1
|
de Souza MR, Araújo IP, da Costa Arruda W, Lima AA, Ságio SA, Chalfun-Junior A, Barreto HG. RGeasy: a reference gene analysis tool for gene expression studies via RT-qPCR. BMC Genomics 2024; 25:907. [PMID: 39350049 PMCID: PMC11441100 DOI: 10.1186/s12864-024-10808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Gene expression through RT-qPCR can be performed by the relative quantification method, which requires the expression normalization through reference genes. Therefore, it is essential to validate, experimentally, the candidate reference genes. Thus, although there are several studies that are performed to identify the most stable reference genes, most them validate genes for very specific conditions, not exploring the whole potential of the research since not all possible combinations of treatments and/or conditions of the study are explored. For this reason, new experiments must be conducted by researchers that have interest in analyzing gene expression of treatments and/or conditions present, but not explored, in these studies. Here, we present the RGeasy tool, which aims to facilitate the selection of reference genes, allowing the user to choose genes for a greater number of combinations of treatments/conditions, compared to the ones present in the original articles, through just a few clicks. RGeasy was validated with RT-qPCR data from gene expression studies performed in two coffee species, Coffea arabica and Coffea canephora, and it can be used for any animal, plant or microorganism species. In addition to displaying a rank of the most stable reference genes for each condition or treatment, the user also has access to the primer pairs for the selected reference genes.
Collapse
Affiliation(s)
- Micaele Rodrigues de Souza
- Laboratory of Molecular Analysis (LAM), Department of Life Sciences, Federal University of Tocantins, UFT, University Campus of Palmas, Palmas, TO, 402-970, Brazil
| | - Ivo Pontes Araújo
- Computer Science Course, Federal University of Tocantins, University Campus of Palmas, Palmas, TO, Brazil
| | - Wosley da Costa Arruda
- Computer Science Course, Federal University of Tocantins, University Campus of Palmas, Palmas, TO, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis (LAM), Department of Life Sciences, Federal University of Tocantins, UFT, University Campus of Palmas, Palmas, TO, 402-970, Brazil
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis (LAM), Department of Life Sciences, Federal University of Tocantins, UFT, University Campus of Palmas, Palmas, TO, 402-970, Brazil.
| |
Collapse
|
2
|
Rashid Z, Nabi A, Nabi N, Lateef I, Nisa Q, Fayaz T, Gulzar G, Bashir A, Shah MD, Zargar SM, Khan I, Nahvi AI, Itoo H, Shah RA, Padder BA. Selection of stable reference genes for qPCR expression of Colletotrichum lindemuthianum, the bean anthracnose pathogen. Fungal Biol 2024; 128:1771-1779. [PMID: 38796261 DOI: 10.1016/j.funbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), β-tub (β-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and β-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.
Collapse
Affiliation(s)
- Zainab Rashid
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Research Center for Residue and Quality Control Analysis, SKUAST-Kashmir, 190025, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Imran Khan
- Division of Agricultural Statistics, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Afsah Iqbal Nahvi
- Extension Training Centre, Malangpora, Pulwama, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - H Itoo
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rafiq A Shah
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
3
|
Shao C, Lao W, Liang Y. Reference Genes Selection of Gymnosporangium yamadae during the Interaction with Apple Leaves. J Fungi (Basel) 2022; 8:jof8080830. [PMID: 36012818 PMCID: PMC9409963 DOI: 10.3390/jof8080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Apple rust disease caused by Gymnosporangium yamadae is the one of the major threats to the development of the apple industry in China, but the pathogenic molecular mechanism of the disease remains unclear. It is imperative to screen out appropriate reference genes during the interaction between G. yamadae and apple leaves to analyze the gene expression patterns during the pathogenesis of G. yamadae. ACT, EF1, EF2, GAPDH, 40S, 60S, α-TUB, β-TUB and UBCE3 were selected as candidate reference genes based on the transcriptomic dataset of G. yamadae. The expression levels were tested by real-time quantitative PCR during time-course infection of apple leaves and the expression stabilities were evaluated by △Ct method as well as by three software (NormFinder, geNorm and BestKeeper) and one web-based analysis software (RefFinder). The expression stability of the candidate reference genes was further validated by using the effector candidate gene Cluster-3395.48660 as the target gene in RT-qPCR. According to the results by △Ct and BestKeeper, 40S, EF2 and EF1 were the most stable reference genes, while EF1, EF2 and GAPDH were the most stable reference genes based on the NormFinder analysis result. The geNorm recommended the most stable genes EF1, EF2 and α-TUB as reference genes. Comprehensive analysis results of the RefFinder indicated EF1, EF2 and α-TUB were the most suitable genes. Based on these results, EF1, EF2 and α-TUB were considered as reference genes for analyzing the gene expression profiles of Cluster-3395.48660 in different infection stages, and the results were consistent with the transcriptome data. All the results suggest that the combination of EF1, EF2 and α-TUB proved to be acceptable reference genes during the interaction between G. yamadae and apple leaves.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Wenhao Lao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
4
|
Orrego A, Gavilán MC, Arévalos A, Ortíz B, Gaete Humada B, Pineda-Fretez A, Romero-Rodríguez MC, Flores Giubi ME, Kohli MM, Iehisa JCM. Identification of reference genes and their validation for gene expression analysis in phytopathogenic fungus Macrophomina phaseolina. PLoS One 2022; 17:e0272603. [PMID: 35930568 PMCID: PMC9355225 DOI: 10.1371/journal.pone.0272603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophomina phaseolina is a soil-borne pathogenic fungus that infects a wide range of crop species and causes severe yield losses. Although the genome of the fungus has been sequenced, the molecular basis of its virulence has not been determined. Identification of up-regulated genes during fungal infection is important to understand the mechanism involved in its virulence. To ensure reliable quantification, expression of target genes needs to be normalized on the basis of certain reference genes. However, in the case of M. phaseolina, reference genes or their expression analysis have not been reported in the literature. Therefore, the objective of this study was to evaluate 12 candidate reference genes for the expression analysis of M. phaseolina genes by applying three different fungal growth conditions: a) during root and stem infection of soybean, b) in culture media with and without soybean leaf infusion and c) by inoculating a cut-stem. Based on BestKeeper, geNorm and NormFinder algorithms, CYP1 was identified as the best recommended reference gene followed by EF1β for expression analysis of fungal gene during soybean root infection. Besides Mp08158, CYP1 gene was found suitable when M. phaseolina was grown in potato-dextrose broth with leaf infusion. In the case of cut-stem inoculation, Mp08158 and Mp11185 genes were found to be most stable. To validate the selected reference genes, expression analysis of two cutinase genes was performed. In general, the expression patterns were similar when the target genes were normalized against most or least stable gene. However, in some cases different expression pattern can be obtained when least stable gene is used for normalization. We believe that the reference genes identified and validated in this study will be useful for gene expression analysis during host infection with M. phaseolina.
Collapse
Affiliation(s)
- Adriana Orrego
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cecilia Gavilán
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Aníbal Arévalos
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Ortíz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Gaete Humada
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Amiliana Pineda-Fretez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cristina Romero-Rodríguez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Eugenia Flores Giubi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Man Mohan Kohli
- Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas (CAPECO), Asunción, Paraguay
| | - Julio C. M. Iehisa
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
- * E-mail:
| |
Collapse
|
5
|
Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. Mol Biotechnol 2021; 64:263-277. [PMID: 34595725 DOI: 10.1007/s12033-021-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.
Collapse
|
6
|
Native Endophytic Pseudomonas putida as a Biocontrol Agent against Common Bean Rust Caused by Uromyces appendiculatus. J Fungi (Basel) 2021; 7:jof7090745. [PMID: 34575783 PMCID: PMC8467904 DOI: 10.3390/jof7090745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the efficacy of endophytic bacterium to control common bean rust disease under greenhouse conditions. Endophytic bacterium Pseudomonas putida ASU15 was isolated from fresh asymptomatic common bean, identified using biochemical and molecular characteristics. In vitro, the inhibitory effect of different concentrations of P. putida (1 × 104, 1 × 105 and 1 × 106), as well as fungicide ortiva (0.01%) on uredospores germination of Uromyces appendiculatus were tested using water agar medium. The concentration showing the highest reduction of uredospores germination was at 1 × 106, while there was complete inhibition of uredospores germination associated with using ortiva. Scanning electron microscope exhibited the ability of P. putida cells to attack the cell wall of the fungal uredospores germ tubes of U. appendiculatus, causing obvious cell wall breakdown. The activities of chitinase, lipase, and protease produced by P. putida ASU15, in vitro, were evaluated spectrophotometrically. Chitinolytic, proteolytic, and lipolytic activities were exhibited, contributing 55.26, 3.87, and 26.12 U/mL, respectively. Under greenhouse conditions, treated plants with P. putida ASU15 (two days before pathogen inoculation or at the same time of pathogen inoculation) or fungicide reduced the disease severity, compared to the control. Applying P. putida ASU15 at the same time of pathogen inoculation showed reduction in disease severity (69.9%), higher than application before pathogen inoculation (54.9%). This study is considered the first report that demonstrates the mycoparasitic strategy of P. putida for controlling U. appendiculatus. In conclusion, our results revealed that P. putida ASU15 affords a significant disease reduction that may be attributed to direct suppression of pathogen spores germination.
Collapse
|
7
|
Zheng W, Peng Z, Peng S, Yu Z, Cao Z. Multinuclei Occurred Under Cryopreservation and Enhanced the Pathogenicity of Melampsora larici-populina. Front Microbiol 2021; 12:650902. [PMID: 34248868 PMCID: PMC8270653 DOI: 10.3389/fmicb.2021.650902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Melampsora larici-populina is a macrocyclic rust, and the haploid stage with two nuclei and the diploid of mononuclear sequentially occur annually. During the preservation of dry urediniospores at −80°C, we found that one isolate, ΔTs06, was different from the usual wild-type isolate Ts06 at −20°C because it has mixed polykaryotic urediniospores. However, the other spores, including the 0, I, III, and IV stages of a life cycle, were the same as Ts06. After five generations of successive inoculation and harvest of urediniospores from the compatible host Populus purdomii, the isolate ΔTs06 steadily maintained more than 20% multiple nucleus spores. To test the pathogenesis variation of ΔTs06, an assay of host poplars was applied to evaluate the differences between ΔTs06 and Ts06. After ΔTs06 and Ts06 inoculation, leaves of P. purdomii were used to detect the expression of small secreted proteins (SSPs) and fungal biomasses using quantitative real-time PCR (qRT-PCR) and trypan blue staining. ΔTs06 displayed stronger expression of five SSPs and had a shorter latent period, a higher density of uredinia, and higher DNA mass. A transcriptomic comparison between ΔTs06 and Ts06 revealed that 3,224 were differentially expressed genes (DEGs), 55 of which were related to reactive oxygen species metabolism, the Mitogen-activated protein kinase (MAPK) signaling pathway, and the meiosis pathway. Ten genes in the mitotic and meiotic pathways and another two genes associated with the “response to DNA damage stimulus” all had an upward expression, which were detected by qRT-PCR in ΔTs06 during cryopreservation. Gas chromatography–mass spectrometry (GC-MS) confirmed that the amounts of hexadecanoic acid and octadecadienoic acid were much more in ΔTs06 than in Ts06. In addition, using spectrophotometry, hydrogen peroxide (H2O2) was also present in greater quantities in ΔTs06 compared with those found in Ts06. Increased fatty acids metabolism could prevent damage to urediniospores in super-low temperatures, but oxidant species that involved H2O2 may destroy tube proteins of mitosis and meiosis, which could cause abnormal nuclear division and lead to multinucleation, which has a different genotype. Therefore, the multinuclear isolate is different from the wild-type isolate in terms of phenotype and genotype; this multinucleation phenomenon in urediniospores improves the pathogenesis and environmental fitness of M. larici-populina.
Collapse
Affiliation(s)
- Wei Zheng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zijia Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shaobing Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhongdong Yu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Lopes JML, de Matos EM, de Queiroz Nascimento LS, Viccini LF. Validation of reference genes for quantitative gene expression in the Lippia alba polyploid complex (Verbenaceae). Mol Biol Rep 2021; 48:1037-1044. [PMID: 33547533 DOI: 10.1007/s11033-021-06183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Lippia alba (Verbenaceae) is one of the most studied species of the genus Lippia, mainly due to its medicinal properties. The species was described as a polyploid complex with five cytotypes. The comparison of gene expression in species with several ploidal levels needs to be conducted carefully due to possible changes in gene regulation. Quantitative reverse transcription PCR (qRT-PCR) is a widely used method for transcript abundance analyses in plants. Besides being an extremely powerful technique, relative quantification by Real-Time quantitative PCR (RT-qPCR) needs the normalization with a stable reference gene. We evaluated the stability of nine candidate reference genes in Lippia alba with different ploidal levels using NormFinder, geNorm, and RefFinder software. The product of each primer showed a single peak in the melting curve. The R2 value ranged from 0.998 to 1000 and primers efficiency ranged from 98.95% to 129%. The CIT gene came up as a stable housekeeping gene, being appropriate for studies in polyploid accessions of Lippia alba. Considering that polyploidy is widely documented in Angiosperms, the results can be used not only for further gene expression studies in L. alba but also as a possible reference gene for other polyploid complexes. Differential stability among different genes highlights the importance of the validation of reference genes used for RT-qPCR approach in polyploid studies.
Collapse
Affiliation(s)
- Juliana Mainenti Leal Lopes
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Elyabe Monteiro de Matos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Laís Stehling de Queiroz Nascimento
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Lyderson Facio Viccini
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
9
|
Testing reference genes for transcript profiling in Uromyces appendiculatus during urediospore infection of common bean. PLoS One 2020; 15:e0237273. [PMID: 32760134 PMCID: PMC7410203 DOI: 10.1371/journal.pone.0237273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
Uromyces appendiculatus is a major pathogen on common bean. Like other rust fungi, it uses effectors to influence its host plant. Effectors are assumed to possess characteristic expression profiles, reflecting their activity during the infection process. In order to determine expression profiles using RT-qPCR, stably expressed reference genes are necessary for normalization. These reference genes need to be tested. Using samples representing seven different developmental stages of the urediospore-based infection process we employed RT-qPCR to measure the expression of 14 candidate reference genes and determined the most suitable ones based on the range of Cq values and comparative calculations using the geNorm and NormFinder algorithms. Among the tested genes RPS14 had the smallest Cq range, followed by Elf1a and Elf3; geNorm rated Tub and UbcE2 best with CytB as a third and NormFinder found UbcE2, Tub and Elf3 as best reference genes. Combining these findings using equal weight for the rankings UbcE2, Elf3 and Tub can be considered the best reference genes. A combination of either two reference genes, UbcE2 and Tub or three reference genes, UbcE2, Tub, and Elf3 is recommended for normalization. However, differences between most genes were relatively small, so all tested genes can be considered suitable for normalization with the exception of RPS9, SDH, Ubc and PDK.
Collapse
|
10
|
Xiong F, Wang Y, Lu Q, Hao X, Fang W, Yang Y, Zhu X, Wang X. Lifestyle Characteristics and Gene Expression Analysis of Colletotrichum camelliae Isolated from Tea Plant [ Camellia sinensis (L.) O. Kuntze] Based on Transcriptome. Biomolecules 2020; 10:biom10050782. [PMID: 32443615 PMCID: PMC7278179 DOI: 10.3390/biom10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum camelliae is one of the most serious pathogens causing anthracnose in tea plants, but the interactive relationship between C. camelliae and tea plants has not been fully elucidated. This study investigated the gene expression changes in five different growth stages of C. camelliae based on transcriptome analysis to explain the lifestyle characteristics during the infection. On the basis of gene ontology (GO) enrichment analyses of differentially expressed genes (DEGs) in comparisons of germ tube (GT)/conidium (Con), appressoria (App)/Con, and cellophane infectious hyphae (CIH)/Con groups, the cellular process in the biological process category and intracellular, intracellular part, cell, and cell part in the cellular component category were significantly enriched. Hydrolase activity, catalytic activity, and molecular_function in the molecular function category were particularly enriched in the infection leaves (IL)/Con group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were enriched in the genetic information processing pathway (ribosome) at the GT stage and the metabolism pathway (metabolic pathways and biosynthesis of secondary metabolism) in the rest of the stages. Interestingly, the genes associated with melanin biosynthesis and carbohydrate-active enzymes (CAZys), which are vital for penetration and cell wall degradation, were significantly upregulated at the App, CIH and IL stages. Subcellular localization results further showed that the selected non-annotated secreted proteins based on transcriptome data were majorly located in the cytoplasm and nucleus, predicted as new candidate effectors. The results of this study may establish a foundation and provide innovative ideas for subsequent research on C. camelliae.
Collapse
Affiliation(s)
- Fei Xiong
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Yuchun Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
- College of Agriculture and Food Sciences, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Qinhua Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
- Correspondence: (X.Z.); (X.W.); Tel.: +86-25-84395182 (X.Z.); Fax: +86-25-84395182 (X.Z.)
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
- Correspondence: (X.Z.); (X.W.); Tel.: +86-25-84395182 (X.Z.); Fax: +86-25-84395182 (X.Z.)
| |
Collapse
|
11
|
Couttolenc-Brenis E, Carrión GL, Villain L, Ortega-Escalona F, Ramírez-Martínez D, Mata-Rosas M, Méndez-Bravo A. Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ 2020; 8:e8345. [PMID: 32002327 PMCID: PMC6982411 DOI: 10.7717/peerj.8345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background
In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated.
Methods
We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5).
Results
Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca’s defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.
Collapse
Affiliation(s)
- Edgar Couttolenc-Brenis
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
- Instituto Nacional de Investigaciones Forestales Agrìcolas y Pecuarias, C.E. Cotaxtla, Veracruz, México
| | - Gloria L. Carrión
- Red de Biodiversidad y Sistemática de Hongos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luc Villain
- La Recherche Agronomique pour le Développement, UMR, RPB, CIRAD, Montpellier, France
| | | | - Daniel Ramírez-Martínez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alfonso Méndez-Bravo
- CONACYT-Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
12
|
Porto BN, Caixeta ET, Mathioni SM, Vidigal PMP, Zambolim L, Zambolim EM, Donofrio N, Polson SW, Maia TA, Chen C, Adetunji M, Kingham B, Dalio RJD, de Resende MLV. Genome sequencing and transcript analysis of Hemileia vastatrix reveal expression dynamics of candidate effectors dependent on host compatibility. PLoS One 2019; 14:e0215598. [PMID: 30998802 PMCID: PMC6472787 DOI: 10.1371/journal.pone.0215598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Coffee leaf rust caused by the fungus Hemileia vastatrix is one of the most important leaf diseases of coffee plantations worldwide. Current knowledge of the H. vastatrix genome is limited and only a small fraction of the total fungal secretome has been identified. In order to obtain a more comprehensive understanding of its secretome, we aimed to sequence and assemble the entire H. vastatrix genome using two next-generation sequencing platforms and a hybrid assembly strategy. This resulted in a 547 Mb genome of H. vastatrix race XXXIII (Hv33), with 13,364 predicted genes that encode 13,034 putative proteins with transcriptomic support. Based on this proteome, 615 proteins contain putative secretion peptides, and lack transmembrane domains. From this putative secretome, 111 proteins were identified as candidate effectors (EHv33) unique to H. vastatrix, and a subset consisting of 17 EHv33 genes was selected for a temporal gene expression analysis during infection. Five genes were significantly induced early during an incompatible interaction, indicating their potential role as pre-haustorial effectors possibly recognized by the resistant coffee genotype. Another nine genes were significantly induced after haustorium formation in the compatible interaction. Overall, we suggest that this fungus is able to selectively mount its survival strategy with effectors that depend on the host genotype involved in the infection process.
Collapse
Affiliation(s)
- Brenda Neves Porto
- Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | - Sandra Marisa Mathioni
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | - Laércio Zambolim
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eunize Maciel Zambolim
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Nicole Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, Newark, Delaware, United States of America
| | - Thiago Andrade Maia
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, Newark, Delaware, United States of America
| | - Modupe Adetunji
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, Newark, Delaware, United States of America
| | - Brewster Kingham
- Sequencing and Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Ronaldo José Durigan Dalio
- Instituto Agronômico de Campinas, Centro de Citricultura “Sylvio Moreira”, Cordeirópolis, São Paulo, Brazil
| | | |
Collapse
|
13
|
Xie LH, Quan X, Zhang J, Yang YY, Sun RH, Xia MC, Xue BG, Wu C, Han XY, Xue YN, Yang LR. Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat. THE PLANT PATHOLOGY JOURNAL 2019; 35:11-18. [PMID: 30828275 PMCID: PMC6385657 DOI: 10.5423/ppj.oa.03.2018.0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 06/02/2023]
Abstract
Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. TUBβ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of TUBβ expression. The expression profile of ExoPG assessed using TUBβ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.
Collapse
Affiliation(s)
- Li-hua Xie
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Xin Quan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | | | - Yan-yan Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Run-hong Sun
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Ming-cong Xia
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Bao-guo Xue
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Xiao-yun Han
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| | - Ya-nan Xue
- Agricultural and Animal Husbandry Bureau of Mianchi, Sanmenxia 472400,
P.R. China
| | - Li-rong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, Henan 450002,
P. R. China
| |
Collapse
|
14
|
Song Y, Wang Y, Guo D, Jing L. Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. BMC PLANT BIOLOGY 2019; 19:20. [PMID: 30634896 PMCID: PMC6329156 DOI: 10.1186/s12870-019-1629-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/02/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Real-time RT-PCR has become a common and robust technique to detect and quantify low-abundance mRNA expression and is a prefered tool when examining fungal gene expression in infected host tissues. However, correct evaluation of gene expression data requires accurate and reliable normalization against a reference transcript. Thus, the identification of reference genes with stable expression during different conditions is of paramount importance. Here, we present a study where in vitro and in planta experiments were used to validate the expression stability of reference gene candidates of Puccinia helianthi Schw., an obligate pathogen that causes rust in sunflower (Helianthus annuus). RESULTS Eleven reference genes of P. helianthi were validated at different growth stages. Excel-based software geNorm, BestKeeper and NormFinder were used to evaluate the reference gene transcript stabilities. Of eleven reference gene candidates tested, three were stably expressed in urediniospores, germinating growth stage and in planta. Two of these genes (UBC, EF2), encoding ubiquitin-conjugating enzyme and elongation factor 2, proved to be the most stable set of reference genes under the experimental conditions used. CONCLUSION We found that UBC and EF2 are suitable candidates for for the standardization of gene expression studies in the plant pathogen P. helianthi and potentially other related pathogens.
Collapse
Affiliation(s)
- Yang Song
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Yan Wang
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Dandan Guo
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Lan Jing
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| |
Collapse
|
15
|
Sreedharan SP, Kumar A, Giridhar P. Primer design and amplification efficiencies are crucial for reliability of quantitative PCR studies of caffeine biosynthetic N-methyltransferases in coffee. 3 Biotech 2018; 8:467. [PMID: 30402369 PMCID: PMC6212373 DOI: 10.1007/s13205-018-1487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/19/2018] [Indexed: 11/02/2022] Open
Abstract
Primers having suboptimal amplification efficiencies were shown to falsely represent fold change expression of the N-methyltransferases gene family involved in caffeine biosynthesis in Coffea canephora. To study this phenomenon, the role of stability of the internal reference gene, as well as the amplification efficiency correction of the primers was investigated. GAPDH and Ubiquitin exhibited a good stability for studying the ontogeny of endosperm tissue, as well as the leaf transcriptome during stress from salicylic acid, methyl jasmonate, PEG-mediated drought and sudden exposure to light. Ubiquitin manifested low variation in Cq under all these stress regimes and in endosperm ontogeny with 30.1-30.9 in the best dataset and 28.8-30.9 in the most deviating dataset. It was observed that problems arising due to improper amplification efficiency of the target or reference genes or both could lead to misinterpretation of gene expression levels. Quantitative RT-PCR performed at a sub-optimal efficiency of GAPDH reference gene at 1.68 led to the faulty interpretation of 2.007 folds upregulation by the 2-ΔΔCt method and 1.705 folds upregulation by Efficiency method for the first NMT (Xanthosine methyltransferase), which actually is repressed during dark acclimatization of coffee plants. Efficiency correction improved the reliability of the expression data and also indicated a downregulation of this gene by 0.485 folds and 0.474 folds using 2-ΔΔCt and E method, respectively, in concordance to earlier reports. Hence, efficiency correction of the primers having suboptimal efficiencies is an absolute prerequisite for the accurate calculation of fold change using quantitative RT-PCR.
Collapse
|
16
|
Huang N, Ling H, Liu F, Su Y, Su W, Mao H, Zhang X, Wang L, Chen R, Que Y. Identification and evaluation of PCR reference genes for host and pathogen in sugarcane-Sporisorium scitamineum interaction system. BMC Genomics 2018; 19:479. [PMID: 29914370 PMCID: PMC6006842 DOI: 10.1186/s12864-018-4854-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sugarcane (Saccharum L. plant) is an important crop for sugar and bio-energy production around the world. Among sugarcane diseases, smut caused by Sporisorium scitamineum is one of the major fungal diseases causing severe losses to the sugarcane industry. The use of PCR reference genes is essential to the normalization of data on gene expression involving the sugarcane-S. scitamineum interaction system; however, no report that addresses criteria in selecting these reference genes has been published to date. RESULTS In this study, 10 sugarcane genes and eight S. scitamineum genes were selected as candidate PCR reference genes in the sugarcane-S. scitamineum interaction system. The stability and reliability of these 18 candidate genes were analyzed in smut-resistant (NCo376) and -susceptible (YC71-374) genotypes using the statistical algorithms geNorm, NormFinder, BestKeeper, and deltaCt method. Subsequently, the relative expression levels of the sugarcane chitinase I-3 gene and S. scitamineum chorismate mutase gene were determined to validate the applicability of these sugarcane and S. scitamineum PCR reference genes, respectively. We finally found that the acyl-CoA dehydrogenase gene (ACAD), serine/arginine repetitive matrix protein 1 gene (SARMp1), or their combination (ACAD + SARMp1) could be utilized as the most suitable reference genes for normalization of sugarcane gene expression in sugarcane bud tissues after S. scitamineum infection. Similarly, the inosine 5'-monophosphate dehydrogenase gene (S10), the SEC65-signal recognition particle subunit gene (S11), or their combination (S10 + S11) were suitable for normalization of S. scitamineum gene expression in sugarcane bud tissues. CONCLUSIONS The PCR reference genes ACAD, SARMp1, S10, and S11 may be employed in gene transcriptional studies involving the sugarcane-S. scitamineum interaction system.
Collapse
Affiliation(s)
- Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huaying Mao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ling Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Rukai Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005 China
| |
Collapse
|
17
|
Zhang C, Li T, Hou CL, Shen XY. Selection of reference genes from Shiraia bambusicola for RT-qPCR analysis under different culturing conditions. AMB Express 2017; 7:14. [PMID: 28050855 PMCID: PMC5209326 DOI: 10.1186/s13568-016-0314-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Stable reference genes are necessary to analyse quantitative real-time reverse transcription PCR (qRT-PCR) data and determine the reliability of the final results. For further studies of the valuable fungus Shiraia bambusicola, the identification of suitable reference genes has become increasingly urgent. In this study, three conventional reference genes and nine novel candidates were evaluated under different light conditions (all-dark, all-light and 12-h light/dark) and in different media (rice medium, PD medium, and Czapek–Dox medium). Three popular software programs (geNorm, NormFinder and BestKeeper) were used to analyse these genes, and the final ranking was determined using RefFinder. SbLAlv9, SbJsn1, SbSAS1 and SbVAC55 displayed the best stability among the genes, while SbFYVE and SbPKI showed the worst. These emerging genes exhibited significantly better properties than the three existing genes under almost all conditions. Furthermore, the most reliable reference genes were identified separately under different nutrient and light conditions, which would help accessible to make the most of the existing data. In summary, a group of novel housekeeping genes from S. bambusicola with more stable properties than before was explored, and these results could also provide a practical approach for other filamentous fungi.
Collapse
|
18
|
Talhinhas P, Batista D, Diniz I, Vieira A, Silva DN, Loureiro A, Tavares S, Pereira AP, Azinheira HG, Guerra‐Guimarães L, Várzea V, Silva MDC. The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. MOLECULAR PLANT PATHOLOGY 2017; 18:1039-1051. [PMID: 27885775 PMCID: PMC6638270 DOI: 10.1111/mpp.12512] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 05/22/2023]
Abstract
TAXONOMY AND HISTORY Hemileia vastatrix Berk. and Broome (Basidiomycota, Pucciniales) was described in 1869 in eastern Africa and Ceylon as the agent of coffee leaf rust and has spread to all coffee cultivation areas worldwide. Major disease outbreaks in Asia, Africa and America caused and continue to cause severe yield losses, making this the most important disease of Arabica coffee, a cash crop for many tropical and sub-tropical countries. LIFE CYCLE AND DISEASE SYMPTOMS Hemileia vastatrix is a hemicyclic fungus with the urediniosporic life cycle as its most important (if not only) source of inoculum. Chlorotic spots are the first macroscopic symptoms, preceding the differentiation of suprastomatal, bouquet-shaped, orange-coloured uredinia. The disease can cause yield losses of up to 35% and have a polyetic epidemiological impact on subsequent years. DISEASE CONTROL Although the use of fungicides is one of the preferred immediate control measures, the use of resistant cultivars is considered to be the most effective and durable disease control strategy. The discovery of 'Híbrido de Timor' provided sources of resistance that have been used in several breeding programmes and that have been proven to be effective and durable, as some have been in use for more than 30 years. GENETIC DIVERSITY AND MOLECULAR PATHOGENICITY Although exhibiting limited genetic polymorphism, the very large genome of H. vastatrix (c. 797 Mbp) conceals great pathological diversity, with more than 50 physiological races. Gene expression studies have revealed a very precocious activation of signalling pathways and production of putative effectors, suggesting that the plant-fungus dialogue starts as early as at the germ tube stage, and have provided clues for the identification of avr genes.
Collapse
Affiliation(s)
- Pedro Talhinhas
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Dora Batista
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
- Computational Biology and Population Genomics Group, cE3c – Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaCampo GrandeLisbon1749‐016Portugal
| | - Inês Diniz
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Ana Vieira
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- Computational Biology and Population Genomics Group, cE3c – Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaCampo GrandeLisbon1749‐016Portugal
| | - Diogo N. Silva
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- Computational Biology and Population Genomics Group, cE3c – Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaCampo GrandeLisbon1749‐016Portugal
| | - Andreia Loureiro
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Sílvia Tavares
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
| | - Ana Paula Pereira
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
| | - Helena G. Azinheira
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Leonor Guerra‐Guimarães
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Vítor Várzea
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| | - Maria do Céu Silva
- CIFC, Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaQuinta do MarquêsOeiras2784‐505Portugal
- LEAF, Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaTapada da AjudaLisbon1349‐017Portugal
| |
Collapse
|
19
|
Zhang S, Chen C, Xie T, Ye S. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages. PLoS One 2017; 12:e0179930. [PMID: 28672012 PMCID: PMC5495205 DOI: 10.1371/journal.pone.0179930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/06/2017] [Indexed: 12/18/2022] Open
Abstract
The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis–an obligate aphid pathogenic fungus—the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.
Collapse
Affiliation(s)
- Shutao Zhang
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
| | - Chun Chen
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
- * E-mail:
| | - Tingna Xie
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou, China
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| |
Collapse
|
20
|
Qi M, Link TI, Müller M, Hirschburger D, Pudake RN, Pedley KF, Braun E, Voegele RT, Baum TJ, Whitham SA. A Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity. PLoS Pathog 2016; 12:e1005827. [PMID: 27676173 PMCID: PMC5038961 DOI: 10.1371/journal.ppat.1005827] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP). While these proteins are thought to function within the host, their roles are completely unknown. Here, we present the characterization of P. pachyrhizi effector candidate 23 (PpEC23), a SSCRP that we show to suppress plant immunity. Furthermore, we show that PpEC23 interacts with soybean transcription factor GmSPL12l and that soybean plants in which GmSPL12l is silenced have constitutively active immunity, thereby identifying GmSPL12l as a negative regulator of soybean defenses. Collectively, our data present evidence for a virulence function of a rust SSCRP and suggest that PpEC23 is able to suppress soybean immune responses and physically interact with soybean transcription factor GmSPL12l, a negative immune regulator.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Tobias I. Link
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | - Manuel Müller
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | | | - Ramesh N. Pudake
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kerry F. Pedley
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service, Ft. Detrick, Maryland, United States of America
| | - Edward Braun
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Ralf T. Voegele
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
21
|
Quantitative real-time PCR normalization for gene expression studies in the plant pathogenic fungi Lasiodiplodia theobromae. J Microbiol Methods 2016; 127:82-88. [PMID: 27237774 DOI: 10.1016/j.mimet.2016.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
Lasiodiplodia theobromae is a highly virulent plant pathogen. It has been suggested that heat stress increases its virulence. The aim of this work was to evaluate, compare, and recommend normalization strategies for gene expression analysis of the fungus growing with grapevine wood under heat stress. Using RT-qPCR-derived data, reference gene stability was evaluated through geNorm, NormFinder and Bestkeeper applications. Based on the geometric mean using the ranking position obtained for each independent analysis, genes were ranked from least to most stable as follows: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin (TUB) and elongation factor-1α (EF1α). Using RNAseq-derived data based on the calculated tagwise dispersion these genes were ordered by increasing stability as follows: GAPDH, ACT, TUB, and EF1α. The correlation between RNAseq and RTqPCR results was used as criteria to identify the best RT-qPCR normalization approach. The gene TUB is recommended as the best option for normalization among the commonly used reference genes, but alternative fungal reference genes are also suggested.
Collapse
|
22
|
Vieira A, Cabral A, Fino J, Azinheira HG, Loureiro A, Talhinhas P, Pires AS, Varzea V, Moncada P, Oliveira H, Silva MDC, Paulo OS, Batista D. Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS One 2016; 11:e0150651. [PMID: 26950697 PMCID: PMC4780792 DOI: 10.1371/journal.pone.0150651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica—C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica—C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.
Collapse
Affiliation(s)
- Ana Vieira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cabral
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Joana Fino
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena G. Azinheira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Loureiro
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Talhinhas
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Sofia Pires
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vitor Varzea
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | | | - Helena Oliveira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria do Céu Silva
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Batista
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Zhang X, Xu ZC, Xu J, Ji AJ, Luo HM, Song JY, Sun C, Hu YL, Chen SL. Selection and validation of reference genes for normalization of quantitative real-time reverse transcription PCR analysis in Poria cocos (Schw.) Wolf (Fuling). Chin Med 2016; 11:8. [PMID: 26937250 PMCID: PMC4774131 DOI: 10.1186/s13020-016-0079-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/22/2016] [Indexed: 12/05/2022] Open
Abstract
Background Quantitative real-time reverse transcription PCR (qRT-PCR) requires a stable internal control to avoid misinterpretation of data or errors for gene expression normalization. However, there are still no validated reference genes for stable internal control in Poria cocos (Schw.) Wolf (Fuling). This study aims to validate the reference genes of P. cocos. Methods This study firstly collected the 14 candidate reference genes by BLASTP from the genome of P. cocos for qRT-PCR analysis to determine the expression levels of 14 housekeeping genes (GAPDH, MAPK, β-Act, RPB2, RPB1-1, RPB1-2, his3-1, his3-2, APT, SAMDC, RP, β-Tub, EIF, and CYP) under different temperatures and in response to different plant hormones (indole-3-acetic acid, abscisic acid, 6-benzylaminopurine, methyl jasmonate, and gibberellic acid), and the threshold cycle (Ct) values. The results were analyzed by four programs (i.e., geNorm, NormFinder, BestKeeper, and RefFinder) for evaluating the candidate reference genes. Results SAMDC, his3-2, RP, RPB2, and his3-1 were recommended as reference genes for treating P. cocos with indole-3-acetic acid, abscisic acid, 6-benzylaminopurine, methyl jasmonate, and gibberellic acid, respectively. Under different temperatures RPB2 was the most stable reference gene. CYP was the most stable gene for all 90 samples by RefFinder. Conclusion SAMDC, his3-2, RP, RPB2, and his3-1 were evaluated to be suitable reference genes for P. cocos following different treatments. RPB2 was the most stable reference gene under different temperatures and CYP was the most stable gene in the mycelia under all six evaluated conditions.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Zhi-Chao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Ai-Jia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Hong-Mei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Jing-Yuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China ; Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435 China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Yuan-Lei Hu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871 China
| | - Shi-Lin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China ; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
24
|
Chen C, Xie T, Ye S, Jensen AB, Eilenberg J. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis. Braz J Microbiol 2016; 47:259-65. [PMID: 26887253 PMCID: PMC4822748 DOI: 10.1016/j.bjm.2015.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023] Open
Abstract
The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis.
Collapse
Affiliation(s)
- Chun Chen
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China.
| | - Tingna Xie
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou 310018, China
| | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK 1871 Frederiksberg C, Denmark
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, DK 1871 Frederiksberg C, Denmark
| |
Collapse
|
25
|
Loureiro A, Azinheira HG, Silva MDC, Talhinhas P. A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses. Fungal Biol 2015; 119:1093-1099. [PMID: 26466882 DOI: 10.1016/j.funbio.2015.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors.
Collapse
Affiliation(s)
- Andreia Loureiro
- (CIFC) Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Quinta do Marquês, 2784-505 Oeiras, Portugal; (LEAF) Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Helena Gil Azinheira
- (CIFC) Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Quinta do Marquês, 2784-505 Oeiras, Portugal; (LEAF) Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Maria do Céu Silva
- (CIFC) Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Quinta do Marquês, 2784-505 Oeiras, Portugal; (LEAF) Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Pedro Talhinhas
- (CIFC) Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Quinta do Marquês, 2784-505 Oeiras, Portugal; (LEAF) Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
26
|
Hirschburger D, Müller M, Voegele RT, Link T. Reference Genes in the Pathosystem Phakopsora pachyrhizi/ Soybean Suitable for Normalization in Transcript Profiling. Int J Mol Sci 2015; 16:23057-75. [PMID: 26404265 PMCID: PMC4613351 DOI: 10.3390/ijms160923057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Phakopsora pachyrhizi is a devastating pathogen on soybean, endangering soybean production worldwide. Use of Host Induced Gene Silencing (HIGS) and the study of effector proteins could provide novel strategies for pathogen control. For both approaches quantification of transcript abundance by RT-qPCR is essential. Suitable stable reference genes for normalization are indispensable to obtain accurate RT-qPCR results. According to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines and using algorithms geNorm and NormFinder we tested candidate reference genes from P. pachyrhizi and Glycine max for their suitability in normalization of transcript levels throughout the infection process. For P. pachyrhizi we recommend a combination of CytB and PDK or GAPDH for in planta experiments. Gene expression during in vitro stages and over the whole infection process was found to be highly unstable. Here, RPS14 and UbcE2 are ranked best by geNorm and NormFinder. Alternatively CytB that has the smallest Cq range (Cq: quantification cycle) could be used. We recommend specification of gene expression relative to the germ tube stage rather than to the resting urediospore stage. For studies omitting the resting spore and the appressorium stages a combination of Elf3 and RPS9, or PKD and GAPDH should be used. For normalization of soybean genes during rust infection Ukn2 and cons7 are recommended.
Collapse
Affiliation(s)
- Daniela Hirschburger
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany.
| | - Manuel Müller
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany.
| | - Ralf T Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany.
| | - Tobias Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany.
| |
Collapse
|
27
|
Llanos A, François JM, Parrou JL. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genomics 2015; 16:71. [PMID: 25757610 PMCID: PMC4342825 DOI: 10.1186/s12864-015-1224-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 01/07/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A critical step in the RT-qPCR workflow for studying gene expression is data normalization, one of the strategies being the use of reference genes. This study aimed to identify and validate a selection of reference genes for relative quantification in Talaromyces versatilis, a relevant industrial filamentous fungus. Beyond T. versatilis, this study also aimed to propose reference genes that are applicable more widely for RT-qPCR data normalization in filamentous fungi. RESULTS A selection of stable, potential reference genes was carried out in silico from RNA-seq based transcriptomic data obtained from T. versatilis. A dozen functionally unrelated candidate genes were analysed by RT-qPCR assays over more than 30 relevant culture conditions. By using geNorm, we showed that most of these candidate genes had stable transcript levels in most of the conditions, from growth environments to conidial germination. The overall robustness of these genes was explored further by showing that any combination of 3 of them led to minimal normalization bias. To extend the relevance of the study beyond T. versatilis, we challenged their stability together with sixteen other classically used genes such as β-tubulin or actin, in a representative sample of about 100 RNA-seq datasets. These datasets were obtained from 18 phylogenetically distant filamentous fungi exposed to prevalent experimental conditions. Although this wide analysis demonstrated that each of the chosen genes exhibited sporadic up- or down-regulation, their hierarchical clustering allowed the identification of a promising group of 6 genes, which presented weak expression changes and no tendency to up- or down-regulation over the whole set of conditions. This group included ubcB, sac7, fis1 and sarA genes, as well as TFC1 and UBC6 that were previously validated for their use in S. cerevisiae. CONCLUSIONS We propose a set of 6 genes that can be used as reference genes in RT-qPCR data normalization in any field of fungal biology. However, we recommend that the uniform transcription of these genes is tested by systematic experimental validation and to use the geometric averaging of at least 3 of the best ones. This will minimize the bias in normalization and will support trustworthy biological conclusions.
Collapse
Affiliation(s)
- Agustina Llanos
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France. .,Cinabio-Adisseo France S.A.S., 135 Avenue de Rangueil, 31077, Toulouse, France.
| | - Jean Marie François
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France.
| | - Jean-Luc Parrou
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France.
| |
Collapse
|
28
|
Lian T, Yang T, Liu G, Sun J, Dong C. Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media. FEMS Microbiol Lett 2014; 356:97-104. [PMID: 24953133 DOI: 10.1111/1574-6968.12492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Cordyceps militaris is considered a model organism for the study of Cordyceps species, which are highly prized in traditional Chinese medicine. Gene expression analysis has become more popular and important in studies of this fungus. Reference gene validation under different experimental conditions is crucial for RT-qPCR analysis. In this study, eight candidate reference genes, actin, cox5, gpd, rpb1, tef1, try, tub, and ubi, were selected and their expression stability was evaluated in C. militaris samples using four algorithms, genorm, normfinder, bestkeeper, and the comparative ∆Ct method. Three sets of samples, five different developmental stages cultured in wheat medium and pupae, and all the samples pool were included. The results showed that rpb1 was the best reference gene during all developmental stages examined, while the most common reference genes, actin and tub, were not suitable internal controls. Cox5 also performed poorly and was less stable in our analysis. The ranks of ubi and gpd were inconsistent in different sample sets by different methods. Our results provide guidelines for reference gene selection at different developmental stages and also represent a foundation for more accurate and widespread use of RT-qPCR in C. militaris gene expression analysis.
Collapse
Affiliation(s)
- Tiantian Lian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | | | | | | | | |
Collapse
|
29
|
Talhinhas P, Azinheira HG, Vieira B, Loureiro A, Tavares S, Batista D, Morin E, Petitot AS, Paulo OS, Poulain J, Da Silva C, Duplessis S, Silva MDC, Fernandez D. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. FRONTIERS IN PLANT SCIENCE 2014; 5:88. [PMID: 24672531 PMCID: PMC3953675 DOI: 10.3389/fpls.2014.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 05/06/2023]
Abstract
Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.
Collapse
Affiliation(s)
- Pedro Talhinhas
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Helena G. Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Bruno Vieira
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Andreia Loureiro
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Sílvia Tavares
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Anne-Sophie Petitot
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Julie Poulain
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Corinne Da Silva
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Diana Fernandez
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| |
Collapse
|
30
|
Raffaello T, Asiegbu FO. Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum). Mol Biol Rep 2013; 40:4605-11. [PMID: 23645035 DOI: 10.1007/s11033-013-2553-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
The basidiomycete Heterobasidion annosum is the causative agent of butt and root rot disease of conifer trees and it's one of the most destructive conifer pathogen in the northern hemisphere. Because of the intrinsic difficulties in genome manipulation in this fungus, most studies have been focused on gene expression analysis using quantitative real time polymerase chain reaction (qPCR). qPCR is a powerful technique but its reliability resides in the correct selection of a set of reference genes used in the data normalization. In this study, we determined the expression stability of 11 selected reference genes in H. annosum. Almost nothing has so far been published about validation of a set of reference genes to be used in gene expression experiments in this fungus. Eleven reference genes were validated in H. annosum which was grown on three different substrates: pine bark, pine heartwood, and pine sapwood. Bestkeeper and NormFinder Excel-based software were used to evaluate the reference gene transcripts' stability. The results from these two programs indicated that three reference genes namely Tryp metab, RNA Pol3 TF, and Actin were stable in H. annosum in the conditions studied. Interestingly, the GAPDH transcript which has been extensively used in qPCR data normalization is not the best choice when a wide reference gene selection is available. This work represents the first extensive validation of reference genes in H. annosum providing support for gene expression studies and benefits for the wider forest pathology community.
Collapse
Affiliation(s)
- Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
31
|
Cornette R, Hayashi Y, Koshikawa S, Miura T. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:509-518. [PMID: 23481672 DOI: 10.1016/j.jinsphys.2013.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/29/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system.
Collapse
Affiliation(s)
- Richard Cornette
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
32
|
Gandía M, Harries E, Marcos JF. Identification and characterization of chitin synthase genes in the postharvest citrus fruit pathogen Penicillium digitatum. Fungal Biol 2012; 116:654-64. [DOI: 10.1016/j.funbio.2012.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
|