1
|
Martirosyan V, Stavi I, Doniger T, Applebaum I, Sherman C, Levi M, Steinberger Y. Fungal community dynamics in a hyper-arid ecosystem after 7 and 47 years of petroleum contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1212. [PMID: 39556259 DOI: 10.1007/s10661-024-13387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
This study investigates the impact of crude oil contamination on the fungal community dynamics in the Evrona Nature Reserve, situated in Israel's hyper-arid Arava Valley. The reserve experienced petroleum-hydrocarbon-spill pollution at two neighboring sites in 1975 and 2014. The initial contamination was left untreated, providing a unique opportunity to compare its effects to those of the second contamination event. In 2022, soil samples were collected from both contaminated areas and nearby clean (control) sites, 47 and 7 years after the spills. The taxonomic diversity of fungal community and functional guilds, as well as various properties of the soil, were analyzed. We focused on three functional groups within fungal communities: saprotrophs, symbiotrophs, and pathotrophs. The results revealed a significant decrease in number of fungal species in the contaminated samples over time. Consequently, prolonged effect of crude oil-contaminated soils can facilitate the development of a distinct fungal community, which has adapted to the conditions of oil contamination. This study aims to elucidate the dynamics of fungal communities in oil-contaminated soils, contributing to a better understanding of their behavior and adaptation in such environments.
Collapse
Affiliation(s)
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel.
| | - Tirza Doniger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Itaii Applebaum
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Chen Sherman
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - May Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Yosef Steinberger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Gadd GM, McGregor L. Fungal colonization and penetration of mortar as a suitable simulant for concrete: Implications for fungal biodeterioration in the built environment. Fungal Biol 2024; 128:1899-1906. [PMID: 39059845 DOI: 10.1016/j.funbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. Aspergillus niger, Stemphylium sp. and Paecilomyces sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of ∼530 um for A. niger and ∼620 um for Stemphylium sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| | - Louise McGregor
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| |
Collapse
|
3
|
Rangel DEN. How Metarhizium robertsii's mycelial consciousness gets its conidia Zen-ready for stress. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:1-33. [PMID: 39389703 DOI: 10.1016/bs.aambs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This memoir takes a whimsical ride through my professional adventures, spotlighting my fungal stress research on the insect-pathogenic fungus Metarhizium robertsii, which transformed many of my wildest dreams into reality. Imagine the magic of fungi meeting science and me, a happy researcher, arriving at Utah State University ready to dive deep into studies with the legendary insect pathologist, my advisor Donald W. Roberts, and my co-advisor Anne J. Anderson. From my very first "Aha!" moment in the lab, I plunged into a vortex of discovery, turning out research like a mycelium on a mission. Who knew 18 h/day, seven days a week, could be so exhilarating? I was fueled by an insatiable curiosity, boundless creativity, and a perhaps slightly alarming level of motivation. Years later, I managed to bring my grandest vision to life: the International Symposium on Fungal Stress-ISFUS. This groundbreaking event has attracted 162 esteemed speakers from 29 countries to Brazil, proving that fungi can be both fun and globally fascinating. ISFUS is celebrating its fifth edition in 2024, a decade after its 2014 debut.
Collapse
|
4
|
Zhao Z, Ling Z, Nie X, Liu D, Chen H, Zhang S. Microbial Diversity and Community Structure of Chinese Fresh Beef during Cold Storage and Their Correlations with Off-Flavors. Foods 2024; 13:1482. [PMID: 38790782 PMCID: PMC11119422 DOI: 10.3390/foods13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the diversity and dynamics of microorganisms in Chinese fresh beef (CFB) without acid discharge treatment during cold storage, high-throughput sequencing was employed to analyze the CFB refrigerated for 0, 3, 7, and 10 days. The results showed that the community richness of the fungi and bacteria decreased significantly. However, the diversity decreased in the early stage and increased in the later stage. At the phylum level, Ascomycota (74.1-94.1%) and Firmicutes (77.3-96.8%) were the absolutely dominant fungal and bacterial phyla. The relative abundance of both fungal and bacterial phyla displayed a trend of increasing and then decreasing. At the genus level, Candida (29.3-52.5%) and Lactococcus (19.8-59.3%) were, respectively, the dominant fungal and bacterial genera. The relative abundance of Candida showed a trend of increasing and then decreasing, while Lactococcus possessed the opposite trend. KEGG metabolic pathways analysis suggested that carbohydrate metabolism, membrane transport, and amino acid metabolism were the major metabolic pathways of bacteria. Bugbase prediction indicated the major microbial phenotype of bacteria in CFB during cold storage was Gram-positive (17.2-31.6%). Correlation analysis suggested that Lactococcus, Citrobacter, Proteus, and Rhodotorula might be the main microorganisms promoting the production of off-flavor substances in CFB. This study provides a theoretical basis for the preservation of Chinese fresh beef.
Collapse
Affiliation(s)
- Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
| | - Ziqing Ling
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Shengyuan Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| |
Collapse
|
5
|
Zhen Q, Wang X, Cheng X, Fang W. Remediation of toxic metal and metalloid pollution with plant symbiotic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:171-187. [PMID: 39389705 DOI: 10.1016/bs.aambs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.
Collapse
Affiliation(s)
- Qing Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Xinru Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Xianxian Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
6
|
Alwakeel S, Alothman N, Ameen F, Alotaibi M, Mohammed AE, Alhomaidi E. Stress-driven metabolites of desert soil fungi. Biotechnol Genet Eng Rev 2024; 40:140-153. [PMID: 36852923 DOI: 10.1080/02648725.2023.2182537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023]
Abstract
Microorganisms produce secondary metabolites to survive under stressful conditions. The effect of drought and heat stress on fungi isolated from Arabian desert soil during the hot (ca 40°C) and cool (ca 10°C) seasons was studied using the genome mining approach. The presence of three stress-related genes (calmodulin, polyketide synthase and beta tubulin) was analyzed molecularly using specific primers. The presence of the genes in desert fungi was compared to their antimicrobial (ten bacterial or fungal pathogens) and anticancer (liver, cervical and breast) properties and the production of thermostable enzymes (phytase and xylanase). The genes appeared to be present in the fungal sequence obtained during the summer, while none of the genes were present during winter. Appreciable differences were observed in enzyme activities, with summer activities high and winter low. The antagonistic activities of A. niger were relatively stable and varying, while those of P. chrysogenum were consistently higher in summer than in winter. The presence of the three genes seemed to correlate with the highly antagonistic activities of P. chrysogenum, while A. niger had relatively active winter isolates without any of the genes. The hot season in deserts yields fungal isolates with biological activities useful in biotechnological solutions.
Collapse
Affiliation(s)
- Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nouf Alothman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
8
|
Ledoux C, Bobée C, Cabet É, David P, Filaine F, Hachimi S, Lalanne C, Ruprich-Robert G, Herbert É, Chapeland-Leclerc F. Characterization of spatio-temporal dynamics of the constrained network of the filamentous fungus Podospora anserina using a geomatics-based approach. PLoS One 2024; 19:e0297816. [PMID: 38319941 PMCID: PMC10846696 DOI: 10.1371/journal.pone.0297816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
In their natural environment, fungi are subjected to a wide variety of environmental stresses which they must cope with by constantly adapting the architecture of their growing network. In this work, our objective was to finely characterize the thallus development of the filamentous fungus Podospora anserina subjected to different constraints that are simple to implement in vitro and that can be considered as relevant environmental stresses, such as a nutrient-poor environment or non-optimal temperatures. At the Petri dish scale, the observations showed that the fungal thallus is differentially affected (thallus diameter, mycelium aspect) according to the stresses but these observations remain qualitative. At the hyphal scale, we showed that the extraction of the usual quantities (i.e. apex, node, length) does not allow to distinguish the different thallus under stress, these quantities being globally affected by the application of a stress in comparison with a thallus having grown under optimal conditions. Thanks to an original geomatics-based approach based on the use of automatized Geographic Information System (GIS) tools, we were able to produce maps and metrics characterizing the growth dynamics of the networks and then to highlight some very different dynamics of network densification according to the applied stresses. The fungal thallus is then considered as a map and we are no longer interested in the quantity of material (hyphae) produced but in the empty spaces between the hyphae, the intra-thallus surfaces. This study contributes to a better understanding of how filamentous fungi adapt the growth and densification of their network to potentially adverse environmental changes.
Collapse
Affiliation(s)
- Clara Ledoux
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Cécilia Bobée
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Éva Cabet
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Pascal David
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | | | | | | | | - Éric Herbert
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | |
Collapse
|
9
|
Licona-Juárez KC, Bezerra AVS, Oliveira ITC, Massingue CD, Medina HR, Rangel DEN. Congo red induces trans-priming to UV-B radiation in Metarhizium robertsii. Fungal Biol 2023; 127:1544-1550. [PMID: 38097328 DOI: 10.1016/j.funbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 12/18/2023]
Abstract
Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.
Collapse
Affiliation(s)
- Karla Cecilia Licona-Juárez
- Universidade Brasil, São Paulo, SP, 08230-030, Brazil; Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | | | | | - Humberto R Medina
- Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
10
|
Alder-Rangel A, Bailão AM, Herrera-Estrella A, Rangel AEA, Gácser A, Gasch AP, Campos CBL, Peters C, Camelim F, Verde F, Gadd GM, Braus G, Eisermann I, Quinn J, Latgé JP, Aguirre J, Bennett JW, Heitman J, Nosanchuk JD, Partida-Martínez LP, Bassilana M, Acheampong MA, Riquelme M, Feldbrügge M, Keller NP, Keyhani NO, Gunde-Cimerman N, Nascimento R, Arkowitz RA, Mouriño-Pérez RR, Naz SA, Avery SV, Basso TO, Terpitz U, Lin X, Rangel DEN. The IV International Symposium on Fungal Stress and the XIII International Fungal Biology Conference. Fungal Biol 2023; 127:1157-1179. [PMID: 37495306 PMCID: PMC11668258 DOI: 10.1016/j.funbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023]
Abstract
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.
Collapse
Affiliation(s)
| | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alfredo Herrera-Estrella
- Unidad de Genómica Avanzada-Langebio, Centro de Investigación y de Estudios Avanzados Del IPN, Irapuato, Guanajuato, Mexico
| | | | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, WI, USA
| | - Claudia B L Campos
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, SP, Brazil
| | - Christina Peters
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Francine Camelim
- German Academic Exchange Service (DAAD), DWIH, Sao Paulo, SP, Brazil
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich, England, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete Heraklion, Greece
| | - Jesus Aguirre
- Departamento de Biología Celular y Del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | | | - Martine Bassilana
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nancy P Keller
- Department of Medical Microbiology, Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Raquel Nascimento
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Robert A Arkowitz
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | - Rosa Reyna Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, Pakistan
| | - Simon V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham, England, UK
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
11
|
Licona-Juárez KC, Andrade EP, Medina HR, Oliveira JNS, Sosa-Gómez DR, Rangel DEN. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Fungal Biol 2023; 127:1250-1258. [PMID: 37495315 DOI: 10.1016/j.funbio.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/28/2023]
Abstract
Soybean, corn, and cotton crops are afflicted by several noctuid pests and the development of bioinsecticides could help control these pests. The fungus Metarhizium rileyi has the greatest potential because its epizootics decimate caterpillar populations in the absence of insecticide applications. However, insect-pathogenic fungi when used for insect control in agriculture have low survival mainly due to the deleterious effects of ultraviolet radiation and heat from solar radiation. In this study, fourteen isolates of M. rileyi were studied and compared with isolates ARSEF 324 and ARSEF 2575 of Metarhizium acridum and Metarhizium robertsii, respectively, whose sensitivity to UV-B radiation had previously been studied. Conidia were exposed at room temperature (ca. 26 °C) to 847.90 mWm-2 of Quaite-weighted UV-B using two fluorescent lamps. The plates containing the conidial suspensions were irradiated for 1, 2, and 3 h, providing doses of 3.05, 6.10, and 9.16 kJ m2, respectively. A wide variability in conidial UV-B tolerance was found among the fourteen isolates of M. rileyi. Isolate CNPSo-Mr 150 was the most tolerant isolate (germination above 80% after 2 h exposure), which was comparable to ARSEF 324 (germination above 90% after 2 h exposure), the most tolerant Metarhizium species. The least tolerant isolates were CNPSo-Mr 141, CNPSo-Mr 142, CNPSo-Mr 156, and CNPSo-Mr 597. Nine M. rileyi isolates exhibited similar tolerance to UV-B radiation as ARSEF 2575 (germination above 50% after 2 h exposure). In conclusion, the majority of M. rileyi isolates studied can endure 1 or 2 h of UV-B radiation exposure. However, after 3 h of exposure, the germination of all studied isolates reduced below 40%, except for CNPSo-Mr 150 and ARSEF 324.
Collapse
Affiliation(s)
- Karla Cecilia Licona-Juárez
- Universidade Brasil, São Paulo, SP, 08230-030, Brazil; Laboratorio de Biología Molecular, Tecnológico Nacional de México, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | - Humberto R Medina
- Laboratorio de Biología Molecular, Tecnológico Nacional de México, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | | | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, UTFPR, Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
12
|
Silva AM, Pedrini N, Pupin B, Roberts DW, Rangel DEN. Asphyxiation of Metarhizium robertsii during mycelial growth produces conidia with increased stress tolerance via increased expression of stress-related genes. Fungal Biol 2023; 127:1209-1217. [PMID: 37495310 DOI: 10.1016/j.funbio.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.
Collapse
Affiliation(s)
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT, 84322-5305, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
13
|
Ianutsevich EA, Danilova OA, Antropova AB, Tereshina VM. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. Fungal Biol 2023; 127:909-917. [PMID: 36906381 DOI: 10.1016/j.funbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Xerophilic fungi accumulate a large amount of glycerol in the cytosol to counterbalance the external osmotic pressure. But during heat shock (HS) majority of fungi accumulate a thermoprotective osmolyte trehalose. Since glycerol and trehalose are synthesized in the cell from the same precursor (glucose), we hypothesised that, under heat shock conditions, xerophiles growing in media with high concentrations of glycerol may acquire greater thermotolerance than those grown in media with high concentrations of NaCl. Therefore, the composition of membrane lipids and osmolytes of the fungus Aspergillus penicillioides, growing in 2 different media under HS conditions was studied and the acquired thermotolerance was assessed. It was found that in the salt-containing medium an increase in the proportion of phosphatidic acids against a decrease in the proportion of phosphatidylethanolamines is observed in the composition of membrane lipids, and the level of glycerol in the cytosol decreases 6-fold, while in the medium with glycerol, changes in the composition of membrane lipids are insignificant and the level of glycerol is reduced by no more than 30%. In the mycelium trehalose level have increased in both media, but did not exceed 1% of dry weight. However, after exposure to HS the fungus acquires greater thermotolerance in the medium with glycerol than in the medium with salt. The data obtained indicate the interrelation between changes in the composition of osmolytes and membrane lipids in the adaptive response to HS, as well as the synergistic effect of glycerol and trehalose.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Anna B Antropova
- Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», 5А, Malyy Kazennyy Pereulok, 105064, Moscow, Russian Federation.
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| |
Collapse
|
14
|
Lin W, Zuo J, Li K, Hu R, Xu X, Huang T, Wen G, Ma J. Pre-exposure of peracetic acid enhances its subsequent combination with ultraviolet for the inactivation of fungal spores: Efficiency, mechanisms, and implications. WATER RESEARCH 2023; 229:119404. [PMID: 36446176 DOI: 10.1016/j.watres.2022.119404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Waterborne fungi pose a potential threat to water supply safety due to their high resistance to disinfectants. Peracetic acid, as a promising alternative disinfectant to chlorine, has attracted increasing attention in water treatment. In this study, the inactivation of two dominant fungal species (Aspergillus niger and Aspergillus flavus) by sequential application of peracetic acid and ultraviolet (PAA-UV/PAA) was reported for the first time. Results revealed that the pre-exposure of PAA could facilitate the subsequent process of UV/PAA combination and shorten the lag phase in fungi inactivation. After 10 min of PAA pre-exposure, PAA-UV/PAA achieved 3.03 and 2.40 log inactivation of Aspergillus niger and Aspergillus flavus, which were 2- and 4.3-fold higher than that of direct UV/PAA under the same UV and PAA doses. PAA-UV/PAA disinfection also exhibited a stronger regrowth inhibition for incompletely inactivated fungal spores than direct UV/PAA. The increase of pH (5.0-9.0) and humic acid concentration (1.0-5.0 mg L - 1) showed an inhibitory effect on PAA-UV/PAA inactivation, but PAA-UV/PAA was more adaptable in a wide pH range and the presence of humic acid compared to direct UV/PAA. The more severe cell membrane damage and higher reactive oxygen species level in PAA-UV/PAA were evidenced for the first time by flow cytometry. The increased hydroxyl radical generation and higher synergism were primarily responsible for inactivation improvement. This study enhances the further understanding of the PAA-UV/PAA process, and the findings are expected to promote the development of PAA as a promising disinfectant for effective fungi control.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Zuo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Wan Q, Xia Y, Li Y, Wu G, Wang J, Huang T, Wen G. Enhanced solar inactivation of fungal spores by addition of low-dose chlorine: Efficiency and mechanism. WATER RESEARCH 2022; 222:118964. [PMID: 35970005 DOI: 10.1016/j.watres.2022.118964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This work demonstrated that the solar inactivation of fungal spores was enhanced by addition of low-dose chlorine. Although the effect of low-dose chlorine alone (2.0 mg/L) on culturability of fungal spores was negligible, the solar/chlorine inactivation on fungal spores performed better than solar alone inactivation, with a lower shoulder length and a higher maximum inactivation rate constant. The enhanced inactivation of Aspergillus niger can be ascribed to the membrane oxidation by chlorine, and the enhanced inactivation of Penicillium polonicum can be ascribed to the membrane oxidation by chlorine and ·OH (·OH plays a major role). The oxidization by chlorine and ·OH led to an increase in membrane permeability of fungal spores, which enhanced the solar inactivation, resulting in an increase in intracellular ROS and more serious morphological damage. Due to the presence of background substances such as dissolved organic matter and metal ions (Fe2+, Mn2+, etc.), the inactivation efficiency in real water matrices was decreased. The main disinfection by-products (DBPs) produced in the inactivation of fungal spores in chlorine alone and solar/chlorine treatments were dichloroacetic acid, trichloroacetic acid, trichloroacetone and trichloromethane. Generally, DBPs formation in solar/chlorine treatment was lower than those in chlorine alone treatment. Moreover, the regrowth potential of the two genera of fungal spores in R2A medium could be inhibited by adding low-dose chlorine.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuancheng Xia
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yangfan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
16
|
Biologia futura: combinatorial stress responses in fungi. Biol Futur 2022; 73:207-217. [DOI: 10.1007/s42977-022-00121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
AbstractIn the ever-changing fungal environment, fungi have to cope with a wide array of very different stresses. These stresses frequently act in combination rather than independently, i.e., they quickly follow one another or occur concomitantly. Combinatorial stress response studies revealed that the response of fungi to a stressor is highly dependent on the simultaneous action of other stressors or even on earlier stresses to which the fungi adapted. Several important phenomena were discovered, such as stress pathway interference, acquired stress tolerance, stress response memory or stress cross-protection/sensitization, which cannot be interpreted when we study the consequences of a single stressor alone. Due to the interactions between stressors and stress responses, a stress response that develops under a combined stress is not the simple summation of stress responses observed during single stress treatments. Based on the knowledge collected from single stress treatment experiments, we cannot predict how fungi will respond to a certain combination of stresses or even whether this combination will be more harmful than single stress treatments. This uncertainty warns us that if we want to understand how fungi adapt to a certain habitat (e.g., to the human body) to find a point of weakness in this adaptation, we must understand how the fungi cope with combinations of stresses, rather than with single stressors.
Collapse
|
17
|
Current developments in the resistance, quality, and production of entomopathogenic fungi. World J Microbiol Biotechnol 2022; 38:115. [PMID: 35581403 DOI: 10.1007/s11274-022-03301-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
There is a worldwide concern to achieve food security with a sustainable approach, including the generation and implementation of techniques for the production of high-quality chemical-free crops. This food revolution has promoted the development and consolidation of programmes for integrated pest management. Some of those programmes include the use of diverse organisms (biological control agents) to suppress populations of pests potentially harmful to the crops. Among these biological control agents are entomopathogenic fungi that are highly effective in suppressing a diversity of insects and have, therefore, been produced and marketed throughout the world. However, the bottleneck for applying entomopathogenic fungi is the production of propagules (blastospores and conidia) with resistance to environment conditions and abiotic factors, maintaining high quality in terms of virulence. Therefore, this manuscript presents recent studies related to increasing resistance and quality using different bioreactors to produce conidia. The above presents a global panorama related to current developments that contribute to improving the resistance, quality, and production of entomopathogenic fungal propagules.
Collapse
|
18
|
Portela VO, Moro A, Santana NA, Baldoni DB, de Castro IA, Antoniolli ZI, Dalcol II, Seminoti Jacques RJ. First report on the production of phytotoxic metabolites by Mycoleptodiscus indicus under optimized conditions of submerged fermentation. ENVIRONMENTAL TECHNOLOGY 2022; 43:1458-1470. [PMID: 33044125 DOI: 10.1080/09593330.2020.1836030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
An alternative to controlling weeds resistant to conventional herbicides is the isolation of new active principles. Fungi can produce phytotoxic metabolites that may be used in the development of new herbicides. The objectives of this study were: (1) isolate, select, and identify a fungus producer of phytotoxic metabolites and (2) optimize the culture conditions of this fungus in a low-cost culture medium, with the aim of increasing the phytotoxic effects of their metabolites in weeds and commercial plants. Fungi were isolated from the leaves of Conyza sp. with disease symptoms and selected according to the production of phytotoxic metabolites in solid and submerged fermentation in a low-cost culture medium. A Plackett-Burman Design and Central Composite Rotational Design were used to optimize the conditions of temperature, agitation, pH, and concentrations of glucose and yeast extract in submerged fermentation. The phytotoxic metabolites produced under optimal conditions were tested on 10 commercial plants and weeds that are difficult to control. Of the nine fungi isolated, Mycoleptodiscus indicus UFSM54 produced higher leaf lesions. The production of phytotoxic metabolites was optimized when the fungus was cultivated at 35°C, 50 rpm, and 1.5 g L-1 of glucose in submerged fermentation. The metabolites of M. indicus caused severe phytotoxic effects on germination and seedling growth, and enhanced lesion development on detached plant leaves. The present study is the first to report on the production of phytotoxic metabolites by M. indicus, a potential producer of bioherbicides.
Collapse
Affiliation(s)
| | - Anderson Moro
- Department of Soils, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natielo Almeida Santana
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Ionara Irion Dalcol
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
19
|
Dias LP, Souza RKF, Pupin B, Rangel DEN. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biol 2021; 125:891-904. [PMID: 34649676 DOI: 10.1016/j.funbio.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena da Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | | | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | | |
Collapse
|
20
|
Mattoon ER, Casadevall A, Cordero RJB. Beat the heat: correlates, compounds, and mechanisms involved in fungal thermotolerance. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Lima DMCG, Costa TPC, Emri T, Pócsi I, Pupin B, Rangel DEN. Fungal tolerance to Congo red, a cell wall integrity stress, as a promising indicator of ecological niche. Fungal Biol 2021; 125:646-657. [PMID: 34281658 DOI: 10.1016/j.funbio.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Differential sensitivities to the cell wall stress caused by Congo red (CR) have been observed in many fungal species. In this study, the tolerances and sensitivities to CR was studied with an assorted collection of fungal species from three phylogenetic classes: Sordariomycetes, Dothideomycetes, and Eurotiomycetes, three orders, and eight families. These grouped into different ecological niches, such as insect pathogens, plant pathogens, saprotrophs, and mycoparasitics. The saprotroph Aspergillus niger and the mycoparasite Trichoderma atroviride stood out as the most resistant species to cell wall stress caused by CR, followed by the plant pathogenic fungi, a mycoparasite, and other saprotrophs. The insect pathogens had low tolerance to CR. The insect pathogens Metarhizium acridum and Cordyceps fumosorosea were the most sensitive to CR. In conclusion, Congo red tolerance may reflect ecological niche, accordingly, the tolerances of the fungal species to Congo red were closely aligned with their ecology.
Collapse
Affiliation(s)
| | | | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Especiais - INPE, São José dos Campos, SP, Brazil
| | | |
Collapse
|
22
|
Priesterjahn EM, Geisen R, Schmidt-Heydt M. Influence of Light and Water Activity on Growth and Mycotoxin Formation of Selected Isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 2020; 8:microorganisms8122000. [PMID: 33333925 PMCID: PMC7765403 DOI: 10.3390/microorganisms8122000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022] Open
Abstract
Aspergillus flavus and A. parasiticus are the main causes of aflatoxin contamination in various foods, particularly grains, as they can thrive in environments with lower water activity and higher temperatures. The growth of Aspergillus and the formation of the mycotoxins aflatoxin and cyclopiazonic acid are strongly influenced by environmental stimuli and can be reduced by modulating parameters such as water activity, pH, temperature and light during the storage. This study has two objectives—on the one hand, to assess how global warming and an increase in exposure to sunlight affect growth and mycotoxin formation, and on the other hand, how the findings from these experiments can be used to reduce fungal growth and mycotoxin formation in stored foods. Using growth substrates with two different water activities (aw 0.95, aw 0.98), together with a light incubation device consisting of different chambers equipped with diodes emitting visible light of five different wavelengths (455 nm, 470 nm, 530 nm, 590 nm, 627 nm) plus white light, we analyzed the growth and mycotoxin formation of selected Aspergillus flavus and A. parasiticus isolates. It was shown that light with a wavelength of 455/470 nm alone, but especially in combination with a lower water activity of aw 0.95, leads to a significant reduction in growth and mycotoxin formation, which was accompanied by reduced transcriptional activity of the responsible mycotoxin biosynthetic genes. Therefore, these results can be used to significantly reduce the growth and the mycotoxin formation of the analyzed fungi during storage and to estimate the trend of fungal infestation by Aspergillus flavus and A. parasiticus in water activity- and light exposure-equivalent climate change scenarios. Mycotoxin-producing aspergilli can be effective and sustainably inhibited using a combination of short-wave light and lowered water activity in the substrate. A higher annual mean temperature accompanying climate change may lead to an increased spread of aflatoxin-producing fungi in areas that were previously too cold for them. On the other hand, there will be regions in the world where contamination with aflatoxin-producing fungi will be reduced due to increased drought and sun exposure.
Collapse
|
23
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Rangel DEN, Piedrabuena AE, Roitman I, Messias CL. Laboratory and field studies for the control of Chagas disease vectors using the fungus Metarhizium anisopliae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21745. [PMID: 33029844 DOI: 10.1002/arch.21745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50 ) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50 ) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.
Collapse
Affiliation(s)
- Drauzio E N Rangel
- Universidade Brasil, São Paulo, SP, Brazil
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Aquiles E Piedrabuena
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Isaac Roitman
- Departamento de Biologia Celular, Universidade de Brasilia, Brasilia, DF, Brazil
| | - Claudio L Messias
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
25
|
Abstract
Bioethanol is the largest biotechnology product and the most dominant biofuel globally. Saccharomyces cerevisiae is the most favored microorganism employed for its industrial production. However, obtaining maximum yields from an ethanol fermentation remains a technical challenge, since cellular stresses detrimentally impact on the efficiency of yeast cell growth and metabolism. Ethanol fermentation stresses potentially include osmotic, chaotropic, oxidative, and heat stress, as well as shifts in pH. Well-developed stress responses and tolerance mechanisms make S. cerevisiae industrious, with bioprocessing techniques also being deployed at industrial scale for the optimization of fermentation parameters and the effective management of inhibition issues. Overlap exists between yeast responses to different forms of stress. This review outlines yeast fermentation stresses and known mechanisms conferring stress tolerance, with their further elucidation and improvement possessing the potential to improve fermentation efficiency.
Collapse
|
26
|
Li Q, Liu J, Gadd GM. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol 2020; 104:8999-9008. [PMID: 32940735 PMCID: PMC7567682 DOI: 10.1007/s00253-020-10854-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Abstract
Abstract Much research has been carried out on the bacterial bioremediation of soil contaminated with petroleum hydrocarbons and toxic metals but much less is known about the potential of fungi in sites that are co-contaminated with both classes of pollutants. This article documents the roles of fungi in soil polluted with both petroleum hydrocarbons and toxic metals as well as the mechanisms involved in the biotransformation of such substances. Soil characteristics (e.g., structural components, pH, and temperature) and intracellular or excreted extracellular enzymes and metabolites are crucial factors which affect the efficiency of combined pollutant transformations. At present, bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals is mostly focused on the removal, detoxification, or degradation efficiency of single or composite pollutants of each type. Little research has been carried out on the metabolism of fungi in response to complex pollutant stress. To overcome current bottlenecks in understanding fungal bioremediation, the potential of new approaches, e.g., gradient diffusion film technology (DGT) and metabolomics, is also discussed. Key points • Fungi play important roles in soil co-contaminated with TPH and toxic metals. • Soil characteristics, enzymes, and metabolites are major factors in bioremediation. • DGT and metabolomics can be applied to overcome current bottlenecks.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Jicheng Liu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK.
| |
Collapse
|
27
|
Timson DJ, Eardley J. Destressing Yeast for Higher Biofuel Yields: Can Excess Chaotropicity Be Mitigated? Appl Biochem Biotechnol 2020; 192:1368-1375. [PMID: 32803494 DOI: 10.1007/s12010-020-03406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
Abstract
Biofuels have the capacity to contribute to carbon dioxide emission reduction and to energy security as oil reserves diminish and/or become concentrated in politically unstable regions. However, challenges exist in obtaining the maximum yield from industrial fermentations. One challenge arises from the nature of alcohols. These compounds are chaotropic (i.e. causes disorder in the system) which causes stress in the microbes producing the biofuel. Brewer's yeast (Saccharomyces cerevisiae) typically cannot grow at ethanol concentration much above 17% (v/v). Mitigation of these properties has the potential to increase yield. Previously, we have explored the effects of chaotropes on model enzyme systems and attempted (largely unsuccessfully) to offset these effects by kosmotropes (compounds which increase the order of the system, i.e. the "opposite" of chaotropes). Here we present some theoretical results which suggest that high molecular mass polyethylene glycols may be the most effective kosmotropic additives in terms of both efficacy and cost. The assumptions and limitations of these calculations are also presented. A deeper understanding of the effects of chaotropes on biofuel-producing microbes is likely to inform improvements in bioethanol yields and enable more rational approaches to the "neutralisation" of chaotropicity.
Collapse
Affiliation(s)
- David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| | - Joshua Eardley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
28
|
Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains. Braz J Microbiol 2020; 51:1909-1918. [PMID: 32748245 DOI: 10.1007/s42770-020-00342-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous fungi have been proved to have a pronounced capability to recover metals from mineral ores. However, the metal recovery yield is reduced due to toxic effects triggered by various heavy metals present in the ore. The current study highlights the fungal adaptations to the toxic effects of metals at higher pulp densities for the enhanced bio-recovery of aluminum from low-grade bauxite. In the previous studies, a drastic decrease in the aluminum dissolution was observed when the bauxite pulp density was increased from 1 to 10% (w/v) due to the high metal toxicity and low tolerance of Aspergillus niger and Penicillium simplicissium to heavy metals. These fungi were adapted in order to increase heavy metal tolerance of these fungal strains and also to get maximum Al dissolution. A novel approach was employed for the adaptation of fungal strains using a liquid growth medium containing 5% bauxite pulp density supplemented with molasses as an energy source. The mycelia of adapted strains were harvested and subsequently cultured in a low-cost oat-agar medium. Batch experiments were performed to compare the aluminum leaching efficiencies in the direct one-step and the direct two-step bioleaching processes. FE-SEM analysis revealed the direct destructive and corrosive action by the bauxite-tolerant strains due to the extension and penetration of the vegetative mycelium filaments into the bauxite matrix. XRD analysis of the bioleached bauxite samples showed a considerable decline in oxide minerals such as corundum and gibbsite. Results showed a high amount of total Al (≥ 98%) was successfully bioleached and solubilized from low-grade bauxite by the adapted fungal strains grown in the presence of 5% pulp density and molasses as a low-cost substrate. Graphical abstract.
Collapse
Affiliation(s)
- Syed Sikandar Shah
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil. .,Department of Chemical Engineering, Polytechnic School of University of Sao Paulo (USP), Sao Paulo, SP, 05508-010, Brazil.
| | | | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| | - Denise Bevilaqua
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry Araraquara, Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
29
|
Medina EQ, Oliveira AS, Medina HR, Rangel DE. Serendipity in the wrestle between Trichoderma and Metarhizium. Fungal Biol 2020; 124:418-426. [DOI: 10.1016/j.funbio.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
|
30
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
31
|
Rangel DEN, Alder-Rangel A. History of the International Symposium on Fungal Stress - ISFUS, a dream come true! Fungal Biol 2020; 124:525-535. [PMID: 32389316 DOI: 10.1016/j.funbio.2020.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023]
Abstract
The International Symposium on Fungal Stress (ISFUS) was born in a dream that Drauzio Eduardo Naretto Rangel had in 2013. This article reviews the first three ISFUSs and prospects for the future meetings. Although ISFUS was born as a small family organized meeting, since the first meeting, ISFUS has achieved great success, receiving very important research grants from FAPESP, FAPEG, and CAPES to bring international scientists to Brazil. Moreover, three special issues in leading journals have been published with articles relating to the talks presented at each ISFUS. For the first meeting, most speakers published in a special issue in Current Genetics. From the second and third meeting, articles from the speakers were published in special issues of the top mycology journal, Fungal Biology, published by Elsevier on behalf of the British Mycological Society. Here we show that following the dreams with a full heart and adding lots of love, passion, and hard work can achieve success.
Collapse
|
32
|
Selvasekaran P, Chidambaram R. Agriculturally Important Fungi for Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Antal K, Gila BC, Pócsi I, Emri T. General stress response or adaptation to rapid growth in Aspergillus nidulans? Fungal Biol 2019; 124:376-386. [PMID: 32389300 DOI: 10.1016/j.funbio.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
Genome-wide transcriptional changes in Aspergillus nidulans induced by nine different stress conditions were evaluated to reveal the general environmental stress response gene set showing unidirectional expressional changes under various types of stress. Clustering the genes by their transcriptional changes was a useful technique for identifying large groups of co-regulated genes. Altogether, 1642 co-upregulated and 3916 co-downregulated genes were identified. Nevertheless, the co-regulated genes describe the difference between the transcriptomes recorded under the stress conditions tested and one chosen reference culture condition which is designated as the "unstressed" condition. Obviously, the corresponding transcriptional differences may be attributed to either the general stress response or the reference condition. Accordingly, reduced growth and increased transcription of certain antioxidative enzymes observed under stress may be interpreted as elements of the general stress response or as a feature of the "optimal growth" reference condition and decreased antioxidative protection due to "rapid growth" stress. Reversing the many to one comparison underlying the identification of co-regulated gene sets allows the same procedure to highlight changes under a single condition with respect to a set of other "background" conditions. As an example, we compared menadione treatment to our other conditions and identified downregulation of endoplasmic reticulum dependent processes and upregulation of iron-sulfur cluster assembly as well as glutathione-S-transferase genes as changes characteristic of MSB-treated cultures. Deletion of the atfA gene markedly altered the co-regulated gene sets primarily by changing the reference transcriptome; not by changing the stress responsiveness of genes. The functional characterization of AtfA-dependent co-regulated genes demonstrated the involvement of AtfA in the regulation of both vegetative growth and conidiogenesis in untreated cultures. Our data also suggested that the diverse effects of atfA gene deletion on the transcriptome under different stress conditions were the consequence of the altered transcription of several phosphorelay signal transduction system genes, including fphA, nikA, phkA, srrB, srrC, sskA and tcsB. Hopefully, this study will draw further attention to the importance of the proper selection of reference cultures in fungal transcriptomics studies especially when elements of specific stress responses are mapped.
Collapse
Affiliation(s)
- Károly Antal
- Department of Zoology, Eszterházy Károly University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Barnabás Cs Gila
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary; University of Debrecen, Doctoral School of Nutrition and Food Sciences, Egyetem tér 1, Debrecen, 4032, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
34
|
Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. Fungal Biol 2019; 124:273-288. [PMID: 32389289 DOI: 10.1016/j.funbio.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Osmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.5 M, in 0.1 M increments) for 71 strains (40 species) of ecologically diverse fungi. These include 11 saprotrophic species (17 strains, including two xerophilic species), five mycoparasitic species (five strains), six plant-pathogenic species (13 strains), and 19 entomopathogenic species (36 strains). A dendrogram obtained from cluster analyses, based on KCl inhibitory concentrations 50 % and 90 % calculated by Probit Analysis, revealed three groups of fungal isolates accordingly to their osmotolerance. The most-osmotolerant group (Group 3) contained the majority of saprotrophic fungi, and Aspergillus niger (F19) was the most tolerant. The highly xerophilic Aspergillus montevidense and Aspergillus pseudoglaucus were the second- and third-most tolerant species, respectively. All Aspergillus and Cladosporium species belonged to Group 3, followed by the entomopathogens Colletotrichum fioriniae, Simplicillium lanosoniveum, and Trichothecium roseum. Group 2 exhibited a moderate osmotolerance, and included plant-pathogens such as Colletotrichum and Fusarium, mycoparasites such as Clonostachys spp, some saprotrophs such as Mucor and Penicillium spp., and some entomopathogens such as Isaria, Lecanicillium, Mariannaea, Simplicillium, and Torrubiella. Group 1 contained the osmo-sensitive strains: the rest of the entomopathogens and the mycoparasitic Gliocladium and Trichoderma. Although stress tolerance did not correlate with their primary ecological niche, classification of these 71 fungal strains was more closely aligned with their ecology than with their phylogenetic relatedness. We discuss the implications for both microbial ecology and fungal taxonomy.
Collapse
|
35
|
UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol 2019; 124:304-310. [PMID: 32389292 DOI: 10.1016/j.funbio.2019.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Seven indigenous entomopathogenic fungal isolates were identified as promising biocontrol agents of key citrus pests including false codling moth, Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae) and citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae) under laboratory conditions. Even though field trials using the two most virulent isolates (Beauveria bassiana G Ar 17 B3 and Metarhizium anisopliae FCM Ar 23 B3) against soil-dwelling life stages of T. leucotreta were positive, foliar application against citrus mealybugs and thrips, has been disappointing. Thus, the UV sensitivity of the seven initial promising isolates (four B. bassiana and three M. anisopliae) in comparison with two commercial isolates (M. anisopliae ICIPE 69 and B. bassiana PPRI 5339) and their formulated products were investigated in this study. All isolates investigated were highly sensitive to UV radiation, and a 2 h exposure to simulated full-spectrum solar radiation at 0.3 W/m2 killed conidia of all tested isolates. Nonetheless, variability in susceptibility was found amongst isolates after exposure for 1 h. The most virulent M. anisopliae isolate, FCM Ar 23 B3, was the most susceptible to UV radiation with <3 % relative germination, 48-51 h post-exposure. Whilst isolates of the two mycoinsecticides showed similar susceptibility to UV radiation, their formulated products (vegetable oil and emulsifiable concentrate) were tolerant, when tested for 1 h. These findings indicate that a suitable UV protectant formulation of these fungi or a different application strategy will be required for success against P. citri and S. aurantii.
Collapse
|
36
|
Fomina M, Hong JW, Gadd GM. Effect of depleted uranium on a soil microcosm fungal community and influence of a plant-ectomycorrhizal association. Fungal Biol 2019; 124:289-296. [PMID: 32389290 DOI: 10.1016/j.funbio.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/23/2023]
Abstract
Fungi are one of the most biogeochemically active components of the soil microbiome, becoming particularly important in metal polluted terrestrial environments. There is scant information on the mycobiota of uranium (U) polluted sites and the effect of metallic depleted uranium (DU) stress on fungal communities in soil has not been reported. The present study aimed to establish the effect of DU contamination on a fungal community in soil using a culture-independent approach, fungal ribosomal intergenic spacer analysis (F-RISA). Experimental soil microcosms also included variants with plants (Pinus silvestris) and P. silvestris/Rhizopogon rubescens ectomycorrhizal associations. Soil contamination with DU resulted in the appearance of RISA bands of the ITS fragments of fungal metagenomic DNA that were characteristic of the genus Mortierella (Mortierellomycotina: Mucoromycota) in pine-free microcosms and for ectomycorrhizal fungi of the genus Scleroderma (Basidiomycota) in microcosms with mycorrhizal pines. The precise taxonomic affinity of the ITS fragments from the band appearing for non-mycorrhizal pines combined with DU remained uncertain, the most likely being related to the subphylum Zoopagomycotina. Thus, soil contamination by thermodynamically unstable metallic depleted uranium can cause a significant change in a soil fungal community under experimental conditions. These changes were also strongly affected by the presence of pine seedlings and their mycorrhizal status which impacted on DU biocorrosion and the release of bioavailable uranium species.
Collapse
Affiliation(s)
- Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Ji Won Hong
- Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, 33662, South Korea
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
37
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|
38
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
|
40
|
Araújo CA, Dias LP, Ferreira PC, Mittmann J, Pupin B, Brancini G, Braga GÚ, Rangel DE. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide. Fungal Biol 2018; 122:621-628. [DOI: 10.1016/j.funbio.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/11/2023]
|