, rapid and portable DNA analysis tool for human identification in a forensic setting. In order for an integrated DNA analysis system such as this to be realized, device operations must always be concluded by a rapid separation of short-tandem repeat (STR) DNA fragments. Contributing to this, we report the development of a unique, multi-level, centrifugal microdevice that can perform both reagent loading and DNA separation. The fabrication protocol was inspired by the print, cut and laminate (PCL) technique described previously by our group, and in accordance, offers a rapid and inexpensive option compared with existing approaches. The device comprises multiple polyester-toner fluidic layers, a cyclic olefin copolymer separation domain and integrated gold leaf electrodes. All materials are commercially-available and complement the PCL process in a way that permits fabrication of increasingly sought after single-use devices. All reagents, including a viscous sieving matrix, are loaded centrifugally, eliminating external pneumatic pumping, and the sample is separated in <5 minutes using an effective separation length of only 4 cm (reagent loading to completed separation, is <37 minutes). The protocol for gold leaf electrode manufacture yielded up to 30 electrodes for less than $3 (cost of a 79 mm × 79 mm gold leaf sheet) and when using a device combining these electrodes and centrifugal reagent/polymer loading, the electrophoretic separation of STR fragments with two base resolution was demonstrated. This exemplary performance makes the device an ideal candidate for further integration and development of an inexpensive, portable and rapid forensic human identification system.
Collapse
Affiliation(s)
- Brandon L Thompson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Christopher Birch
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Daniel A Nelson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Jingyi Li
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Jacquelyn A DuVall
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Delphine Le Roux
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - An-Chi Tsuei
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | | - Brian E Root
- Applied Research Institute, University of Virginia, Charlottesville, VA 22904, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA. and Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA and Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
30
|
Cox JO, DeCarmen TS, Ouyang Y, Strachan B, Sloane H, Connon C, Gibson K, Jackson K, Landers JP, Cruz TD. A novel, integrated forensic microdevice on a rotation-driven platform: Buccal swab to STR product in less than 2 h. Electrophoresis 2016; 37:3046-3058. [PMID: 27620618 DOI: 10.1002/elps.201600307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022]
Abstract
This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme-based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared-mediated PCR (IR-PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme-mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube-based) protocol. Initial microdevice IR-PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near-full profiles that suffered from interlocus peak imbalance and poor adenylation (significant -A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE-ready STR amplicons in less than 2 h (<1 h of hands-on time). Using this approach, high-quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands-free, closed-system alternative to traditional forensic methods.
Collapse
Affiliation(s)
- Jordan O Cox
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Yiwen Ouyang
- Departments of Chemistry, Mechanical and Aerospace Engineering, & Pathology, University of Virginia, Charlottesville, VA, USA
| | - Briony Strachan
- Departments of Chemistry, Mechanical and Aerospace Engineering, & Pathology, University of Virginia, Charlottesville, VA, USA
| | - Hillary Sloane
- Departments of Chemistry, Mechanical and Aerospace Engineering, & Pathology, University of Virginia, Charlottesville, VA, USA
| | - Cathey Connon
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kemper Gibson
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimberly Jackson
- Departments of Chemistry, Mechanical and Aerospace Engineering, & Pathology, University of Virginia, Charlottesville, VA, USA
| | - James P Landers
- Departments of Chemistry, Mechanical and Aerospace Engineering, & Pathology, University of Virginia, Charlottesville, VA, USA
| | - Tracey Dawson Cruz
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Microfluidic Devices for Forensic DNA Analysis: A Review. BIOSENSORS-BASEL 2016; 6:bios6030041. [PMID: 27527231 PMCID: PMC5039660 DOI: 10.3390/bios6030041] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10–20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.
Collapse
|
32
|
Objective data on DNA success rates can aid the selection process of crime samples for analysis by rapid mobile DNA technologies. Forensic Sci Int 2016; 264:28-33. [PMID: 27015156 DOI: 10.1016/j.forsciint.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
Mobile Rapid-DNA devices have recently become available on the market. These devices can perform DNA analyses within 90min with an easy 'sample in-answer out' system, with the option of performing comparisons with a DNA database or reference profile. However, these fast mobile systems cannot yet compete with the sensitivity of the standard laboratory analysis. For the future this implies that Scene of Crime Officers (SoCOs) need to decide on whether to analyse a crime sample with a Rapid-DNA device and to get results within 2h or to secure and analyse the sample at the laboratory with a much longer throughput time but with higher sensitivity. This study provides SoCOs with evidence-based information on DNA success rates, which can improve their decisions at the crime scene on whether or not to use a Rapid-DNA device. Crime samples with a high success rate in the laboratory will also have the highest potential for Rapid-DNA analysis. These include samples from e.g. headwear, cigarette ends, articles of clothing, bloodstains, and drinking items.
Collapse
|
33
|
Date-Chong M, Hudlow WR, Buoncristiani MR. Evaluation of the RapidHIT™ 200 and RapidHIT GlobalFiler(®) Express kit for fully automated STR genotyping. Forensic Sci Int Genet 2016; 23:1-8. [PMID: 26971314 DOI: 10.1016/j.fsigen.2016.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022]
Abstract
The RapidHIT™ 200 Human Identification System and RapidHIT GlobalFiler(®) Express kit were evaluated and validated for use with single-source reference samples. It was of primary interest to evaluate the system for its efficacy as an expert system and to estimate a first pass success rate, as well as to identify the technical variables impacting that result. While results indicated that this instrument/kit combination can be used to accurately type single-source buccal samples, substantial variability in sensitivity and intra-color balance were observed, as were multiple artifacts, requiring extensive manual editing of the profiles. Artifacts included dye "blobs" and spectral overlap (pull-up) peaks that often originated from relatively low intensity allele peaks. Reduced intra-color balance, in combination with low sensitivity, occasionally resulted in instances of allelic dropout. Overall, 50% of the buccal samples analyzed in this study would have been successfully typed to give full GlobalFiler(®) profiles without the need for manual review and editing.
Collapse
Affiliation(s)
- Mavis Date-Chong
- Jan Bashinski DNA Laboratory, Bureau of Forensic Services, California Department of Justice, Richmond, CA 94804, USA.
| | - William R Hudlow
- Jan Bashinski DNA Laboratory, Bureau of Forensic Services, California Department of Justice, Richmond, CA 94804, USA.
| | - Martin R Buoncristiani
- Jan Bashinski DNA Laboratory, Bureau of Forensic Services, California Department of Justice, Richmond, CA 94804, USA.
| |
Collapse
|
34
|
Zhuang B, Han J, Xiang G, Gan W, Wang S, Wang D, Wang L, Sun J, Li CX, Liu P. A fully integrated and automated microsystem for rapid pharmacogenetic typing of multiple warfarin-related single-nucleotide polymorphisms. LAB ON A CHIP 2016; 16:86-95. [PMID: 26568290 DOI: 10.1039/c5lc01094b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A fully integrated and automated microsystem consisting of low-cost, disposable plastic chips for DNA extraction and PCR amplification combined with a reusable glass capillary array electrophoresis chip in a modular-based format was successfully developed for warfarin pharmacogenetic testing. DNA extraction was performed by adopting a filter paper-based method, followed by "in situ" PCR that was carried out directly in the same reaction chamber of the chip without elution. PCR products were then co-injected with sizing standards into separation channels for detection using a novel injection electrode. The entire process was automatically conducted on a custom-made compact control and detection instrument. The limit of detection of the microsystem for the singleplex amplification of amelogenin was determined to be 0.625 ng of standard K562 DNA and 0.3 μL of human whole blood. A two-color multiplex allele-specific PCR assay for detecting the warfarin-related single-nucleotide polymorphisms (SNPs) 6853 (-1639G>A) and 6484 (1173C>T) in the VKORC1 gene and the *3 SNP (1075A>C) in the CYP2C9 gene was developed and used for validation studies. The fully automated genetic analysis was completed in two hours with a minimum requirement of 0.5 μL of input blood. Samples from patients with different genotypes were all accurately analyzed. In addition, both dried bloodstains and oral swabs were successfully processed by the microsystem with a simple modification to the DNA extraction and amplification chip. The successful development and operation of this microsystem establish the feasibility of rapid warfarin pharmacogenetic testing in routine clinical practice.
Collapse
Affiliation(s)
- Bin Zhuang
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, 100084, China. and CapitalBio Corporation, Beijing, 102206, China
| | - Junping Han
- Chinese People's Public Security University, Beijing, 100038, China
| | - Guangxin Xiang
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, 100084, China. and CapitalBio Corporation, Beijing, 102206, China
| | - Wupeng Gan
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, 100084, China. and CapitalBio Corporation, Beijing, 102206, China
| | - Shuaiqin Wang
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Dong Wang
- CapitalBio Corporation, Beijing, 102206, China and National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Lei Wang
- CapitalBio Corporation, Beijing, 102206, China and National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Jing Sun
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Cai-Xia Li
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Peng Liu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Romsos EL, Lembirick S, Vallone PM. Rapid DNA maturity assessment. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Romsos EL, Vallone PM. Rapid PCR of STR markers: Applications to human identification. Forensic Sci Int Genet 2015; 18:90-9. [DOI: 10.1016/j.fsigen.2015.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
37
|
Laurin N, Frégeau CJ. An Accelerated Analytical Process for the Development of STR Profiles for Casework Samples. J Forensic Sci 2015; 60:983-9. [PMID: 25782346 DOI: 10.1111/1556-4029.12753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Nancy Laurin
- Royal Canadian Mounted Police, Forensic Science & Identification Services, Policy & Program Support; 1200 Vanier Parkway Ottawa ON Canada
| | - Chantal J. Frégeau
- Royal Canadian Mounted Police, Forensic Science & Identification Services, Policy & Program Support; 1200 Vanier Parkway Ottawa ON Canada
| |
Collapse
|