1
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
2
|
Shahbaz M, Palaniveloo K, Tan YS, Palasuberniam P, Ilyas N, Wiart C, Seelan JSS. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities. World J Microbiol Biotechnol 2024; 40:217. [PMID: 38806748 DOI: 10.1007/s11274-024-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Sabah, Malaysia
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
3
|
Quesada-Moraga E, Garrido-Jurado I, González-Mas N, Yousef-Yousef M. Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 2023; 201:108015. [PMID: 37924859 DOI: 10.1016/j.jip.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Entomopathogenic ascomycetes (EA) are an important part of the microbiota in most terrestrial ecosystems, where they can be found regulating natural populations of arthropod pests in both epigeous and hypogeous habitats while also establishing unique relationships with plants. These fungi offer direct benefits to agriculture and human welfare. In the present work, we conducted a systematic review to comprehensively assess the range of ecosystem services provided by EA, including direct and indirect pest biocontrol, plant growth promotion, plant defense against other biotic and abiotic stresses, nutrient cycling, and the production of new bioactive compounds with agricultural, pharmaceutical and medical importance. Moreover, EA are compatible with the ecosystem services provided by other microbial and macrobial biocontrol agents. This systematic review identified the need for future research to focus on evaluating the economic value of the ecological services provided by EA with a special emphasis on hypocrealean fungi. This evaluation is essential not only for the conservation but also for better regulation and exploitation of the benefits of EA in promoting agricultural sustainability, reducing the use of chemicals that enter the environment, and minimizing the negative impacts of crop protection on the carbon footprint and human health.
Collapse
Affiliation(s)
- Enrique Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Inmaculada Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Natalia González-Mas
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Meelad Yousef-Yousef
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| |
Collapse
|
4
|
Sui L, Lu Y, Zhou L, Li N, Li Q, Zhang Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol 2023; 14:1227269. [PMID: 37664126 PMCID: PMC10468600 DOI: 10.3389/fmicb.2023.1227269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Entomopathogenic fungi (EPF) can colonize and establish symbiotic relationships with plants as endophytes. Recently, EPF have been reported to suppress plant pathogens and induce plant resistance to diseases. However, the potential mechanisms via which EPF as endophytes control major plant diseases in situ remain largely unknown. Methods Pot and field experiments were conducted to investigate the mechanisms via which an EPF, Beauveria bassiana, colonizes tomato, under Botrytis cinerea infection stress. B. bassiana blastospores were inoculated into tomato plants by root irrigation. Tomato resistance to tomato gray mold caused by B. cinerea was evaluated by artificial inoculation, and B. bassiana colonization in plants and rhizosphere soil under B. cinerea infection stress was evaluated by colony counting and quantitative PCR. Furthermore, the expression levels of three disease resistance-related genes (OXO, CHI, and atpA) in tomato leaves were determined to explore the effect of B. bassiana colonization on plant disease resistance performance in pot experiments. Results B. bassiana colonization could improve resistance of tomato plants to gray mold caused by B. cinerea. The incidence rate, lesion diameter, and disease index of gray mold decreased in both the pot and field experiments following B. bassiana colonization. B. bassiana was more likely to accumulate in the pathogen infected leaves, while decreasing in the rhizosphere soil, and induced the expression of plant resistance genes, which were up-regulated in leaves. Discussion The results indicated that plants could "recruit" B. bassiana from rhizosphere soil to diseased plants as directional effects, which then enhanced plant growth and resistance against pathogens, consequently inhibiting pathogen infection and multiplication in plants. Our findings provide novel insights that enhance our understanding of the roles of EPF during pathogen challenge.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Linyan Zhou
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Nannan Li
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Wilberts L, Rojas-Preciado N, Jacquemyn H, Lievens B. Fungal strain and crop cultivar affect growth of sweet pepper plants after root inoculation with entomopathogenic fungi. FRONTIERS IN PLANT SCIENCE 2023; 14:1196765. [PMID: 37342144 PMCID: PMC10277683 DOI: 10.3389/fpls.2023.1196765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023]
Abstract
As endophytes, entomopathogenic fungi can protect plants against biotic and abiotic stresses and at the same time promote plant growth and plant health. To date, most studies have investigated whether Beauveria bassiana can enhance plant growth and plant health, while only little is known about other entomopathogenic fungi. In this study, we evaluated whether root inoculation of the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128, B. bassiana ARSEF 3097 and Cordyceps fumosorosea ARSEF 3682 can promote plant growth of sweet pepper (Capsicum annuum L.), and whether effects are cultivar-dependent. Plant height, stem diameter, number of leaves, canopy area, and plant weight were assessed four weeks following inoculation in two independent experiments using two cultivars of sweet pepper (cv. 'IDS RZ F1' and cv. 'Maduro'). Results showed that the three entomopathogenic fungi were able to enhance plant growth, particularly canopy area and plant weight. Further, results showed that effects significantly depended on cultivar and fungal strain, with the strongest fungal effects obtained for cv. 'IDS RZ F1', especially when inoculated with C. fumosorosea. We conclude that inoculation of sweet pepper roots with entomopathogenic fungi can stimulate plant growth, but effects depend on fungal strain and crop cultivar.
Collapse
Affiliation(s)
- Liesbet Wilberts
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Nicolas Rojas-Preciado
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
7
|
Wood MJ, Kortsinoglou AM, Bull JC, Eastwood DC, Kouvelis VN, Bourdon PA, Loveridge EJ, Mathias S, Meyrick A, Midthassel A, Myrta A, Butt T. Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field. J Fungi (Basel) 2023; 9:599. [PMID: 37367536 DOI: 10.3390/jof9060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Wireworm, the larval stages of click beetles, are a serious pest of tubers, brassicas and other important commercial crops throughout the northern hemisphere. No effective control agent has been developed specifically for them, and many of the pesticides marketed as having secondary application against them have been withdrawn from EU and Asian markets. Metarhizium brunneum, an effective entomopathogenic fungus, and its derived volatile metabolites are known to be effective plant biostimulants and plant protectants, although field efficacy has yet to be validated. Field validation of a combined M. brunneum and derived VOC treatments was conducted in Wales, UK, to assess the effects of each as a wireworm control agent and biostimulant. Plots were treated with Tri-Soil (Trichoderma atroviridae), M. brunneum, 1-octen-3-ol or 3-octanone, or combinations thereof. Treatments were applied subsurface during potato seeding (n = 52), and potatoes were harvested at the end of the growing season. Each potato was weighed individually and scored for levels of wireworm damage. Applications of both the VOCs and the M. brunneum individually were found to significantly decrease wireworm burden (p < 0.001). Combinations of M. brunneum and 3-octanone were also found to significantly decrease wireworm damage (p < 0.001), while no effect on yield was reported, resulting in an increased saleable mass over controls (p < 0.001). Herein, we present a novel 'stimulate and deter' wireworm control strategy that can be used to significantly enhance saleable potato yields and control wireworm populations, even under high pest pressure densities.
Collapse
Affiliation(s)
- Martyn J Wood
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 73100 Heraklion, Greece
| | - Alexandra M Kortsinoglou
- Department of Biology, Section of Genetics and Biotechnology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - James C Bull
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Daniel C Eastwood
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Vassili N Kouvelis
- Department of Biology, Section of Genetics and Biotechnology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Pierre A Bourdon
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - E Joel Loveridge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | - Audun Midthassel
- Certis Belchim BV, R & D Department, 3521 AZ Utrecht, The Netherlands
| | - Arben Myrta
- Certis Belchim BV, R & D Department, 3521 AZ Utrecht, The Netherlands
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
8
|
Wilberts L, Vuts J, Caulfield JC, Thomas G, Birkett MA, Herrera-Malaver B, Verstrepen KJ, Sobhy IS, Jacquemyn H, Lievens B. Impact of endophytic colonization by entomopathogenic fungi on the behavior and life history of the tobacco peach aphid Myzus persicae var. nicotianae. PLoS One 2022; 17:e0273791. [PMID: 36067150 PMCID: PMC9447930 DOI: 10.1371/journal.pone.0273791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic fungi can adopt an endophytic lifestyle and provide protection against insect herbivores and plant pathogens. So far, most studies have focused on Beauveria bassiana to increase plant resistance against abiotic and biotic stresses, while only little is known for other entomopathogenic fungi. In this study, we investigated whether root inoculation of sweet pepper (Capsicum annuum L.) by the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128 and B. bassiana ARSEF 3097 can improve resistance against the tobacco peach aphid Myzus persicae var. nicotianae. First, dual-choice experiments were performed to test the hypothesis that the fungi deter aphids via modifying plant volatile profiles. Next, we tested the hypothesis that endophytic colonization negatively affects aphid life history traits, such as fecundity, development and mortality rate. Aphids were significantly attracted to the odor of plants inoculated with A. muscarius over non-inoculated plants. Plants inoculated with A. muscarius emitted significantly higher amounts of β-pinene than non-inoculated plants, and significantly higher amounts of indole than B. bassiana-inoculated and non-inoculated plants. Inoculation with the fungal strains also caused significantly higher emission of terpinolene. Further, both aphid longevity and fecundity were significantly reduced by 18% and 10%, respectively, when feeding on plants inoculated with A. muscarius, although intrinsic rate of population increase did not differ between inoculated and non-inoculated plants. Sweet pepper plants inoculated with B. bassiana ARSEF 3097 did not elicit a significant behavioral response nor affected the investigated life history traits. We conclude that endophytic colonization by entomopathogenic fungi has the potential to alter olfactory behavior and performance of M. persicae var. nicotianae, but effects are small and depend on the fungal strain used.
Collapse
Affiliation(s)
- Liesbet Wilberts
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - József Vuts
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John C. Caulfield
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Gareth Thomas
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Michael A. Birkett
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Beatriz Herrera-Malaver
- Department M2S, CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
- Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kevin J. Verstrepen
- Department M2S, CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
- Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, Leuven, Belgium
| | - Islam S. Sobhy
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Faculty of Agriculture, Department of Plant Protection, Suez Canal University, Ismailia, Egypt
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:34-43. [PMID: 35217328 DOI: 10.1016/j.plaphy.2022.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Species of the entomopathogenic fungi Metarhizium are used worldwide as biocontrol agents. Recently, other lifestyles have been associated with some Metarhizium species, which include their role as saprophytes, endophytes, and plant growth promoters. Herein, the effect of three Metarhizium anisopliae strains on the growth of Arabidopsis thaliana plantlets was evaluated using an in vitro split system. Arabidopsis fresh weight and total chlorophyll content significantly increased 7 days post-inoculation with the three Metarhizium anisopliae strains evaluated. The primary root length was promoted by all fungal strains without physical contact, whereas in direct contact primary root growth was inhibited. Volatile organic compounds identification revealed that during the interaction of Arabidopsis with Ma-20 and Ma-25 strains only β-caryophyllene was produced, whereas in the Arabidopsis-Ma-28 interaction o-cymene was mainly emitted. The plant growth promoting effect induced by Metarhizium anisopliae strains was also achieved in Arabidopsis, tomato and maize plants grown in soil pots. Our results showed that three Metarhizium anisopliae strains were able to increase plant fresh weight, opening promising perspectives for field production, with the advantages of insect biocontrol and plant growth promotion induced by this species of fungus.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico; Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, México
| | - Elihú Bautista
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Pablo Delgado-Sánchez
- Laboratorio de Biotecnología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
10
|
Vera M, Zuern S, Henríquez-Valencia C, Loncoman C, Canales J, Waller F, Basoalto E, Garnica S. Exploring interactions between Beauveria and Metarhizium strains through co-inoculation and responses of perennial ryegrass in a one-year trial. PeerJ 2022; 10:e12924. [PMID: 35341038 PMCID: PMC8944343 DOI: 10.7717/peerj.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Perennial ryegrass (Lolium perenne L.) possesses a high level of nutritional quality and is widely used as a forage species to establish permanent pastures in southern Chile. However, the productivity of most such pastures is limited by various environmental agents, such as insect pests and drought. In this context, our work stresses the need for elucidating the ability of fungal endophytes to establish interactions with plants, and to understand how these processes contribute to plant performance and fitness. Therefore, we evaluated the colonization and impact of two native strains of the endophytic insect-pathogenic fungus (EIPF) group isolated from permanent ryegrass pastures in southern Chile. Roots and seeds of ryegrass and scarabaeid larvae were collected from nine different ryegrass pastures in the Los Ríos region of southern Chile to specifically isolate EIPFs belonging to the genera Beauveria and Metarhizium. Fungal isolations were made on 2% water agar with antibiotics, and strains were identified by analyzing the entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region. Four strains of Beauveria and 33 strains of Metarhizium were isolated only in scarabaeid larvae from ryegrass pastures across four sites. Experimental mini-pastures that were either not inoculated (control) or co-inoculated with conidia of the strains Beauveria vermiconia NRRL B-67993 (P55_1) and Metarhizium aff. lepidiotae NRRL B-67994 (M25_2) under two soil humidity levels were used. Ryegrass plants were randomly collected from the mini-pastures to characterize EIPF colonization in the roots by real-time PCR and fluorescence microscopy. Aboveground biomass was measured to analyze the putative impact of colonization on the mini-pastures' aboveground phenotypic traits with R software using a linear mixed-effects model and the ANOVA statistical test. Seasonal variation in the relative abundance of EIPFs was observed, which was similar between both strains from autumn to spring, but different in summer. In summer, the relative abundance of both EIPFs decreased under normal moisture conditions, but it did not differ significantly under water stress. The aboveground biomass of ryegrass also increased from autumn to spring and decreased in summer in both the inoculated and control mini-pastures. Although differences were observed between moisture levels, they were not significant between the control and inoculated mini-pastures, except in July (fresh weight and leaf area) and October (dry weight). Our findings indicate that native strains of B. vermiconia NRRL B-67993 (P55_1) and M. aff. lepidiotae NRRL B-67994 (M25_2) colonize and co-exist in the roots of ryegrass, and these had little or no effect on the mini-pastures' aboveground biomass; however, they could have other functions, such as protection against root herbivory by insect pests.
Collapse
Affiliation(s)
- Milena Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah Zuern
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Henríquez-Valencia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Loncoman
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile,ANID–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Frank Waller
- Pharmaceutical Biology, Julius-von-Sachs Institute for Biosciences, Julius-Maximilians Universität Würzburg, Würzburg, Germany
| | - Esteban Basoalto
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 2022. [PMID: 35186412 DOI: 10.1080/215012031945699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
12
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
13
|
Root-Associated Entomopathogenic Fungi Modulate Their Host Plant's Photosystem II Photochemistry and Response to Herbivorous Insects. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010207. [PMID: 35011439 PMCID: PMC8746981 DOI: 10.3390/molecules27010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets' reaction to herbivory by Spodoptera exigua (beet armyworm) larvae using chlorophyll fluorescence imaging. Plants were inoculated with Metarhizium brunneum or Beauveria bassiana, and photosystem II reactions were evaluated before and after larval feeding. Before herbivory, the fraction of absorbed light energy used for photochemistry (ΦPSII) was lower in M. brunneum-inoculated than in control plants, but not in B. bassiana-inoculated plants. After herbivory, however, ΦPSII increased in the fungal-inoculated plants compared with that before herbivory, similar to the reaction of control plants. At the same time, the fraction of energy dissipated as heat (ΦNPQ) decreased in the inoculated plants, resulting in an increased fraction of nonregulated energy loss (ΦNO) in M. brunneum. This indicates an increased singlet oxygen (1O2) formation not detected in B. bassiana-inoculated plants, showing that the two entomopathogenic fungi differentially modulate the leaflets' response to herbivory. Overall, our results show that M. brunneum inoculation had a negative effect on the photosynthetic efficiency before herbivory, while B. bassiana inoculation had no significant effect. However, S. exigua leaf biting activated the same compensatory PSII response mechanism in tomato plants of both fungal-inoculated treatments as in control plants.
Collapse
|
14
|
|
15
|
Tyurin M, Kabilov MR, Smirnova N, Tomilova OG, Yaroslavtseva O, Alikina T, Glupov VV, Kryukov VY. Can Potato Plants Be Colonized with the Fungi Metarhizium and Beauveria under Their Natural Load in Agrosystems? Microorganisms 2021; 9:1373. [PMID: 34202827 PMCID: PMC8306205 DOI: 10.3390/microorganisms9071373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Beauveria and Metarhizium fungi are facultative plant endophytes that provide plant growth-stimulating, immunomodulatory, and other beneficial effects. However, little is known about the level of plant colonization by these fungi under natural conditions. We assessed the endophytic colonization of potatoes (Solanum tuberosum) with entomopathogenic fungi at their natural load in soils (102-104 colony-forming units per g). Microbiological analyses of soils and plant organs, as well as a metagenomic analysis of potato roots and leaves, were conducted in three locations in Western Siberia, consisting of conventional agrosystems and kitchen gardens. The fungi were isolated at a relatively high frequency from unsterilized roots (up to 53% of Metarhizium-positive plants). However, the fungi were sparsely isolated from the internal tissues of roots, stems, and leaves (3%). Among the genus Metarhizium, two species, M. robertsii and M. brunneum, were detected in plants as well as in soils, and the first species was predominant. A metagenomic analysis of internal potato tissues showed a low relative abundance of Beauveria and Metarhizium (<0.3%), and the communities were represented primarily by phytopathogens. We suggest that colonization of the internal tissues of potatoes occurs sporadically under a natural load of entomopathogenic fungi in soils. The lack of stable colonization of potato plants with Beauveria and Metarhizium may be due to competition with phytopathogens.
Collapse
Affiliation(s)
- Maksim Tyurin
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 630091 Novosibirsk, Russia; (O.G.T.); (O.Y.); (V.V.G.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (T.A.)
| | - Natalia Smirnova
- Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Oksana G. Tomilova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 630091 Novosibirsk, Russia; (O.G.T.); (O.Y.); (V.V.G.)
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 630091 Novosibirsk, Russia; (O.G.T.); (O.Y.); (V.V.G.)
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (T.A.)
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 630091 Novosibirsk, Russia; (O.G.T.); (O.Y.); (V.V.G.)
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 630091 Novosibirsk, Russia; (O.G.T.); (O.Y.); (V.V.G.)
| |
Collapse
|
16
|
Reingold V, Kottakota C, Birnbaum N, Goldenberg M, Lebedev G, Ghanim M, Ment D. Intraspecies variation of Metarhizium brunneum against the green peach aphid, Myzus persicae, provides insight into the complexity of disease progression. PEST MANAGEMENT SCIENCE 2021; 77:2557-2567. [PMID: 33486866 DOI: 10.1002/ps.6294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Intensive application of chemical insecticides is required for aphid pest control. Among the biorational alternatives, entomopathogenic fungi are the most sustainable biocontrol agents; those of the order Hypocreales attack and cause fungal disease in arthropod hosts, with variations in host susceptibility attributed to both fungal and host characteristics. We evaluated inter- and intraspecies variations in Metarhizium spp. virulence and differences in fungal disease progression on adult and nymph stages of the green peach aphid, Myzus persicae (Sulzer), a parthenogenetically reproducing insect species. RESULTS Minor interspecies diversity was detected between the generalist Metarhizium species examined. Interestingly, significant intraspecies diversity was observed between Metarhizium brunneum isolates Mb7 and MbK. Infected adult aphids demonstrated similar disease progression for both isolates, mortality rates of more than 80% and fivefold reduction in fecundity. However, nymph mortality was detected only following MbK infection, with 50% mortality and significant reduction in molting rates. Confocal laser scanning microscopy demonstrated the variation in the disease stages of conidial adhesion and hemocoel colonization on each examined day post inoculation for each isolate. Significantly faster disease progression was observed in MbK-infected versus Mb7-infected nymphs, the latter demonstrating a higher percentage of uninfected nymphs accompanied with aphid molting. CONCLUSIONS The observed intraspecies variation suggests that altered conidial adhesion to the nymph cuticle is a major factor affecting virulence. We prove the role of nymph ecdysis as a defense mechanism disrupting fungal infection. Because significant differences were observed between closely related isolates, this study emphasizes the importance of appropriate isolate selection for biological control. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chandrasekhar Kottakota
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nitsan Birnbaum
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Goldenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Galina Lebedev
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
17
|
The multifunctional lifestyles of Metarhizium: evolution and applications. Appl Microbiol Biotechnol 2020; 104:9935-9945. [PMID: 33085023 DOI: 10.1007/s00253-020-10968-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The genus Metarhizium is comprised of a diverse group of common soil fungi that exhibit multifunctional lifestyles with varying degrees of saprotrophic, endophytic, and insect pathogenic modes of nutrient acquisition. The transcriptome of these species is modulated to reflect immediate needs of the fungus and availability of resources-a form of transcriptional plasticity that allows for physiological adaptation to environments with diverse and dynamic exploitable nutrient sources. In this review, we discuss the endophytic, insect pathogenic lifestyles of Metarhizium spp., including their symbiotic interface, origins, and evolution, and agricultural applications. Isotope labeling experiments have demonstrated that a mutually beneficial exchange of limiting nutrients occurs between the fungus and its host plant, with nitrogen derived via insect pathogenesis being translocated from Metarhizium to host plants in exchange for fixed carbon in the form of photosynthate. Thus, the endophytic and entomopathogenic abilities of Metarhizium spp. are not exclusive of one another, but rather are interdependent and reciprocal in nature. Although endophytic, insect pathogenic fungi (EIPF) could certainly have evolved from insect pathogenic fungi, phylogenomic evidence indicates that this genus is more closely related to plant-associated fungi than animal pathogens, suggesting that Metarhizium evolved from a lineage of plant symbionts, which subsequently acquired genes for insect pathogenesis. Entomopathogenicity may have been an adaptive trait, allowing for procurement of insect-derived nitrogen that could be translocated to host plants and bartered for fixed carbon, thereby improving the stability of fungal-plant symbioses. Given their ability to simultaneously parasitize soil insects, including a number of pests of agriculturally important crops, as well as promote plant health, growth, and productivity, Metarhizium spp. are considered promising alternatives to the chemical pesticides and fertilizers that have wreaked havoc on the health and integrity of ecosystems. KEY POINTS: • Metarhizium is a fungus that is an insect pathogen as well as a plant symbiont. • The genus Metarhizium has specialist and generalist insect pathogens. • Metarhizium is phylogenetically most closely related to plant endophytes.
Collapse
|
18
|
Sui L, Zhu H, Xu W, Guo Q, Wang L, Zhang Z, Li Q, Wang D. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Tomilova OG, Shaldyaeva EM, Kryukova NA, Pilipova YV, Schmidt NS, Danilov VP, Kryukov VY, Glupov VV. Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. PeerJ 2020; 8:e9895. [PMID: 32995085 PMCID: PMC7501787 DOI: 10.7717/peerj.9895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
Rhizoctonia potato disease is widespread in the world and causes substantial yield and quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhizoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer, black scrulf and other forms of manifestation on tubers) was estimated under field conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs. However, both fungi decreased the sclerotium index on the tubers of new crops. We demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium formation in cocultivation assays, and (2) indirect effect, which is associated with increased peroxidase activity in potato roots under the influence of colonization by entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana can effectively manage Rhizoctonia disease during the plant vegetative season and that both fungi significantly improve the quality of the new tuber crop.
Collapse
Affiliation(s)
- Oksana G Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Elena M Shaldyaeva
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia.,Department of Plant Protection, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Yulia V Pilipova
- Department of Plant Protection, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Natalia S Schmidt
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Viktor P Danilov
- Federal Scientific Centre of Agro-BioTechnologies (SFSCA) of the RAS, Novosibirsk, Russia
| | - Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
20
|
Siqueira ACO, Mascarin GM, Gonçalves CRNCB, Marcon J, Quecine MC, Figueira A, Delalibera Í. Multi-Trait Biochemical Features of Metarhizium Species and Their Activities That Stimulate the Growth of Tomato Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Kracmarova M, Karpiskova J, Uhlik O, Strejcek M, Szakova J, Balik J, Demnerova K, Stiborova H. Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and their Response to Long-Term Fertilization. Microorganisms 2020; 8:E1377. [PMID: 32911685 PMCID: PMC7566005 DOI: 10.3390/microorganisms8091377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.
Collapse
Affiliation(s)
- Martina Kracmarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Jana Karpiskova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague – Suchdol, 165 21, Czech Republic; (J.S.); (J.B.)
| | - Jiri Balik
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague – Suchdol, 165 21, Czech Republic; (J.S.); (J.B.)
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; (J.K.); (O.U.); (M.S.); (K.D.)
| |
Collapse
|
22
|
Cui JL, Gao XY, Vijayakumar V, Guo ZX, Wang ML, Wang JH, Liu L. Regulation by fungal endophyte of Rhodiola crenulata from enzyme genes to metabolites based on combination of transcriptome and metabolome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4483-4494. [PMID: 32399987 DOI: 10.1002/jsfa.10489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The contents of some its crucial metabolites tend to decrease when Rhodiola crenulata is cultured at low altitude. Interestingly, it was found that an endophyte, Phialocephala fortinii, could alleviate this problem. RESULTS There were 16 151 differential genes including 14 706 up-regulated and 1445 down-regulated unigenes with significant differences (P < 0.05), and a total of 1432 metabolites exhibited statistically significant (P < 0.05) metabolic differences comprising 27 different marker metabolites which showed highly significant values of VIP > 5 and P < 0.01. Results highlight differential regulation of 20 enzymatic genes that are involved in the biosynthesis of five different marker metabolites including acetaldehyde, homocysteine, cyclopropylamine, 1-pyrrolinium and halistanol sulfate. CONCLUSIONS The positive physiological effect of P. fortinii on R. crenulata encompasses differential regulation in carbohydrate metabolism, lipid metabolism and secondary metabolite synthesis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
| | - Xiao-Yin Gao
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
| | - Vinod Vijayakumar
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhang-Xuan Guo
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
- Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
| | - Lei Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, People's Republic of China
| |
Collapse
|
23
|
Iwanicki NSA, Mascarin GM, Moreno SG, Eilenberg J, Delalibera Júnior I. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. World J Microbiol Biotechnol 2020; 36:71. [PMID: 32350696 DOI: 10.1007/s11274-020-02844-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The cosmopolitan entomopathogenic and root endophytic fungus Metarhizium robertsii has a versatile lifestyle and during liquid fermentation undergoes a dimorphic transformation from hyphae to conidia or microsclerotia, or from hyphae to blastospores. In all cases, these processes are mediated by environmental and nutritional cues. Blastospores could be used in spray applications to control arthropod pests above ground and may serve as an attractive alternative to the traditional solid-grown aerial conidial spores of Metarhizium spp. found in commercial products. Nitrogen is a vital nutrient in cell metabolism and growth; however, it is the expensive component in liquid cultures of entomopathogenic fungi. Our goals in this study were to optimize nitrogen sources and titers for maximum production of M. robertsii blastospores cultured in shake flasks at highly aerated conditions and to further determine their virulence against the corn leafhopper Dalbulus maidis, an important vector of serious pathogens in maize crops worldwide. Our fermentation studies revealed that the low-cost corn steep liquor (CSL) was the most suitable nitrogen source to improve blastospore growth in M. robertsii. The growth kinetic assays determined the optimal titer of 80 g L-1 and a yield up to 4.7 × 108 cells mL-1 within 5 days of cultivation (3 days preculture and 2 days culture), at a total cost of US$0.30 L-1. Moreover, the blastospore growth kinetic was strongly dependent on glucose and nitrogen consumptions accompanied by a slight drop in the culture pH. Insect bioassays evidenced a high virulence of these blastospores, either as dried or fresh cells, to D. maidis adults fed on maize plants. Our findings provide insights into the nutritional requirements for optimal and cost-efficient production of M. robertsii blastospores and elucidate the potential of blastospores as an ecofriendly tool against the corn leafhopper.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP, 13418-900, Brazil.
| | - Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340, Km 127.5, Jaguariúna, 13820-000, Brazil.
| | - Sara Giro Moreno
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP, 13418-900, Brazil
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Italo Delalibera Júnior
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
24
|
Kryukov VY, Kabilov MR, Smirnova N, Tomilova OG, Tyurin MV, Akhanaev YB, Polenogova OV, Danilov VP, Zhangissina SK, Alikina T, Yaroslavtseva ON, Glupov VV. Bacterial decomposition of insects post-Metarhizium infection: Possible influence on plant growth. Fungal Biol 2019; 123:927-935. [PMID: 31733735 DOI: 10.1016/j.funbio.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.
Collapse
Affiliation(s)
- Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia.
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, Novosibirsk 630090, Russia
| | - Natalya Smirnova
- Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev av. 8/2, Novosibirsk 630090, Russia
| | - Oksana G Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Viktor P Danilov
- Siberian Federal Scientific Centre of Agro-Bio Technologies (SFSCA) of the RAS, Novosibirsk Region, Krasnoobsk, PO Box 463, 630501, Russia
| | - Saule K Zhangissina
- Institute of Cytology and Genetics SB RAS, Lavrentyev av. 10, Novosibirsk 630090, Russia
| | - Tatiana Alikina
- Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev av. 8/2, Novosibirsk 630090, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| |
Collapse
|
25
|
Jensen RE, Enkegaard A, Steenberg T. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS One 2019; 14:e0223616. [PMID: 31589639 PMCID: PMC6779261 DOI: 10.1371/journal.pone.0223616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022] Open
Abstract
Since the discovery that entomopathogenic fungi can live inside plants as endophytes, researchers have been trying to understand how this affects mainly plants and herbivores. We studied how inoculation of Vicia faba L. (Fabales: Fabaceae) plants with Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) (strain GHA) either via the seeds or leaves influenced the nymph production of two successive generations of Aphis fabae Scopoli (Hemiptera: Aphididae). While we did not find any difference in nymph production for the first generation of aphids, second-generation aphids on both seed- and spray inoculated plants produced significantly higher numbers of nymphs than aphids on uninoculated plants. This emphasizes the importance of two (or multi-) generational experimentation. Beauveria bassiana was recovered from 26.0, 68.8 and 6.3% of respectively seed-, spray inoculated and control plants, thus, demonstrating its ability to live as an endophyte in V. faba. The confirmation that plants inoculated with entomopathogenic fungi can have a positive effect on pest insects makes careful consideration of these multi-trophic interactions imperative.
Collapse
Affiliation(s)
- Rasmus Emil Jensen
- Department of Agroecology, Section of Plant Pathology and Entomology, Aarhus University, Flakkebjerg, Denmark
- * E-mail:
| | - Annie Enkegaard
- Department of Agroecology, Section of Plant Pathology and Entomology, Aarhus University, Flakkebjerg, Denmark
| | - Tove Steenberg
- Department of Agroecology, Section of Plant Pathology and Entomology, Aarhus University, Flakkebjerg, Denmark
| |
Collapse
|
26
|
Non-Entomopathogenic Roles of Entomopathogenic Fungi in Promoting Plant Health and Growth. INSECTS 2019; 10:insects10090277. [PMID: 31480565 PMCID: PMC6780571 DOI: 10.3390/insects10090277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Multiple genera of hypocrealean fungi infect and kill a wide variety of arthropod pests. Several formulations based on these soilborne fungi are commercially available as biopesticides for controlling urban, garden, greenhouse, and agricultural pests. These fungi are an important part of integrated pest management strategies to maintain pest control efficacy, reduce the risk of chemical insecticide resistance, and offer environmentally sustainable pest suppression. While the entomopathogenic or pest management role of these fungi is well documented, several studies in the past decade or two have provided insights into their relationship with plants, soil, and plant pathogens, and their additional roles in promoting plant growth and health. This review highlights these endophytic, mycorrhiza-like, and disease-antagonizing roles of entomopathogenic fungi.
Collapse
|
27
|
Jaber LR. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. PLANTA 2018; 248:1525-1535. [PMID: 30140979 DOI: 10.1007/s00425-018-2991-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/16/2018] [Indexed: 05/27/2023]
Abstract
Fungal entomopathogens, Beauveria bassiana (NATURALIS) and Metarhizium brunneum (BIPESCO5), can promote the growth of wheat following their endophytic establishment within plants through seed treatment. Similar to endophytic B. bassiana which has already been reported as a disease antagonist by several previous studies, the present study demonstrates that M. brunneum can suppress disease pathogens following plant colonization as well. An upsurge of research hints at the ability of entomopathogenic fungi, almost exclusively considered and used as insect pathogens, to endophytically colonize the internal tissues of a wide array of host plants and subsequently confer numerous benefits including enhancement of plant growth and suppression of disease pathogens. Such an ability has mainly been investigated for Beauveria bassiana. Fewer studies have demonstrated plant growth promotion by Metarhizium brunneum colonization, whereas no studies have reported on the potential of endophytic M. brunneum as a plant disease antagonist. The present study was, therefore, conducted to investigate whether seed treatment with B. bassiana (NATURALIS) and M. brunneum (BIPESCO5) could result in their endophytic establishment in wheat and promote plant growth. The study further examines the effect of the fungal strains as endophytes against Fusarium culmorum, one of the main causal agents of crown and root rot (CRR) in wheat. Both B. bassiana and M. brunneum were able to systemically colonize roots and shoots of wheat, and promote several plant growth parameters (shoot height, root length, and fresh root and shoot weights). Moreover, endophytic colonization of wheat with either fungal entomopathogen resulted in a significant reduction in disease incidence, development and severity. These results support the notion of the multiple ecological roles that could further be played by entomopathogenic fungi. Bearing such additional roles in mind while developing these fungi as microbial agents could improve the value of many commercially available mycoinsecticides.
Collapse
Affiliation(s)
- Lara R Jaber
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|