1
|
Krumova E, Benkova D, Stoyancheva G, Dishliyska V, Miteva-Staleva J, Kostadinova A, Ivanov K, El-Sayed K, Staneva G, Elshoky HA. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO 2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. Int J Biol Macromol 2024; 268:131702. [PMID: 38643917 DOI: 10.1016/j.ijbiomac.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A. solani). Moreover, it sheds light on their underlying mechanisms of action. The NCs, CS-ZnO, CS-CuO, and CS-SiO2, were characterized using advanced methods. Dynamic and electrophoretic light scattering techniques revealed their size range (60-170 nm) and cationic nature, as indicated by the positive zeta potential values (from +16 to +22 mV). Transmission electron microscopy revealed the morphology of the NCs as agglomerates formed between the chitosan and oxide components. X-ray diffraction patterns confirmed crystalline structures with specific peaks indicating their constituents. Antifungal assessments using the agar diffusion technique demonstrated significant inhibitory effects of the NCs on both fungal strains (1.5 to 4-fold), surpassing the performance of the positive control, nystatin. Notably, the NCs exhibited superior antifungal potency, with CS-ZnO NCs being the most effective. A. solani was the most sensitive strain to the studied agents. Furthermore, the tested NCs induced oxidative stress in fungal cells, which elevated stress biomarker levels, such as superoxide dismutase (SOD) activity and protein carbonyl content (PCC), 2.5 and 6-fold for the most active CS-CuO in F. solani respectively. Additionally, they triggered membrane lipid peroxidation up to 3-fold higher compared to control, a process that potentially compromises membrane integrity. Laurdan fluorescence spectroscopy highlighted alterations in the molecular organization of fungal cell membranes induced by the NCs. CS-CuO NCs induced a membrane rigidifying effect, while CS-SiO2 and CS-ZnO could rigidify membranes in A. solani and fluidize them in F. solani. In summary, this study provides an in-depth understanding of the interactions of CS-based NCs with two fungal strains, showing their antifungal activity and offering insights into their mechanisms of action. These findings emphasize the potential of these NCs as effective and versatile antifungal agents.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Dayana Benkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galina Stoyancheva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Jeny Miteva-Staleva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Kamen Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Kh El-Sayed
- Faculty of Engineering, Galala University, Attaka 51745, Suez, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital, Cairo 11441, Egypt.
| |
Collapse
|
2
|
Yu H, Su L, Jia W, Jia M, Pan H, Zhang X. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in Cochliobolus heterostrophus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3926-3936. [PMID: 38365616 DOI: 10.1021/acs.jafc.3c07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Chitosan, as a natural nontoxic biomaterial, has been demonstrated to inhibit fungal growth and enhance plant defense against pathogen infection. However, the antifungal pattern and mechanism of how chitosan application evokes plant defense are poorly elucidated. Herein, we provide evidence that chitosan exposure is fungicidal to C. heterostrophus. Chitosan application impairs conidia germination and appressorium formation of C. heterostrophus and has a pronounced effect on reactive oxygen species production, thereby preventing infection in maize. In addition, the toxicity of chitosan to C. heterostrophus requires Mkk1 and Mps1, two key components in the cell wall integrity pathway. The Δmkk1 and Δmps1 mutants were more tolerant to chitosan than the wild-type. To dissect chitosan-mediated plant defense response to C. heterostrophus, we conducted a metabolomic analysis, and several antifungal compounds were upregulated in maize upon chitosan treatment. Taken together, our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated infection of C. heterostrophus, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wantong Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mengjiao Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Brilhante RSN, Costa ADC, de Mesquita JRL, dos Santos Araújo G, Freire RS, Nunes JVS, Nobre AFD, Fernandes MR, Rocha MFG, Pereira Neto WDA, Crouzier T, Schimpf U, Viera RS. Antifungal Activity of Chitosan against Histoplasma capsulatum in Planktonic and Biofilm Forms: A Therapeutic Strategy in the Future? J Fungi (Basel) 2023; 9:1201. [PMID: 38132801 PMCID: PMC10744476 DOI: 10.3390/jof9121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Anderson da Cunha Costa
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | | | - Gessica dos Santos Araújo
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Rosemeyre Souza Freire
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - João Victor Serra Nunes
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - Augusto Feynman Dias Nobre
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Mirele Rodrigues Fernandes
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Marcos Fábio Gadelha Rocha
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Waldemiro de Aquino Pereira Neto
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Ulrike Schimpf
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Rodrigo Silveira Viera
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60440-900, CE, Brazil;
| |
Collapse
|
4
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
6
|
Debnath D, Samal I, Mohapatra C, Routray S, Kesawat MS, Labanya R. Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111908. [PMID: 36431043 PMCID: PMC9694207 DOI: 10.3390/life12111908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The rise in the world's food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.
Collapse
Affiliation(s)
- Debanjana Debnath
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Chinmayee Mohapatra
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Snehasish Routray
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Rini Labanya
- Department of Soil Science & Agricultural Chemistry, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
- Correspondence:
| |
Collapse
|
7
|
Lopez-Nuñez R, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV. Chitosan and nematophagous fungi for sustainable management of nematode pests. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:980341. [PMID: 37746197 PMCID: PMC10512356 DOI: 10.3389/ffunb.2022.980341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
Collapse
Affiliation(s)
- Raquel Lopez-Nuñez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
8
|
Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol 2022; 222:3178-3194. [DOI: 10.1016/j.ijbiomac.2022.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
9
|
Mode of action of nanochitin whisker against Fusarium pseudograminearum. Int J Biol Macromol 2022; 217:356-366. [PMID: 35839953 DOI: 10.1016/j.ijbiomac.2022.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Nanochitin whisker (NC) is an advanced nanobiomaterial with novel physicochemical and biological properties. Fusarium pseudograminearum (Fpg) is an important pathogenic fungus causing wheat crown rot disease. This study explored the mode of action of NC against Fpg as a target microorganism. The effects of different treatments and concentrations of NC on the fungal growth and conidial germination were investigated by in vitro bioassay. The impacts of NC on cell structure integrity, membrane permeability, pathogenesis related key enzymes activity, and the mycotoxin production were examined by electron microscopy, fluorescence spectroscopy, IR spectroscopy, conductometry, and spectrophotometry, respectively. The results showed that NC significantly reduced hyphal growth, and the spore germination rate of Fpg declined by 33.0 % and 23.2 % when Fpg was treated with 30 and 300 μg/mL of NC, respectively. NC vigorously influenced structural stability of cell wall by destroying dextran structure, and strongly stimulated ergosterol production altering membrane integrity of the fungus. It reduced the activities of enzymes related to energy-supply like nicotinamide adenine dinucleotide oxidase and succinate dehydrogenase remarkably. The production of fungal mycotoxin deoxynivalenol was also decreased by NC. These findings provide an important basis for fully understanding the mechanism of nanobiomaterial in plant fungal disease control.
Collapse
|
10
|
Olicón-Hernández DR, Araiza-Villanueva MG, Vázquez-Carrada M, Guerra-Sánchez G. Chitosan resistance by the deletion of the putative high affinity glucose transporter in the yeast Ustilago maydis. Carbohydr Res 2021; 505:108335. [PMID: 33989946 DOI: 10.1016/j.carres.2021.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Chitosan is a polycationic amino-sugar polymer soluble in acidic pH. As a potential antifungal, it has been tested against several fungi. Its main mode of action is the permeabilization of cell membrane by the interaction with specific membrane sites. Ustilago maydis, an attractive fungal model used in biochemical and biotechnology research, is highly sensitive to chitosan, with extensive membrane destruction that results in cell death. Using the Golden Gate system, several mutant strains with deletions in monosaccharide transporters were obtained and tested against chitosan in order to know the implications of these membrane proteins in the sensitivity of the fungus against chitosan. Δum11514/03895 strain, a mutant with a deletion in a hypothetical high affinity glucose transporter, showed resistance to chitosan. Morphological characterization of the mutant displayed an apparent increase in mitochondrial content, but oxygen consumption as well as growth rate were not affected by the gene deletion. Alteration in cell wall surface was observed in the mutant strain. In contrast to wild type, the Δum11514/03895 strain showed integrity of cell wall and cell membrane in the presence of chitosan. The resistance against chitosan is likely associated to the modification of cell wall architecture and is not related to energy-depend process.
Collapse
Affiliation(s)
- Dario Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Minerva Georgina Araiza-Villanueva
- Institute for Microbiology, Center of Excellence on Plant Sciences (CEPLAS), Department of Biology, Heinrich-Heine University Düsseldorf, 40204, Düsseldorf, Germany
| | - Melissa Vázquez-Carrada
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Guadalupe Guerra-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Sun Y, Shang L, Xia X, Meng D, Ren Y, Zhang J, Yao M, Zhou X, Wang Y. Cellular uptake of chitosan and its role in antifungal action against Penicillium expansum. Carbohydr Polym 2021; 269:118349. [PMID: 34294354 DOI: 10.1016/j.carbpol.2021.118349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
Chitosan has wide-spectrum antimicrobial activity but knowledge of its antifungal mechanism is still incomplete. In this study, transcriptome of Penicillium expansum upon chitosan treatment was analyzed by RNA-Seq. KEGG enrichment analysis revealed that endocytosis as well as other physiological pathways was regulated by chitosan treatment. Clathrin adaptor protein mu-subunit (PeCAM) gene, which encodes a protein associated with clathrin-dependent endocytosis, was up-regulated after chitosan treatment. Deletion of PeCAM resulted in changes of conidial, hyphal and colonial morphology. Confocal microscopy images of the distribution of fluorescein isothiocyanate-labeled chitosan confirmed cellular internalization of chitosan. However, deletion of PeCAM almost completely blocked uptake of chitosan into fungal cells and ΔPeCAM mutant exhibited less sensitivity to chitosan compared with wild type, suggesting that chitosan uptake is mediated by clathrin-dependent endocytosis and internalized chitosan also plays an important role in its antifungal activity. Collectively, our results provide a new insight into the antifungal mechanism of chitosan.
Collapse
Affiliation(s)
- Yemei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Shang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoshuang Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Man Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were VM, Fricker MD, Littlejohn G, Lopez-Llorca LV, Talbot NJ. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. THE NEW PHYTOLOGIST 2021; 230:1578-1593. [PMID: 33570748 DOI: 10.1111/nph.17268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Chitosan is a partially deacetylated linear polysaccharide composed of β-1,4-linked units of d-glucosamine and N-acetyl glucosamine. As well as a structural component of fungal cell walls, chitosan is a potent antifungal agent. However, the mode of action of chitosan is poorly understood. Here, we report that chitosan is effective for control of rice blast disease. Chitosan application impairs growth of the blast fungus Magnaporthe oryzae and has a pronounced effect on appressorium-mediated plant infection. Chitosan inhibits septin-mediated F-actin remodelling at the appressorium pore, thereby preventing repolarization of the infection cell. Chitosan causes plasma membrane permeabilization of M. oryzae and affects NADPH oxidase-dependent synthesis of reactive oxygen species, essential for septin ring formation and fungal pathogenicity. We further show that toxicity of chitosan to M. oryzae requires the protein kinase C-dependent cell wall integrity pathway, the Mps1 mitogen-activated protein kinase and the Nox1 NADPH oxidase. A conditionally lethal, analogue (PP1)-sensitive mutant of Pkc1 is partially remediated for growth in the presence of chitosan, while ∆nox1 mutants increase their glucan : chitin cell wall ratio, rendering them resistant to chitosan. Taken together, our data show that chitosan is a potent fungicide which requires the cell integrity pathway, disrupts plasma membrane function and inhibits septin-mediated plant infection.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03690, Spain
| | | | - Miriam Oses-Ruiz
- School of Biosciences, University of Exeter, Exeter,, EX4 4QD, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Vincent M Were
- School of Biosciences, University of Exeter, Exeter,, EX4 4QD, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Mark D Fricker
- Department of Plant Science, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - George Littlejohn
- School of Biosciences, University of Exeter, Exeter,, EX4 4QD, UK
- School of Biological and Marine Sciences, Plymouth University, Portland Square Building Room A404, Drake Circus, Plymouth, PL4 8AA, UK
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03690, Spain
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Exeter,, EX4 4QD, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich,, NR4 7UH, UK
| |
Collapse
|
13
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
14
|
Suarez-Fernandez M, Sambles C, Lopez-Moya F, Nueda MJ, Studholme DJ, Lopez-Llorca LV. Chitosan modulates Pochonia chlamydosporia gene expression during nematode egg parasitism. Environ Microbiol 2021; 23:4980-4997. [PMID: 33496078 PMCID: PMC8518118 DOI: 10.1111/1462-2920.15408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/24/2021] [Indexed: 01/22/2023]
Abstract
Climate change makes plant‐parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root‐knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation–reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen—Host Interaction database (PHI‐base), our previous RNA‐seq data and RT‐PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| | | | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain
| | - María J Nueda
- Mathematics Department, University of Alicante, Alicante, 03080, Spain
| | | | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| |
Collapse
|
15
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
16
|
Cacicedo ML, Pacheco G, Islan GA, Alvarez VA, Barud HS, Castro GR. Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. Int J Biol Macromol 2019; 147:1136-1145. [PMID: 31739047 DOI: 10.1016/j.ijbiomac.2019.10.082] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/23/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
Biopolymeric blends based on bacterial cellulose (BC) films modified with low molecular weight chitosan (Chi) were developed for controlled release of ciprofloxacin (Cip). Biophysical studies revealed a compatible and cooperative network between BC and Chi including deep structural changes in the BC matrix shown by spectroscopic and thermal analyses (SEM, roughness analysis, FTIR, XRD, TGA, mechanical properties and water vapor transmission rate). Incorporation of chitosan to BC matrix generated a thickening scaffold with high permeability to water vapor from 0.7 to 3.2 g mm/m2 h. Cip loaded onto the BC-Chi film showed a hyperbolic release profile with a 30% decrease in antibiotic release mediated by the presence of Chi. BC-Chi blend films containing Cip tested against Pseudomonas aeruginosa and Staphylococcus aureus showed a synergic effect of chitosan on Cip antimicrobial activity. Besides, in vitro studies revealed the lack of cytotoxicity of BC-Chi-Cip films in human fibroblasts.
Collapse
Affiliation(s)
- Maximiliano L Cacicedo
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guilherme Pacheco
- Universidade de Araraquara (UNIARA) - Laboratório de Biopolímeros e Biomateriais (BioPolMat), Rua Carlos Gomes 1217, 14.801-320, Araraquara, SP, Brazil
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Vera A Alvarez
- CoMP (Grupo de Materiales Compuestos), Instituto de investigación en Ciencia y Tecnología de Materiales (INTEMA) (CONICET, UNMdP), Solís 7575, B7608FDQ Mar del Plata, Argentina
| | - Hernane S Barud
- Universidade de Araraquara (UNIARA) - Laboratório de Biopolímeros e Biomateriais (BioPolMat), Rua Carlos Gomes 1217, 14.801-320, Araraquara, SP, Brazil
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina.
| |
Collapse
|
17
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
18
|
Paul P, Kolesinska B, Sujka W. Chitosan and Its Derivatives - Biomaterials with Diverse Biological Activity for Manifold Applications. Mini Rev Med Chem 2019; 19:737-750. [DOI: 10.2174/1389557519666190112142735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Derived from chitin, chitosan is a natural polycationic linear polysaccharide being the second
most abundant polymer next to cellulose. The main obstacle in the wide use of chitosan is its almost
complete lack of solubility in water and alkaline solutions. To break this obstacle, the structure of
chitosan is subjected to modification, improving its physic-chemical properties and facilitating application
as components of composites or hydrogels. Derivatives of chitosan are biomaterials useful for different
purposes because of their lack of toxicity, low allergenicity, biocompatibility and biodegradability.
This review presents the methods of chemical modifications of chitosan which allow to obtain tailor-
made properties required for a variety of biomedical applications. Selected pharmaceutical and
biomedical applications of chitosan derivatives are also highlighted. Possibility to manage waste from
arthropod and crab processing is also emphasized.
Collapse
Affiliation(s)
- Paulina Paul
- Tricomed SA, ul. Swietojanska 5/9, 93-493 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Witold Sujka
- Tricomed SA, ul. Swietojanska 5/9, 93-493 Lodz, Poland
| |
Collapse
|
19
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
20
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
|
22
|
Olicón-Hernández DR, Uribe-Alvarez C, Uribe-Carvajal S, Pardo JP, Guerra-Sánchez G. Response of Ustilago maydis against the Stress Caused by Three Polycationic Chitin Derivatives. Molecules 2017; 22:molecules22121745. [PMID: 29215563 PMCID: PMC6149792 DOI: 10.3390/molecules22121745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH). Yeasts were cultured with each of these molecules at 1 mg·mL−1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ) as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.
Collapse
Affiliation(s)
- Dario Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del, Miguel Hidalgo, CP 11340 Ciudad de México, Mexico.
| | - Cristina Uribe-Alvarez
- Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Salvador Uribe-Carvajal
- Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Juan Pablo Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Guadalupe Guerra-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del, Miguel Hidalgo, CP 11340 Ciudad de México, Mexico.
| |
Collapse
|
23
|
Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D, Lopez-Llorca LV. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Sci Rep 2017; 7:16813. [PMID: 29196703 PMCID: PMC5711845 DOI: 10.1038/s41598-017-16874-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/16/2017] [Indexed: 01/16/2023] Open
Abstract
Chitosan is a natural polymer with applications in agriculture, which causes plasma membrane permeabilisation and induction of intracellular reactive oxygen species (ROS) in plants. Chitosan has been mostly applied in the phylloplane to control plant diseases and to enhance plant defences, but has also been considered for controlling root pests. However, the effect of chitosan on roots is virtually unknown. In this work, we show that chitosan interfered with auxin homeostasis in Arabidopsis roots, promoting a 2-3 fold accumulation of indole acetic acid (IAA). We observed chitosan dose-dependent alterations of auxin synthesis, transport and signalling in Arabidopsis roots. As a consequence, high doses of chitosan reduce WOX5 expression in the root apical meristem and arrest root growth. Chitosan also propitiates accumulation of salicylic (SA) and jasmonic (JA) acids in Arabidopsis roots by induction of genes involved in their biosynthesis and signalling. In addition, high-dose chitosan irrigation of tomato and barley plants also arrests root development. Tomato root apices treated with chitosan showed isodiametric cells respect to rectangular cells in the controls. We found that chitosan causes strong alterations in root cell morphology. Our results highlight the importance of considering chitosan dose during agronomical applications to the rhizosphere.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environment Studies (MIES) Ramón Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain.
| | - Nuria Escudero
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environment Studies (MIES) Ramón Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environment Studies (MIES) Ramón Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
- Atlántica Agrícola Company SA. Villena, Alicante, Spain
| | - David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environment Studies (MIES) Ramón Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| |
Collapse
|
24
|
Escudero N, Lopez-Moya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A, Ros-Ibañez C, Lacasa A, Sorribas FJ, Lopez-Llorca LV. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage. FRONTIERS IN PLANT SCIENCE 2017; 8:1415. [PMID: 28919898 PMCID: PMC5585746 DOI: 10.3389/fpls.2017.01415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/31/2017] [Indexed: 05/23/2023]
Abstract
The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN)], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1) do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit) increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection) non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection) sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of soil sterilization. Chitosan, at an adequate dose, can be a potential tool for sustainable management of RKN.
Collapse
Affiliation(s)
- Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Zahra Ghahremani
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Ernesto A. Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Aurora Alaguero-Cordovilla
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Caridad Ros-Ibañez
- Instituto Murciano de Investigación y Desarrollo Agrario y AlimentarioMurcia, Spain
| | - Alfredo Lacasa
- Instituto Murciano de Investigación y Desarrollo Agrario y AlimentarioMurcia, Spain
| | - Francisco J. Sorribas
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Luis V. Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
25
|
Aranda-Martinez A, Naranjo Ortiz MÁ, Abihssira García IS, Zavala-Gonzalez EA, Lopez-Llorca LV. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 2017; 204:30-39. [PMID: 28870289 DOI: 10.1016/j.micres.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Isabel Sofía Abihssira García
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
26
|
Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 2017; 101:3513-3536. [DOI: 10.1007/s00253-017-8229-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 02/03/2023]
|
27
|
Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henrissat B, Lopez-Llorca LV. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Environ Microbiol 2016; 18:4200-4215. [PMID: 27668983 DOI: 10.1111/1462-2920.13544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Pochonia chlamydosporia is a soil fungus with a multitrophic lifestyle combining endophytic and saprophytic behaviors, in addition to a nematophagous activity directed against eggs of root-knot and other plant parasitic nematodes. The carbohydrate-active enzymes encoded by the genome of P. chlamydosporia suggest that the endophytic and saprophytic lifestyles make use of a plant cell wall polysaccharide degradation machinery that can target cellulose, xylan and, to a lesser extent, pectin. This enzymatic machinery is completed by a chitin breakdown system that involves not only chitinases, but also chitin deacetylases and a large number of chitosanases. P. chlamydosporia can degrade and grow on chitin and is particularly efficient on chitosan. The relevance of chitosan breakdown during nematode egg infection is supported by the immunolocalization of chitosan in Meloidogyne javanica eggs infected by P. chlamydosporia and by the fact that the fungus expresses chitosanase and chitin deacetylase genes during egg infection. This suggests that these enzymes are important for the nematophagous activity of the fungus and they are targets for improving the capabilities of P. chlamydosporia as a biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
28
|
Aranda-Martinez A, Lopez-Moya F, Lopez-Llorca LV. Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan. J Basic Microbiol 2016; 56:1059-1070. [DOI: 10.1002/jobm.201500775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences, Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef; University of Alicante; Alicante Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences, Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef; University of Alicante; Alicante Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences, Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef; University of Alicante; Alicante Spain
| |
Collapse
|
29
|
Zavala-González EA, Lopez-Moya F, Aranda-Martinez A, Cruz-Valerio M, Lopez-Llorca LV, Ramírez-Lepe M. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity. J Basic Microbiol 2016; 56:792-800. [PMID: 27213758 DOI: 10.1002/jobm.201500758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/12/2016] [Indexed: 11/07/2022]
Abstract
The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp.
Collapse
Affiliation(s)
- Ernesto A Zavala-González
- Food Research and Development Unit (UNIDA), Laboratory of Genetics, Technological Institute of Veracruz, Veracruz, México.,Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) "Ramon Margalef", University of Alicante, Alicante, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) "Ramon Margalef", University of Alicante, Alicante, Spain
| | - Almudena Aranda-Martinez
- Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) "Ramon Margalef", University of Alicante, Alicante, Spain
| | - Mayra Cruz-Valerio
- Food Research and Development Unit (UNIDA), Laboratory of Genetics, Technological Institute of Veracruz, Veracruz, México
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) "Ramon Margalef", University of Alicante, Alicante, Spain
| | - Mario Ramírez-Lepe
- Food Research and Development Unit (UNIDA), Laboratory of Genetics, Technological Institute of Veracruz, Veracruz, México
| |
Collapse
|
30
|
Lopez-Moya F, Lopez-Llorca LV. Omics for Investigating Chitosan as an Antifungal and Gene Modulator. J Fungi (Basel) 2016; 2:jof2010011. [PMID: 29376928 PMCID: PMC5753092 DOI: 10.3390/jof2010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
31
|
Lopez-Moya F, Kowbel D, Nueda MJ, Palma-Guerrero J, Glass NL, Lopez-Llorca LV. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan. MOLECULAR BIOSYSTEMS 2016; 12:391-403. [PMID: 26694141 PMCID: PMC4729629 DOI: 10.1039/c5mb00649j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca(2+) increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca(2+) in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Maria José Nueda
- Statistics and Operation Research Department, University of Alicante, E-03080 Alicante, Spain.
| | - Javier Palma-Guerrero
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
32
|
Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 2016; 120:572-585. [PMID: 27020158 DOI: 10.1016/j.funbio.2015.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Pochonia chlamydosporia (Pc), a nematophagous fungus and root endophyte, uses appressoria and extracellular enzymes, principally proteases, to infect the eggs of plant parasitic nematodes (PPN). Unlike other fungi, Pc is resistant to chitosan, a deacetylated form of chitin, used in agriculture as a biopesticide to control plant pathogens. In the present work, we show that chitosan increases Meloidogyne javanica egg parasitism by P. chlamydosporia. Using antibodies specific to the Pc enzymes VCP1 (a subtilisin), and SCP1 (a serine carboxypeptidase), we demonstrate chitosan elicitation of the fungal proteases during the parasitic process. Chitosan increases VCP1 immuno-labelling in the cell wall of Pc conidia, hyphal tips of germinating spores, and in appressoria on infected M. javanica eggs. These results support the role of proteases in egg parasitism by the fungus and their activation by chitosan. Phylogenetic analysis of the Pc genome reveals a large diversity of subtilisins (S8) and serine carboxypeptidases (S10). The VCP1 group in the S8 tree shows evidence of gene duplication indicating recent adaptations to nutrient sources. Our results demonstrate that chitosan enhances Pc infectivity of nematode eggs through increased proteolytic activities and appressoria formation and might be used to improve the efficacy of M. javanica biocontrol.
Collapse
Affiliation(s)
- Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain.
| | - Sebastião R Ferreira
- Laboratory of Immunology and Genomic of Parasites, Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| | | | - Ana I Marin-Ortiz
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| | - Christopher R Thornton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| |
Collapse
|
33
|
Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar Drugs 2015; 13:5156-86. [PMID: 26287217 PMCID: PMC4557018 DOI: 10.3390/md13085156] [Citation(s) in RCA: 682] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 01/20/2023] Open
Abstract
Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|