1
|
DeVol CR, Shrivastav SR, Landrum VM, Bjornson KF, Roge D, Moritz CT, Steele KM. Effects of spinal stimulation and short-burst treadmill training on gait biomechanics in children with cerebral palsy. Gait Posture 2025; 118:25-32. [PMID: 39884154 DOI: 10.1016/j.gaitpost.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/22/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Children with cerebral palsy (CP) have an injury to the central nervous system around the time of birth that affects the development of the brain and spinal cord. This injury leads to changes in gait neuromechanics, including muscle activity and joint kinematics. Transcutaneous spinal cord stimulation (tSCS) is a novel neuromodulation technique that may improve movement and coordination in children with CP when paired with targeted physical therapy. RESEARCH QUESTION How does the combination of tSCS and short-burst interval locomotor treadmill training (SBLTT) affect individual gait neuromechanics in children with CP? METHODS Four children with CP (4-13 years old), received 24 sessions each of SBLTT only and SBLTT with tSCS (tSCS+SBLTT). Clinical assessments of spasticity and passive range of motion (PROM), as well as biomechanical assessments of joint kinematics, musculotendon lengths, and muscle activity were recorded during overground, barefoot walking. Assessments were taken before and after each intervention, and 8-weeks later. RESULTS The combination of tSCS+SBLTT led to greater increases in hip and knee extension than SBLTT only for three participants. Three children also became more plantarflexed at the ankle during stance after tSCS+SBLTT compared to SBLTT only. While tSCS+SBLTT reduced spasticity, these changes were only weakly correlated with changes in musculotendon lengths during gait or PROM, with the largest correlation between change in gastrocnemius operating musculotendon length during fast walking and gastrocnemius spasticity (R2 = 0.26) and change in plantarflexor PROM and gastrocnemius spasticity (R2 = 0.23). SIGNIFICANCE Children with CP used a more upright, less crouched posture during gait after tSCS+SBLTT. Large reductions in spasticity after tSCS+SBLTT were only weakly correlated with changes in kinematics and PROM. Understanding the mechanisms by which tSCS may affect gait for children with CP is critical to optimize and inform the use of tSCS for clinical care.
Collapse
Affiliation(s)
- Charlotte R DeVol
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Siddhi R Shrivastav
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Victoria M Landrum
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kristie F Bjornson
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Rehabilitation Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Desiree Roge
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Rehabilitation Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Chet T Moritz
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Research and Education on Accessible Technology and Experiences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Johnson RT, Umberger BR. Biomechanical mechanisms for modulating stride frequency in walking. J Biomech 2025; 181:112549. [PMID: 39884064 DOI: 10.1016/j.jbiomech.2025.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/05/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Humans typically choose to walk at a self-selected stride frequency that minimizes their metabolic cost. However, when environmental constraints are present (e.g., icy sidewalk), they will change their stride frequency to accommodate. This study provides a comprehensive understanding of the muscle-tendon dynamics when humans walk with different stride frequencies, offering valuable insights into the biomechanics of walking. The study aimed to quantify the effect of stride frequency on the muscle-tendon forces, powers, and induced accelerations on the center of mass. Data was collected with eight subjects walking at 1.3 m/s at their self-selected stride frequency and + 20 and -20 % of their self-selected stride frequency. We used musculoskeletal modeling to compute the muscle-tendon forces and powers, and the vertical and anterior-posterior induced accelerations for nine muscle groups. When comparing stride frequency conditions using statistical parametric mapping, we found that gluteus medius, gastrocnemius, and tibialis anterior had greater forces, powers, or induced accelerations in the -20 % condition. The hamstrings, rectus femoris, and iliopsoas muscle groups had greater forces, powers, or induced accelerations in the + 20 % condition compared to self-selected frequency. The gastrocnemius played a crucial role in modulating forward acceleration across different stride frequencies, driven by changes in segment kinematics rather than changes in muscle forces. Increases in muscle force production as participants deviated from self-selected stride frequency may indicate that the preferred stride frequency of an individual minimizes the overall demand on lower limb muscles during walking. These results advance our understanding of why humans self-select certain movement patterns during gait.
Collapse
Affiliation(s)
- Russell T Johnson
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, United States; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States.
| | - Brian R Umberger
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, United States; School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Radhakrishnan V, Patil S, Pelah A, Ellison P. Influence of multibody kinematic optimisation pipeline on marker residual errors. J Biomech 2024; 177:112395. [PMID: 39514987 DOI: 10.1016/j.jbiomech.2024.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Residual errors are used as a goodness-of-fit metric of the musculoskeletal model to the experimental data in multibody kinematic optimisation (MKO) analyses. Despite many studies reporting residual errors as a criterion for evaluating their proposed algorithm or model, the validity of residual errors as a performance metric has been questioned, with studies indicating a non-causal relationship between residual errors and computed joint angles. Additionally, the impact of different parameters of an MKO pipeline on residual errors has not been analysed. In our study, we have investigated the effect of each step of the MKO pipeline on residual errors, and the existence of a causal relationship between residual errors and joint angles. Increases in residual errors from the baseline model (13.84 [12.72, 15.15]mm) were obtained for: models with marker registration errors of 1.25 cm (16.36 [15.37, 17.57]mm); models with segment scaling errors of 1.25 cm (14.84 [13.77, 16.24]mm); variation in marker weighting scheme (15.28[14.00, 16.85]mm); and models with differing joint constraints (18.21[17.37, 19.11]mm). We also observed that significant variation in residual errors results in significant variation in computed joint angles, with increases in residual error positively correlated with increases in joint angle errors when the same MKO pipeline is employed. Our findings support the existence of a causal relationship and present the significant effect the MKO pipeline has on residual errors. We believe our results can further the discussion of residual errors as a goodness-of-fit metric, specifically in the absence of artefact-free bone movement.
Collapse
Affiliation(s)
| | - Samadhan Patil
- School of Physics, Engineering and Technology, University of York, UK
| | - Adar Pelah
- School of Physics, Engineering and Technology, University of York, UK
| | - Peter Ellison
- School of Physics, Engineering and Technology, University of York, UK
| |
Collapse
|
4
|
Barrutia WS, Yumiceva A, Thompson ML, Ferris DP. Soft tissue can absorb surprising amounts of energy during knee exoskeleton use. J R Soc Interface 2024; 21:20240539. [PMID: 39626746 PMCID: PMC11614536 DOI: 10.1098/rsif.2024.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Soft tissue at the human-exoskeleton interface can deform under load to absorb, return and dissipate the mechanical energy generated by the exoskeleton. These soft tissue effects are often not accounted for and may mislead researchers on the actual joint assistance an exoskeleton provides. We assessed the effects of soft tissue by quantifying the performance and energy distribution of a knee exoskeleton under different assistance strategies using a synthetic lower limb phantom. The phantom emulated knee kinematics and soft tissue deformation at the exoskeleton interface. We loaded the exoskeleton on the phantom under six different spring stiffness conditions. Motion capture marker and load cell data from the phantom-exoskeleton assembly allowed us to estimate the moments, stiffness and energy contributions of the exoskeleton and physical interface. We found that soft tissue caused interface power to increase and exoskeleton power to decrease with increasing spring stiffness. Despite similar joint kinematics, our findings show that increasing exoskeleton assistance did not notably change power transfer to the targeted joint, as soft tissue compressed under high forces. Our methodology improves exoskeleton design process by estimating energy distribution and transfer for exoskeletons while accounting for the effects of soft tissue deformation before human testing.
Collapse
Affiliation(s)
- W. Sebastian Barrutia
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ada Yumiceva
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mai-Ly Thompson
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Daniel P. Ferris
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Piazza SJ. Beyond Inverse Dynamics: Methods for Assessment of Individual Muscle Function during Gait. Bioengineering (Basel) 2024; 11:896. [PMID: 39329638 PMCID: PMC11429282 DOI: 10.3390/bioengineering11090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional motion analysis performed in the modern gait analysis laboratory provides a wealth of information about the kinematics and kinetics of human locomotion, but standard gait analysis is largely restricted to joint-level measures. Three-dimensional joint rotations, joint moments, and joint powers tell us a great deal about gait mechanics, but it is often of interest to know about the roles that muscles play. This narrative review surveys work that has been done, largely over the past four decades, to augment standard gait analysis with muscle-level assessments of function. Often, these assessments have incorporated additional technology such as ultrasound imaging, or complex modeling and simulation techniques. The review discusses measurements of muscle moment arm during walking along with assessment of muscle mechanical advantage, muscle-tendon lengths, and the use of induced acceleration analysis to determine muscle roles. In each section of the review, examples are provided of how the auxiliary analyses have been used to gain potentially useful information about normal and pathological human walking. While this work highlights the potential benefits of adding various measures to gait analysis, it is acknowledged that challenges to implementation remain, such as the need for specialized knowledge and the potential for bias introduced by model choices.
Collapse
Affiliation(s)
- Stephen J Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Kuska EC, Steele KM. Does crouch alter the effects of neuromuscular impairments on gait? A simulation study. J Biomech 2024; 165:112015. [PMID: 38394953 PMCID: PMC10939721 DOI: 10.1016/j.jbiomech.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Cerebral palsy (CP) is a neurologic injury that impacts control of movement. Individuals with CP also often develop secondary impairments like weakness and contracture. Both altered motor control and secondary impairments influence how an individual walks after neurologic injury. However, understanding the complex interactions between and relative effects of these impairments makes analyzing and improving walking capacity in CP challenging. We used a sagittal-plane musculoskeletal model and neuromuscular control framework to simulate crouch and nondisabled gait. We perturbed each simulation by varying the number of synergies controlling each leg (altered control), and imposed weakness and contracture. A Bayesian Additive Regression Trees (BART) model was also used to parse the relative effects of each impairment on the muscle activations required for each gait pattern. By using these simulations to evaluate gait-pattern specific effects of neuromuscular impairments, we identified some advantages of crouch gait. For example, crouch tolerated 13 % and 22 % more plantarflexor weakness than nondisabled gait without and with altered control, respectively. Furthermore, BART demonstrated that plantarflexor weakness had twice the effect on total muscle activity required during nondisabled gait than crouch gait. However, crouch gait was also disadvantageous in the presence of vasti weakness: crouch gait increased the effects of vasti weakness on gait without and with altered control. These simulations highlight gait-pattern specific effects and interactions between neuromuscular impairments. Utilizing computational techniques to understand these effects can elicit advantages of gait deviations, providing insight into why individuals may select their gait pattern and possible interventions to improve energetics.
Collapse
Affiliation(s)
- Elijah C Kuska
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States.
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Ravera EP, Rozumalski A. Selective dorsal rhizotomy and its effect on muscle force during walking: A comprehensive study. J Biomech 2024; 164:111968. [PMID: 38325195 DOI: 10.1016/j.jbiomech.2024.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/03/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Selective dorsal rhizotomy (SDR) is commonly used to permanently reduce spasticity in children with cerebral palsy (CP). However, studies have yielded varying results regarding muscle strength and activity after SDR. Some studies indicate weakness or no changes, while a recent study using NMSK simulations demonstrates improvements in muscle forces during walking. These findings suggest that SDR may alleviate spasticity, reducing dynamic muscle constraints and enhancing muscle force without altering muscle activity during walking in children with CP. In this study, we combined NMSK simulations with physical examinations to assess children with CP who underwent SDR, comparing them to well-matched peers who did not undergo the procedure. Each group (SDR and No-SDR) included 81 children, with pre- and post-SDR assessments. Both groups were well-matched in terms of demographics, clinical characteristics, and gait parameters. The results of the physical examination indicate that SDR significantly reduces spasticity without impacting muscle strength. Furthermore, our findings show no significant differences in gait deviation index improvements and walking speed between the two groups. Additionally, there were no statistically significant changes in muscle activity during walking before and after SDR for both groups. NMSK results demonstrate a significant increase in muscle force in the semimembranosus and calf muscles during walking, compared to children with CP who received other clinical treatments. Our findings confirm that although SDR does not significantly impact muscle strength compared to other treatments, it creates a more favorable dynamic environment for suboptimal muscle force production, which is essential for walking.
Collapse
Affiliation(s)
- Emiliano Pablo Ravera
- Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina; Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina.
| | - Adam Rozumalski
- The James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, United States of America.
| |
Collapse
|
8
|
Hora M, Struška M, Matějovská Z, Kubový P, Sládek V. Muscle activity during crouched walking. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:79-91. [PMID: 37606347 DOI: 10.1002/ajpa.24834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Muscle activity during crouched walking has been previously studied in the context of the evolution of hominin bipedalism and human movement disorders. However, crouched walking could also be used in approach hunting where postural height (actual height of the body from the ground to the top of the head during locomotion) is the limiting factor. Here, we aim to analyze the relationship between relative postural height (%stature), kinematics, and muscle activity during crouched walking. MATERIALS AND METHODS Adult males (n = 19) walked with extended limbs and at three degrees of crouch while their 3D motion capture kinematics and lower limb muscle electromyography were recorded. We measured activation of tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus. We analyzed the effects of postural height on kinematics and muscle activation using linear mixed effects model. RESULTS Flexion angles, individual muscle activation (except for medial gastrocnemius), and total muscle activation were negatively related to relative postural height, that is, were greater at more crouched postures. Relative postural height had a stronger effect on the activation of the thigh and gluteal muscles compared to shank muscles. DISCUSSION General increase in lower limb muscle activation at lower postural heights suggests a negative relationship between relative postural height and fatigue, and may indicate a possible mechanism by which short stature could benefit the hunter in approach hunting. Greater activation of thigh and gluteal muscles relative to shank muscles may help to identify crouched walking in past human populations.
Collapse
Affiliation(s)
- Martin Hora
- Department of Anthropology and Human Genetics, Charles University, Prague, Czech Republic
| | - Michal Struška
- Department of Anthropology and Human Genetics, Charles University, Prague, Czech Republic
| | - Zuzana Matějovská
- Department of Anthropology and Human Genetics, Charles University, Prague, Czech Republic
| | - Petr Kubový
- Department of Anatomy and Biomechanics, Charles University, Prague, Czech Republic
| | - Vladimír Sládek
- Department of Anthropology and Human Genetics, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Clancy CE, Gatti AA, Ong CF, Maly MR, Delp SL. Muscle-driven simulations and experimental data of cycling. Sci Rep 2023; 13:21534. [PMID: 38057337 PMCID: PMC10700567 DOI: 10.1038/s41598-023-47945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Muscle-driven simulations have provided valuable insights in studies of walking and running, but a set of freely available simulations and corresponding experimental data for cycling do not exist. The aim of this work was to develop a set of muscle-driven simulations of cycling and to validate them by comparison with experimental data. We used direct collocation to generate simulations of 16 participants cycling over a range of powers (40-216 W) and cadences (75-99 RPM) using two optimization objectives: a baseline objective that minimized muscle effort and a second objective that additionally minimized tibiofemoral joint forces. We tested the accuracy of the simulations by comparing the timing of active muscle forces in our baseline simulation to timing in experimental electromyography data. Adding a term in the objective function to minimize tibiofemoral forces preserved cycling power and kinematics, improved similarity between active muscle force timing and experimental electromyography, and decreased tibiofemoral joint reaction forces, which better matched previously reported in vivo measurements. The musculoskeletal models, muscle-driven simulations, simulation software, and experimental data are freely shared at https://simtk.org/projects/cycling_sim for others to reproduce these results and build upon this research.
Collapse
Affiliation(s)
- Caitlin E Clancy
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Anthony A Gatti
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Carmichael F Ong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Monica R Maly
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Scott L Delp
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Spomer AM, Yan RZ, Schwartz MH, Steele KM. Motor control complexity can be dynamically simplified during gait pattern exploration using motor control-based biofeedback. J Neurophysiol 2023; 129:984-998. [PMID: 37017327 PMCID: PMC10125030 DOI: 10.1152/jn.00323.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Understanding how the central nervous system coordinates diverse motor outputs has been a topic of extensive investigation. Although it is generally accepted that a small set of synergies underlies many common activities, such as walking, whether synergies are equally robust across a broader array of gait patterns or can be flexibly modified remains unclear. Here, we evaluated the extent to which synergies changed as nondisabled adults (n = 14) explored gait patterns using custom biofeedback. Secondarily, we used Bayesian additive regression trees to identify factors that were associated with synergy modulation. Participants explored 41.1 ± 8.0 gait patterns using biofeedback, during which synergy recruitment changed depending on the type and magnitude of gait pattern modification. Specifically, a consistent set of synergies was recruited to accommodate small deviations from baseline, but additional synergies emerged for larger gait changes. Synergy complexity was similarly modulated; complexity decreased for 82.6% of the attempted gait patterns, but distal gait mechanics were strongly associated with these changes. In particular, greater ankle dorsiflexion moments and knee flexion through stance, as well as greater knee extension moments at initial contact, corresponded to a reduction in synergy complexity. Taken together, these results suggest that the central nervous system preferentially adopts a low-dimensional, largely invariant control strategy but can modify that strategy to produce diverse gait patterns. Beyond improving understanding of how synergies are recruited during gait, study outcomes may also help identify parameters that can be targeted with interventions to alter synergies and improve motor control after neurological injury.NEW & NOTEWORTHY We used a motor control-based biofeedback system and machine learning to characterize the extent to which nondisabled adults can modulate synergies during gait pattern exploration. Results revealed that a small library of synergies underlies an array of gait patterns but that recruitment from this library changes as a function of the imposed biomechanical constraints. Our findings enhance understanding of the neural control of gait and may inform biofeedback strategies to improve synergy recruitment after neurological injury.
Collapse
Affiliation(s)
- Alyssa M Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States
| | - Robin Z Yan
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States
| | - Michael H Schwartz
- James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, Saint Paul, Minnesota, United States
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
11
|
Scherb D, Wartzack S, Miehling J. Modelling the interaction between wearable assistive devices and digital human models-A systematic review. Front Bioeng Biotechnol 2023; 10:1044275. [PMID: 36704313 PMCID: PMC9872199 DOI: 10.3389/fbioe.2022.1044275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Exoskeletons, orthoses, exosuits, assisting robots and such devices referred to as wearable assistive devices are devices designed to augment or protect the human body by applying and transmitting force. Due to the problems concerning cost- and time-consuming user tests, in addition to the possibility to test different configurations of a device, the avoidance of a prototype and many more advantages, digital human models become more and more popular for evaluating the effects of wearable assistive devices on humans. The key indicator for the efficiency of assistance is the interface between device and human, consisting mainly of the soft biological tissue. However, the soft biological tissue is mostly missing in digital human models due to their rigid body dynamics. Therefore, this systematic review aims to identify interaction modelling approaches between wearable assistive devices and digital human models and especially to study how the soft biological tissue is considered in the simulation. The review revealed four interaction modelling approaches, which differ in their accuracy to recreate the occurring interactions in reality. Furthermore, within these approaches there are some incorporating the appearing relative motion between device and human body due to the soft biological tissue in the simulation. The influence of the soft biological tissue on the force transmission due to energy absorption on the other side is not considered in any publication yet. Therefore, the development of an approach to integrate the viscoelastic behaviour of soft biological tissue in the digital human models could improve the design of the wearable assistive devices and thus increase its efficiency and efficacy.
Collapse
Affiliation(s)
- David Scherb
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Engineering Design, Erlangen, Germany
| | | | | |
Collapse
|
12
|
Individual muscle force–energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation. J Biomech 2022; 139:111141. [DOI: 10.1016/j.jbiomech.2022.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
13
|
Uchida TK, Seth A. Conclusion or Illusion: Quantifying Uncertainty in Inverse Analyses From Marker-Based Motion Capture due to Errors in Marker Registration and Model Scaling. Front Bioeng Biotechnol 2022; 10:874725. [PMID: 35694232 PMCID: PMC9174465 DOI: 10.3389/fbioe.2022.874725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Estimating kinematics from optical motion capture with skin-mounted markers, referred to as an inverse kinematic (IK) calculation, is the most common experimental technique in human motion analysis. Kinematics are often used to diagnose movement disorders and plan treatment strategies. In many such applications, small differences in joint angles can be clinically significant. Kinematics are also used to estimate joint powers, muscle forces, and other quantities of interest that cannot typically be measured directly. Thus, the accuracy and reproducibility of IK calculations are critical. In this work, we isolate and quantify the uncertainty in joint angles, moments, and powers due to two sources of error during IK analyses: errors in the placement of markers on the model (marker registration) and errors in the dimensions of the model’s body segments (model scaling). We demonstrate that IK solutions are best presented as a distribution of equally probable trajectories when these sources of modeling uncertainty are considered. Notably, a substantial amount of uncertainty exists in the computed kinematics and kinetics even if low marker tracking errors are achieved. For example, considering only 2 cm of marker registration uncertainty, peak ankle plantarflexion angle varied by 15.9°, peak ankle plantarflexion moment varied by 26.6 N⋅m, and peak ankle power at push off varied by 75.9 W during healthy gait. This uncertainty can directly impact the classification of patient movements and the evaluation of training or device effectiveness, such as calculations of push-off power. We provide scripts in OpenSim so that others can reproduce our results and quantify the effect of modeling uncertainty in their own studies.
Collapse
Affiliation(s)
- Thomas K. Uchida
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Thomas K. Uchida,
| | - Ajay Seth
- Department of BioMechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
De Pieri E, Romkes J, Wyss C, Brunner R, Viehweger E. Altered Muscle Contributions are Required to Support the Stance Limb During Voluntary Toe-Walking. Front Bioeng Biotechnol 2022; 10:810560. [PMID: 35480978 PMCID: PMC9036482 DOI: 10.3389/fbioe.2022.810560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/02/2022] [Indexed: 01/02/2023] Open
Abstract
Toe-walking characterizes several neuromuscular conditions and is associated with a reduction in gait stability and efficiency, as well as in life quality. The optimal choice of treatment depends on a correct understanding of the underlying pathology and on the individual biomechanics of walking. The objective of this study was to describe gait deviations occurring in a cohort of healthy adult subjects when mimicking a unilateral toe-walking pattern compared to their normal heel-to-toe gait pattern. The focus was to characterize the functional adaptations of the major lower-limb muscles which are required in order to toe walk. Musculoskeletal modeling was used to estimate the required muscle contributions to the joint sagittal moments. The support moment, defined as the sum of the sagittal extensive moments at the ankle, knee, and hip joints, was used to evaluate the overall muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Compared to a normal heel-to-toe gait pattern, toe-walking was characterized by significantly different lower-limb kinematics and kinetics. The altered kinetic demands at each joint translated into different necessary moment contributions from most muscles. In particular, an earlier and prolonged ankle plantarflexion contribution was required from the soleus and gastrocnemius during most of the stance phase. The hip extensors had to provide a higher extensive moment during loading response, while a significantly higher knee extension contribution from the vasti was necessary during mid-stance. Compensatory muscular activations are therefore functionally required at every joint level in order to toe walk. A higher support moment during toe-walking indicates an overall higher muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Higher muscular demands during gait may lead to fatigue, pain, and reduced quality of life. Toe-walking is indeed associated with significantly larger muscle forces exerted by the quadriceps to the patella and prolonged force transmission through the Achilles tendon during stance phase. Optimal treatment options should therefore account for muscular demands and potential overloads associated with specific compensatory mechanisms.
Collapse
Affiliation(s)
- Enrico De Pieri
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- *Correspondence: Enrico De Pieri,
| | - Jacqueline Romkes
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Christian Wyss
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Reinald Brunner
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
| | - Elke Viehweger
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
| |
Collapse
|
15
|
Mateus RB, Ferrer-Roca V, João F, Veloso AP. Muscle contributions to maximal single-leg forward braking and backward acceleration in elite athletes. J Biomech 2020; 112:110047. [PMID: 33035838 DOI: 10.1016/j.jbiomech.2020.110047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Abrupt deceleration is a common practice in several sports, where sudden changes of direction are needed to reach the highest performance level. When inappropriately performed, these actions can impose excessive mechanical loads at the lower limb joints, specifically at the knee and ankle joints, usually associated with increased risk of injury. This work aims to estimate muscle forces and muscle contributions to the acceleration of the center of mass during a rapid maximal single-leg forward braking and backward acceleration task. Fourteen elite male injury-free indoor-sports athletes participated in this work. Scaled generic musculoskeletal models, consisting of 12 segments, 23 degrees of freedom, and 92 muscle-tendon actuators were used in OpenSim software. Due to the nature of the musculoskeletal system, all muscles are considered when joint and segment positions, velocities, and accelerations are calculated, resulting in muscles acting to accelerate joints it does not span. The knowledge of muscle interaction during this multijoint task is important and was achieved through an induced acceleration analysis. The vasti (-9.18 ± 2.09 and -7.63 ± 1.33 N/Kg) were the main contributors to the centre of mass deceleration profile along the anterior/posterior direction, aided by the soleus muscle (9.72 ± 2.35 and 9.62 ± 2.07 N/Kg), which counteracted most of the effects applied by gravity along the vertical direction, during both phases. This study provides a computational approach to quantify the dynamical interactions between muscles and joints during an abrupt anterior/posterior deceleration task, thus giving robust and insightful indicators that can be implemented in injury prevention protocols.
Collapse
Affiliation(s)
- Rodrigo B Mateus
- CIPER, Faculty of Human Kinetics, University of Lisbon, Cruz Quebrada, Portugal; Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| | | | - Filipa João
- CIPER, Faculty of Human Kinetics, University of Lisbon, Cruz Quebrada, Portugal
| | - António P Veloso
- CIPER, Faculty of Human Kinetics, University of Lisbon, Cruz Quebrada, Portugal
| |
Collapse
|
16
|
Ryan JM, Lavelle G, Theis N, Noorkoiv M, Kilbride C, Korff T, Baltzopoulos V, Shortland A, Levin W. Progressive resistance training for adolescents with cerebral palsy: the STAR randomized controlled trial. Dev Med Child Neurol 2020; 62:1283-1293. [PMID: 32588919 DOI: 10.1111/dmcn.14601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 11/26/2022]
Abstract
AIM To evaluate the effect of progressive resistance training of the ankle plantarflexors on gait efficiency, activity, and participation in adolescents with cerebral palsy (CP). METHOD Sixty-four adolescents (10-19y; 27 females, 37 males; Gross Motor Function Classification System [GMFCS] levels I-III) were randomized to 30 sessions of resistance training (10 supervised and 20 unsupervised home sessions) over 10 weeks or usual care. The primary outcome was gait efficiency indicated by net nondimensional oxygen cost (NNcost). Secondary outcomes included physical activity, gross motor function, participation, muscle strength, muscle and tendon size, and muscle and tendon stiffness. Analysis was intention-to-treat. RESULTS Median attendance at the 10 supervised sessions was 80% (range 40-100%). There was no between-group difference in NNcost at 10 (mean difference: 0.02, 95% confidence interval [CI] -0.07 to 0.11, p=0.696) or 22 weeks (mean difference: -0.08, 95% CI -0.18 to 0.03, p=0.158). There was also no evidence of between-group differences in secondary outcomes at 10 or 22 weeks. There were 123 adverse events reported by 27 participants in the resistance training group. INTERPRETATION We found that 10 supervised sessions and 20 home sessions of progressive resistance training of the ankle plantarflexors did not improve gait efficiency, muscle strength, activity, participation, or any biomechanical outcome among adolescents with CP. WHAT THIS PAPER ADDS Thirty sessions of progressive resistance training of the ankle plantarflexors over 10 weeks did not improve gait efficiency among ambulatory adolescents with cerebral palsy. Resistance training did not improve muscle strength, activity, or participation. Ninety percent of participants experienced an adverse event. Most adverse events were expected and no serious adverse events were reported.
Collapse
Affiliation(s)
- Jennifer M Ryan
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,College of Health and Life Sciences, Brunel University London, London, UK
| | - Grace Lavelle
- College of Health and Life Sciences, Brunel University London, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Marika Noorkoiv
- College of Health and Life Sciences, Brunel University London, London, UK
| | - Cherry Kilbride
- College of Health and Life Sciences, Brunel University London, London, UK
| | | | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercises Sciences, Liverpool John Moores University, Liverpool, UK
| | - Adam Shortland
- One Small Step Gait Laboratory, Guy's Hospital, London, UK
| | - Wendy Levin
- Department of Physiotherapy, Swiss Cottage School and Development and Research Centre, London, UK
| | | |
Collapse
|
17
|
Hösl M, Kruse A, Tilp M, Svehlik M, Böhm H, Zehentbauer A, Arampatzis A. Impact of Altered Gastrocnemius Morphometrics and Fascicle Behavior on Walking Patterns in Children With Spastic Cerebral Palsy. Front Physiol 2020; 11:518134. [PMID: 33178029 PMCID: PMC7597072 DOI: 10.3389/fphys.2020.518134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Spastic cerebral palsy (SCP) affects neural control, deteriorates muscle morphometrics, and may progressively impair functional walking ability. Upon passive testing, gastrocnemius medialis (GM) muscle bellies or fascicles are typically shorter, thinner, and less extensible. Relationships between muscle and gait parameters might help to understand gait pathology and pathogenesis of spastic muscles. The current aim was to link resting and dynamic GM morphometrics and contractile fascicle behavior (both excursion and velocity) during walking to determinants of gait. We explored the associations between gait variables and ultrasonography of the GM muscle belly captured during rest and during gait in children with SCP [n = 15, gross motor function classification system (GMFCS) levels I and II, age: 7–16 years] and age-matched healthy peers (n = 17). The SCP children’s plantar flexors were 27% weaker. They walked 12% slower with more knee flexion produced 42% less peak ankle push-off power (all p < 0.05) and 7/15 landed on their forefoot. During the stance phase, fascicles in SCP on average operated on 9% shorter length (normalized to rest length) and displayed less and slower fascicle shortening (37 and 30.6%, respectively) during push-off (all p ≤ 0.024). Correlation analyses in SCP patients revealed that (1) longer-resting fascicles and thicker muscle bellies are positively correlated with walking speed and negatively to knee flexion (r = 0.60–0.69, p < 0.0127) but not to better ankle kinematics; (2) reduced muscle strength was associated with the extent of eccentric fascicle excursion (r = −0.57, p = 0.015); and (3) a shorter operating length of the fascicles was correlated with push-off power (r = −0.58, p = 0.013). Only in controls, a correlation (r = 0.61, p = 0.0054) between slower fascicle shortening velocity and push-off power was found. Our results indicate that a thicker gastrocnemius muscle belly and longer gastrocnemius muscle fascicles may be reasonable morphometric properties that should be targeted in interventions for individuals with SCP, since GM muscle atrophy may be related to decreases in walking speed and undesired knee flexion during gait. Furthermore, children with SCP and weaker gastrocnemius muscle may be more susceptible to chronic eccentric muscle overloading. The relationship between shorter operating length of the fascicles and push-off power may further support the idea of a compensation mechanism for the longer sarcomeres found in children with SCP. Nevertheless, more studies are needed to support our explorative findings.
Collapse
Affiliation(s)
- Matthias Hösl
- Gait and Motion Analysis Laboratory, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Annika Kruse
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Martin Svehlik
- Paediatric Orthopaedics Unit, Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Harald Böhm
- Gait Laboratory, Orthopedic Children's Hospital Aschau, Aschau im Chiemgau, Germany
| | - Antonia Zehentbauer
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt University of Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
18
|
Wesseling M, Kainz H, Hoekstra T, Van Rossom S, Desloovere K, De Groote F, Jonkers I. Botulinum toxin injections minimally affect modelled muscle forces during gait in children with cerebral palsy. Gait Posture 2020; 82:54-60. [PMID: 32892101 DOI: 10.1016/j.gaitpost.2020.08.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Children with cerebral palsy (CP) present altered gait patterns and electromyography (EMG) activity compared to typically developing children. To temporarily reduce muscular activity and to correct the abnormal muscle force balance, Botulinum Toxin type A (BTX-A) injections are used. RESEARCH QUESTION What is the effect of BTX-A injections on dynamic muscle forces during gait, when calculated using an EMG-constrained approach?. METHODS Retrospective data of ten typically developing (TD) and fourteen children with spastic diplegic CP were used for musculoskeletal modeling and dynamic simulations of gait, before and after BTX-A treatment. Individual muscle forces were calculated using an EMG-constrained optimization, in which EMG of eight muscles was used as muscle excitation signal to constrain the muscle activation patterns. Paired t-tests were used to compare average modelled muscle forces in different phases of the gait cycle pre- and post-BTX-A, summarized in the muscle profile score. Two-sample t-tests were used to determine significant differences between TD and pre- and post-BTX-A modelled muscle forces. RESULTS For most muscles, the force was decreased in CP compared to TD children in all phases of the gait cycle, both before and after BTX-A treatment. Differences in muscle forces before and after BTX-A treatment were limited, with only few significant differences between pre- and post-BTX-A. Compared to a standard static optimization approach, imposing the EMG activity increased modelled muscle forces for most muscles. SIGNIFICANCE Our findings indicate that BTX-A treatment has a limited effect on the muscle balance in CP children. Besides that, the use of EMG-constrained optimization is recommended when studying muscle balance in children with CP.
Collapse
Affiliation(s)
- M Wesseling
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| | - H Kainz
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.
| | - T Hoekstra
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| | - S Van Rossom
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| | - K Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU, Leuven, Belgium.
| | - F De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| | - I Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
O'Sullivan R, Marron A, Brady K. Crouch gait or flexed-knee gait in cerebral palsy: Is there a difference? A systematic review. Gait Posture 2020; 82:153-160. [PMID: 32927222 DOI: 10.1016/j.gaitpost.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Crouch or flexed-knee gait is one of the most common pathological gait patterns in cerebral palsy (CP). Differences exist in definitions used; the degree of knee flexion, inclusion of hip or ankle position, and timing in the gait cycle. This ambiguity may be responsible for variations in prevalence rates and difficulty comparing data across studies. RESEARCH QUESTION What are the kinematic parameters used to define crouch or flexed-knee gait in CP gait? A secondary aim was to examine the quality of data reporting, focusing on the sample characteristics, inclusion/exclusion criteria and the choice of limb included for analysis. METHODS Articles included in this review reported on a specified cohort of adults or children with crouch or flexed-knee gait assessed with 3-dimensional gait analysis. A customised data extraction and quality assessment table was designed specific to the research question. RESULTS The majority (75 %) of included studies used the term crouch gait. Where the pattern was defined, 80 % of crouch papers and 94 % of flexed-knee gait papers based this solely on knee position. Kinematic parameters were clearly defined when they provided objective values of knee flexion, supported this with rationale and provided a reference point in the gait cycle. Only 22 % of crouch papers and 19 % of flexed-knee gait papers provided this information. The majority of studies (67 % crouch; 90 % flexed-knee) specified which limb(s) were included for analysis with the majority including both limbs. Objective values of knee flexion ranged from 8 o to 30 o. SIGNIFICANCE This review highlights that crouch and flexed knee are synonymous and ambiguity exists in the kinematic definition making it difficult to make compare data amongst study cohorts. Future research should provide detailed definitions including the threshold value of knee flexion, how it was derived, the timing in the gait cycle and the limb(s) included in analysis.
Collapse
Affiliation(s)
- R O'Sullivan
- Gait Laboratory, Central Remedial Clinic, Clontarf, Dublin 3, Ireland.
| | - A Marron
- Gait Laboratory, Central Remedial Clinic, Clontarf, Dublin 3, Ireland
| | - K Brady
- Gait Laboratory, Central Remedial Clinic, Clontarf, Dublin 3, Ireland
| |
Collapse
|
20
|
Shuman BR, Goudriaan M, Desloovere K, Schwartz MH, Steele KM. Muscle Synergy Constraints Do Not Improve Estimates of Muscle Activity From Static Optimization During Gait for Unimpaired Children or Children With Cerebral Palsy. Front Neurorobot 2019; 13:102. [PMID: 31920612 PMCID: PMC6927914 DOI: 10.3389/fnbot.2019.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Neuromusculoskeletal simulation provides a promising platform to inform the design of assistive devices or inform rehabilitation. For these applications, a simulation must be able to accurately represent the person of interest, such as an individual with a neurologic injury. If a simulation fails to predict how an individual recruits and coordinates their muscles during movement, it will have limited utility for informing design or rehabilitation. While inverse dynamic simulations have previously been used to evaluate anticipated responses from interventions, like orthopedic surgery or orthoses, they frequently struggle to accurately estimate muscle activations, even for tasks like walking. The simulated muscle activity often fails to represent experimentally measured muscle activity from electromyographic (EMG) recordings. Research has theorized that the nervous system may simplify the range of possible activations used during dynamic tasks, by constraining activations to weighted groups of muscles, referred to as muscle synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy (CP), and may provide a method for improving subject-specific models of neuromuscular control. The aim of this study was to test whether constraining simulation to synergies could improve estimated muscle activations compared to EMG data. We evaluated modeled muscle activations during gait for six typically developing (TD) children and six children with CP. Muscle activations were estimated with: (1) static optimization (SO), minimizing muscle activations squared, and (2) synergy SO (SynSO), minimizing synergy activations squared using the weights identified from EMG data for two to five synergies. While SynSO caused changes in estimated activations compared to SO, the correlation to EMG data was not higher in SynSO than SO for either TD or CP groups. The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and SynSO (CP: 0.46, TD: 0.26 for five synergies). Constraining activations to SynSO caused the simulated muscle stress to increase compared to SO for all individuals, causing a 157% increase with two synergies. These results suggest that constraining simulated activations in inverse dynamic simulations to subject-specific synergies alone may not improve estimation of muscle activations during gait for generic musculoskeletal models.
Collapse
Affiliation(s)
- Benjamin R. Shuman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Marije Goudriaan
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven (Pellenberg), Lubbeek, Belgium
| | - Michael H. Schwartz
- James R. Gage Center for Gait and Motion Analysis, Gillette Children’s Specialty Healthcare, Saint Paul, MN, United States
- Orthopaedic Surgery, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Muscle fatigue during a short walking exercise in children with cerebral palsy who walk in a crouch gait. Gait Posture 2019; 72:22-27. [PMID: 31132593 DOI: 10.1016/j.gaitpost.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND A deterioration of crouch gait was found in a group of children with cerebral palsy (CP) after a short walking exercise. The increased knee flexion reported after a continuous walk could be related with muscle fatigue and muscle strength. AIM Does muscle fatigue appears at the end of a walking exercise in children with CP who walk in a crouch gait? METHODS Eleven children with cerebral palsy (GMFCS I to III) who walk in a crouch gait were included. Isometric muscle strength was assessed using a handheld dynamometer. Children were asked to walk for 6 min at comfortable speed. Spatio-temporal, kinematic and electromyographic (EMG) measurements were recorded at the first and the last minute of the 6-minute walking exercise. Muscle fatigue was evaluated using the shift of EMG signals median frequency. RESULTS There was no significant difference in walking speed, cadence, and step length at the end of the 6mwe. Maximal and mean anterior pelvic tilt decreased and knee flexion increased (p < 0.05). Rectus femoris EMG median frequency decreased (p < 0.05). The median frequency in other muscles did not decrease significantly. Greater hip extensor strength was associated with lesser knee flexion at the end of the 6-minute walking exercise (p < 0.05). SIGNIFICANCE The increase in knee flexion at the end of the 6-minute walking exercise can be explained by muscle fatigue found in rectus femoris. Hip extensor strength can limit the deterioration of crouch gait after a 6-minute walking exercise representative of daily activities.
Collapse
|
22
|
Ravera EP, Crespo MJ, Catalfamo Formento PA. Assessment of the energy-related cost function over a range of walking speeds. Biomech Model Mechanobiol 2019; 18:1837-1846. [PMID: 31165376 DOI: 10.1007/s10237-019-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Cost funtions are needed for calculation of muscle forces in musculoskeletal models. The behavior of the energy-related cost function, proposed by Praagman et al. (J Biomech 39(4):758-765, 2006. https://doi.org/10.1016/j.jbiomech.2004.11.034 ) (CFP), can be used as an optimization criteria in musculoskeletal models for studying gait. In particular, in this work, its performance is compared against two empirical phenomenological models at different walking speed conditions. Also, the sensitivity of the CFP function to model parameters, such as muscle mass, maximal isometric muscle force, optimal muscle fiber length and maximum muscle velocity of the contractile element, was analyzed. The obtained results showed that CFP presents different behavior (in terms of the normalized root-mean-squared deviation (NRMSD) and the coefficient of multiple correlation (CMC)) for different muscles. Also, it provided estimates with median of NRMSD between 0.176 and 0.299 and median of CMC between 0.703 and 0.865 both metrics for slow, free and fast walking speed, which could be considered as acceptable results. Furthermore, the results indicated that CFP is insensitive to changes in muscle mass and relatively sensitive to maximal isometric muscle force. However, CFP presented a noisy behavior on estimations of muscle energy rate for some muscle as compared to phenomenological models. Finally, estimations by CFP during gait are within the values obtained by the empirical phenomenological models.
Collapse
Affiliation(s)
- Emiliano Pablo Ravera
- Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina. .,Human Movement Research Laboratory (LIMH), School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina.
| | - Marcos José Crespo
- Laboratorio de análisis de marcha y movimiento, LAMM y Tecnología en rehabilitación, Clínica de tecnología asistiva, TA. FLENI, Escobar, Argentina
| | - Paola Andrea Catalfamo Formento
- Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina.,Human Movement Research Laboratory (LIMH), School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina
| |
Collapse
|
23
|
McDonald KA, Devaprakash D, Rubenson J. Is conservation of center of mass mechanics a priority in human walking? Insights from leg-length asymmetry experiments. ACTA ACUST UNITED AC 2019; 222:jeb.195172. [PMID: 30967514 DOI: 10.1242/jeb.195172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/05/2019] [Indexed: 01/23/2023]
Abstract
Center of mass (COM) control has been proposed to serve economy- and stability-related locomotor task objectives. However, given the lack of evidence supporting direct sensing and/or regulation of the COM, it remains unclear whether COM mechanics are prioritized in the control scheme of walking. We posit that peripheral musculoskeletal structures, e.g. muscle, are more realistic control targets than the COM, given their abundance of sensorimotor receptors and ability to influence whole-body energetics. As a first test of this hypothesis, we examined whether conservation of stance-phase joint mechanics is prioritized over COM mechanics in a locomotor task where simultaneous conservation of COM and joint mechanics is not feasible: imposed leg-length asymmetry. Positive joint mechanical cost of transport (work per distance traveled; COTJNT) was maintained at values closer to normal walking than COM mechanical cost of transport (COTCOM; P<0.05, N=15). Furthermore, compared with our measures of COM mechanics (COTCOM, COM displacement), joint-level variables (COTJNT, integrated total support moment) also displayed stronger conservation (less change from normal walking) when the participants' self-selected gait was assessed against other possible gait solutions. We conclude that when walking humans are exposed to an asymmetric leg-length perturbation, control of joint mechanics is prioritized over COM mechanics. Our results suggest that mechanical and metabolic effort is likely regulated via control of peripheral structures and not directly at the level of the COM. Joint mechanics may provide a more accurate representation of the underlying locomotor control targets and may prove advantageous in informing predictive models of human walking.
Collapse
Affiliation(s)
- Kirsty A McDonald
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia .,Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel Devaprakash
- School of Allied Health Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4215, Australia
| | - Jonas Rubenson
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.,Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy. J Biomech 2019; 87:142-149. [PMID: 30862380 DOI: 10.1016/j.jbiomech.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Abstract
Predicting subject-specific responses to exoskeleton assistance may aid in maximizing functional gait outcomes, such as achieving full knee-extension at foot contact in individuals with crouch gait from cerebral palsy (CP). The purpose of this study was to investigate the role of volitional and non-volitional muscle activity in subject-specific responses to knee extension assistance during walking with an exoskeleton. We developed a simulation framework to predict responses to exoskeleton torque by applying a stretch-reflex spasticity model with muscle excitations computed during unassisted walking. The framework was validated with data collected from six individuals with CP. Framework-predicted knee angle at terminal swing was within 4 ± 4° (mean ± sd) of the knee angle measured experimentally without the addition of spasticity. Kinematic responses in two-thirds of the participants could be accurately modeled using only underlying muscle activity and the applied exoskeleton torque; incorporating hamstring spasticity was necessary to recreate the measured kinematics to within 1 ± 1° in the remaining participants. We observed strong positive linear relationships between knee extension and exoskeleton assistance, and strong negative quadratic relationships between knee extension and spasticity. We utilized our framework to identify optimal torque profiles necessary to achieve full knee-extension at foot contact. An angular impulse of 0.061 ± 0.025 Nm·s·kg-1·deg-1 with 0.013 ± 0.002 Nm·kg-1·deg-1 of peak torque and 4.1 ± 1.9 W·kg-1·deg-1 peak mechanical power was required to achieve full knee extension (values normalized by knee excursion). This framework may aid the prescription of exoskeleton control strategies in pathologies with muscle spasticity. https://simtk.org/projects/knee-exo-pred/.
Collapse
|
25
|
Kiernan D, O'Sullivan R. The influence of crouch gait on sagittal trunk position and lower lumbar spinal loading in children with cerebral palsy. Gait Posture 2019; 67:65-70. [PMID: 30290367 DOI: 10.1016/j.gaitpost.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Crouch gait is a common pattern in children with CP. Little investigation has been performed as to the role of the trunk during crouch gait. A compensatory movement of the trunk may alter the position of the ground reaction force with the effect of reducing the moment arm about the knee or hip. While this may benefit these joints in the context of reduced loading, there may be implications further up the kinematic chain at the level of the lumbar spine. RESEARCH QUESTION Are compensatory movements of the trunk present during crouch gait in children with CP and are levels of loading at the lower lumbar spine affected? METHODS A full barefoot lower limb and trunk 3-dimensional kinematic and kinetic analysis, with kinetics estimated at the spinal position of L5/S1, was performed on 3 groups of children, namely CP Crouch, CP No-Crouch and TD. Differences in trunk position and L5/S1 loading were compared between groups. RESULTS Mean trunk position in relation to the pelvis and laboratory was not statistically significant between groups. At the level of the spine, no differences were present in mean position between groups for L5/S1 sagittal moment or anterior/posterior force. SIGNIFICANCE Crouch gait does not elicit a compensatory response of the trunk in children with CP and, consequently, reactive forces and moments at the lower lumbar spine remain within normal limits. With this in mind, it is unlikely that a crouch gait pattern will affect the health of the spine over time in these children.
Collapse
Affiliation(s)
- D Kiernan
- Gait Laboratory, Central Remedial Clinic, Clontarf, Dublin 3, Ireland.
| | - R O'Sullivan
- Gait Laboratory, Central Remedial Clinic, Clontarf, Dublin 3, Ireland
| |
Collapse
|
26
|
Evaluation of a method to scale muscle strength for gait simulations of children with cerebral palsy. J Biomech 2019; 83:165-173. [DOI: 10.1016/j.jbiomech.2018.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022]
|
27
|
Hegarty AK, Kurz MJ, Stuberg W, Silverman AK. Strength Training Effects on Muscle Forces and Contributions to Whole-Body Movement in Cerebral Palsy. J Mot Behav 2018; 51:496-510. [PMID: 30351246 DOI: 10.1080/00222895.2018.1519691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Strength training is often prescribed for children with cerebral palsy (CP); however, links between strength gains and mobility are unclear. Nine children (age 14 ± 3 years; GMFCS I-III) with spastic CP completed a 6-week strength-training program. Musculoskeletal gait simulations were generated for four children to assess training effects on muscle forces and function. There were increases in isometric joint strength, but no statistical changes in fast-as-possible walking speed or endurance after training. The walking simulations revealed changes in muscle forces and contributions to body center of mass acceleration, with greater forces from the hip muscles during walking most commonly observed. A progressive strength-training program can result in isometric and dynamic strength gains in children with CP, associated with variable mobility outcomes.
Collapse
Affiliation(s)
- Amy K Hegarty
- a Department of Mechanical Engineering , Colorado School of Mines , Golden , CO , USA
| | - Max J Kurz
- b Department of Physical Therapy , Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center , Omaha , NE , USA
| | - Wayne Stuberg
- b Department of Physical Therapy , Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center , Omaha , NE , USA
| | - Anne K Silverman
- a Department of Mechanical Engineering , Colorado School of Mines , Golden , CO , USA
| |
Collapse
|
28
|
Williams CD, Holt NC. Spatial Scale and Structural Heterogeneity in Skeletal Muscle Performance. Integr Comp Biol 2018; 58:163-173. [DOI: 10.1093/icb/icy057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- C D Williams
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| | - N C Holt
- Department of Biology, Northern Arizona University, S. San Francisco Street, Flagstaff, AZ 86011, USA
| |
Collapse
|
29
|
Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children. Gait Posture 2018; 61:169-175. [PMID: 29353741 DOI: 10.1016/j.gaitpost.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 02/02/2023]
Abstract
Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait.
Collapse
|
30
|
Sritharan P, Lin YC, Richardson SE, Crossley KM, Birmingham TB, Pandy MG. Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. J Orthop Res 2018; 36:2157-2166. [PMID: 29473665 DOI: 10.1002/jor.23883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
This study quantified the contributions by muscular, gravitational and inertial forces to the ground reaction force (GRF) and external knee adduction moment (EKAM) for knee osteoarthritis (OA) patients and controls walking at similar speeds. Gait data for 39 varus mal-aligned medial knee OA patients and 15 controls were input into musculoskeletal models to calculate the contributions of individual muscles and gravity to the fore-aft (progression), vertical (support), and mediolateral (balance) GRF, and the EKAM. The temporal patterns of contributions to GRF and EKAM were similar between the groups. Magnitude differences in GRF contributions were small but some reached significance. Peak GRF contributions were lower in patients except hamstrings in early-stance progression (p < 0.001) and gastrocnemius in late-stance progression (p < 0.001). Both EKAM peaks were higher in patients, due mainly to greater adduction contribution from gravity (p < 0.001) at the first peak, and lower abduction contributions from soleus (p < 0.001) and gastrocnemius (p < 0.001) at the second peak. Gluteus medius contributed most to EKAM in both groups, but was higher in patients during mid-stance only (p < 0.001). Differences in GRF contributions were attributed to altered quadriceps-hamstrings action as well as compensatory adaptation of the ankle plantarflexors to reduced gluteus medius action. The large effect of varus mal-alignment on the frontal-plane moment arms of the gravity, soleus, and gastrocnemius GRF contributions about the knee explained greater patient EKAM. Our results shed further light on how the EKAM contributes to altered knee-joint loads in OA and why some interventions may affect different portions of the EKAM waveform. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Prasanna Sritharan
- La Trobe Sports and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Yi-Chung Lin
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Sara E Richardson
- Faculty of Health Sciences, University of Western Ontario, Ontario, Canada
| | - Kay M Crossley
- La Trobe Sports and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, Bundoora, Victoria, 3086, Australia
| | | | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Brandon SCE, Thelen DG, Smith CR, Novacheck TF, Schwartz MH, Lenhart RL. The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children. Gait Posture 2018; 60:181-187. [PMID: 29248848 PMCID: PMC5809194 DOI: 10.1016/j.gaitpost.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/03/2017] [Accepted: 12/03/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. METHODS We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. RESULTS Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. CONCLUSIONS This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities.
Collapse
Affiliation(s)
- Scott C E Brandon
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; School of Engineering, University of Guelph, Canada
| | - Darryl G Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, USA.
| | - Colin R Smith
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA
| | - Tom F Novacheck
- Gillette Children's Specialty Healthcare, USA; Department of Orthopaedic Surgery, University of Minnesota, Twin Cities, USA
| | - Michael H Schwartz
- Gillette Children's Specialty Healthcare, USA; Department of Orthopaedic Surgery, University of Minnesota, Twin Cities, USA
| | - Rachel L Lenhart
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, USA
| |
Collapse
|
32
|
Ries AJ, Schwartz MH. Low gait efficiency is the primary reason for the increased metabolic demand during gait in children with cerebral palsy. Hum Mov Sci 2018; 57:426-433. [DOI: 10.1016/j.humov.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
33
|
Rosenberg M, Steele KM. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait. PLoS One 2017; 12:e0180219. [PMID: 28704464 PMCID: PMC5509139 DOI: 10.1371/journal.pone.0180219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Passive ankle foot orthoses (AFOs) are often prescribed for children with cerebral palsy (CP) to assist locomotion, but predicting how specific device designs will impact energetic demand during gait remains challenging. Powered AFOs have been shown to reduce energy costs of walking in unimpaired adults more than passive AFOs, but have not been tested in children with CP. The goal of this study was to investigate the potential impact of powered and passive AFOs on muscle demand and recruitment in children with CP and crouch gait. We simulated gait for nine children with crouch gait and three typically-developing children with powered and passive AFOs. For each AFO design, we computed reductions in muscle demand compared to unassisted gait. Powered AFOs reduced muscle demand 15-44% compared to unassisted walking, 1-14% more than passive AFOs. A slower walking speed was associated with smaller reductions in absolute muscle demand for all AFOs (r2 = 0.60-0.70). However, reductions in muscle demand were only moderately correlated with crouch severity (r2 = 0.40-0.43). The ankle plantarflexor muscles were most heavily impacted by the AFOs, with gastrocnemius recruitment decreasing 13-73% and correlating with increasing knee flexor moments (r2 = 0.29-0.91). These findings support the potential use of powered AFOs for children with crouch gait, and highlight how subject-specific kinematics and kinetics may influence muscle demand and recruitment to inform AFO design.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Steele KM, Shuman BR, Schwartz MH. Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy. J Biomech 2017; 60:170-174. [PMID: 28734543 DOI: 10.1016/j.jbiomech.2017.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022]
Abstract
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18±0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5-20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2=0.13-0.73), these variables were only weakly correlated with oxygen consumption (r2=0.02-0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual's energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.
Collapse
Affiliation(s)
- Katherine M Steele
- Mechanical Engineering, University of Washington, Seattle, WA, United States.
| | - Benjamin R Shuman
- Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Michael H Schwartz
- James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, United States; Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Baniasad M, Farahmand F, Arazpour M, Zohoor H. Role and Significance of Trunk and Upper Extremity Muscles in Walker-Assisted Paraplegic Gait: A Case Study. Top Spinal Cord Inj Rehabil 2017; 24:18-27. [PMID: 29434457 DOI: 10.1310/sci16-00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases of each step, distinguished based on the kinematics results. Results: It was found that the reciprocating activation pattern of the quadratus lumborum, latissimus dorsi, pectoralis major, and lower trapezius is responsible for trunk extension during the balance adjustment phase, leg unload and foot clearance creation during the leg raising phase, and propulsion force generation during the leg swing phase. Conclusion: The continuous activation of the rectus abdominis and erector spinae within the gait cycle helps stabilize the thorax and acts in reverse, that is, fixes the proximal joint and moves the distal limb. The shoulder girdle muscles contribute to the leg's unloading and then smooth landing during leg raising and leg swing phases, respectively.
Collapse
Affiliation(s)
- Mina Baniasad
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Farzam Farahmand
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mokhtar Arazpour
- Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hassan Zohoor
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
36
|
Sartori M, Fernandez JW, Modenese L, Carty CP, Barber LA, Oberhofer K, Zhang J, Handsfield GG, Stott NS, Besier TF, Farina D, Lloyd DG. Toward modeling locomotion using electromyography-informed 3D models: application to cerebral palsy. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [DOI: 10.1002/wsbm.1368] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Affiliation(s)
- M. Sartori
- Department of Trauma Surgery; Orthopedics and Plastic Surgery, Neurorehabilitation Systems Research Group, University Medical Center Göttingen; Göttingen Germany
| | - J. W. Fernandez
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
- Department of Engineering Science; University of Auckland; Auckland New Zealand
| | - L. Modenese
- Department of Mechanical Engineering; The University of Sheffield; Sheffield UK
- Queensland Children's Motion Analysis Service, Queensland Paediatric Rehabilitation Service; Children's Health Queensland; Brisbane Australia
- Menzies Health Institute Queensland; Griffith University; Queensland Australia
| | - C. P. Carty
- Queensland Children's Motion Analysis Service, Queensland Paediatric Rehabilitation Service; Children's Health Queensland; Brisbane Australia
- Menzies Health Institute Queensland; Griffith University; Queensland Australia
- School of Allied Health Sciences; Griffith University; Queensland Australia
| | - L. A. Barber
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine; The University of Queensland; Brisbane Australia
| | - K. Oberhofer
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
| | - J. Zhang
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
| | - G. G. Handsfield
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
| | - N. S. Stott
- School of Medicine; University of Auckland; Auckland New Zealand
| | - T. F. Besier
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
- Department of Engineering Science; University of Auckland; Auckland New Zealand
| | - D. Farina
- Department of Bioengineering; Imperial College London; London UK
| | - D. G. Lloyd
- Menzies Health Institute Queensland; Griffith University; Queensland Australia
- School of Allied Health Sciences; Griffith University; Queensland Australia
| |
Collapse
|
37
|
Muscle contributions to center of mass excursion in ankle and hip strategies during forward body tilting. J Biomech 2016; 49:3381-3386. [DOI: 10.1016/j.jbiomech.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 05/19/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
38
|
Pickle NT, Grabowski AM, Auyang AG, Silverman AK. The functional roles of muscles during sloped walking. J Biomech 2016; 49:3244-3251. [PMID: 27553849 DOI: 10.1016/j.jbiomech.2016.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/25/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
Abstract
Sloped walking is biomechanically different from level-ground walking, as evidenced by changes in joint kinematics and kinetics. However, the changes in muscle functional roles underlying these altered movement patterns have not been established. In this study, we developed a total of 273 muscle-actuated simulations to assess muscle functional roles, quantified by induced body center-of-mass accelerations and trunk and leg power, during walking on slopes of 0°, ±3°, ±6°, and ±9° at 1.25m/s. The soleus and gastrocnemius both provided greater forward acceleration of the body parallel to the slope at +9° compared to level ground (+126% and +66%, respectively). However, while the power delivered to the trunk by the soleus varied with slope, the magnitude of net power delivered to the trunk and ipsilateral leg by the biarticular gastrocnemius was similar across all slopes. At +9°, the hip extensors absorbed more power from the trunk (230% hamstrings, 140% gluteus maximus) and generated more power to both legs (200% hamstrings, 160% gluteus maximus) compared to level ground. At -9°, the knee extensors (rectus femoris and vasti) accelerated the body upward perpendicular to the slope at least 50% more and backward parallel to the slope twice as much as on level ground. In addition, the knee extensors absorbed greater amounts of power from the ipsilateral leg on greater declines to control descent. Future studies can use these results to develop targeted rehabilitation programs and assistive devices aimed at restoring sloped walking ability in impaired populations.
Collapse
Affiliation(s)
- Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA; VA Eastern Colorado Healthcare System, Denver, CO 80220, USA
| | - Arick G Auyang
- Nike Explore Team Sports Research Lab, Beaverton, OR 97005, USA
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
39
|
Hösl M, Böhm H, Arampatzis A, Keymer A, Döderlein L. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Clin Biomech (Bristol, Avon) 2016; 36:32-9. [PMID: 27208665 DOI: 10.1016/j.clinbiomech.2016.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Plantarflexor tightness due to muscle degenerations has been frequently documented in children with spastic cerebral palsy but the contractile behavior of muscles during ambulation is largely unclear. Especially the adaptability of gastrocnemius muscle contraction on sloped surface could be relevant during therapy. METHODS Medial gastrocnemius contractions were measured during flat-forward, uphill (+12% incline) and backward-downhill (-12% decline) treadmill gait in 15 children with bilateral cerebral palsy, walking in crouch, and 17 typically developing controls (age: 7-16years) by means of ultrasound and motion analysis. Tracked fascicle and calculated series elastic element length during gait were normalized on seated rest length. Additionally electromyography of the medial gastrocnemius, soleus and tibialis anterior was collected. FINDINGS During forward gait spastic gastrocnemii reached 10% shorter relative fascicle length, 5% shorter series elastic element length and showed 37% less concentric fascicle excursion than controls. No difference in eccentric fascicle excursion existed. Uphill gait increased concentric fascicle excursion in children with cerebral palsy and controls (by 23% and 41%) and tibialis anterior activity during swing (by 33% and 48%). Backward downhill gait more than doubled (+112%) eccentric fascicle excursion in cerebral palsy patients. INTERPRETATION Apart from having innately shorter fascicles at rest, flat-forward walking showed that spastic gastrocnemius fascicles work at shorter relative length than those of controls. Uphill gait may be useful to concentrically train push-off skills and foot lift. During backward-downhill gait the gastrocnemius functions as a brake and displays more eccentric excursion which could potentially stimulate sarcomere-genesis in series with repeated training.
Collapse
Affiliation(s)
- Matthias Hösl
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany; Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 11, 10115 Berlin, Germany.
| | - Harald Böhm
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 11, 10115 Berlin, Germany
| | - Antonia Keymer
- Department of Biomechanics in Sports, Technische Universität München, Uptown München-Campus D, Georg-Brauchle-Ring 60/62, 80992 München, Germany
| | - Leonhard Döderlein
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany
| |
Collapse
|
40
|
Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait. Clin Biomech (Bristol, Avon) 2016; 34:18-21. [PMID: 27038653 DOI: 10.1016/j.clinbiomech.2016.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Crouch gait results in an increase of the joint stress due to an excessive knee flexion. Daily walking exercises, even when performed at a self-selected speed, may result in a decrease of the extensor muscle strength which could lead to a more severe crouch gait pattern. The aim of this study was to assess the impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk with a crouch gait. METHODS Seven children with cerebral palsy who walk with a crouch gait were asked to walk for 6min at a self-selected speed. The spatio-temporal and kinematic measures, as well as the center of mass position were compared before and after the exercise. FINDINGS There was no significant difference between walking speed before and after the walking exercise. Knee flexion and the maximal ankle dorsiflexion increased after the walking exercise. The vertical position of the center of mass decreased. No significant difference was found at the hip. INTERPRETATION Children with cerebral palsy who walk with a crouch gait were more crouched after a 6-min walking exercise performed at their self-selected speed. These gait modifications could be due to fatigue of the extensor muscle groups. This study highlighted that a short walking exercise, corresponding to daily mobility, results in gait pattern modifications. Since therapies in children with cerebral palsy aim to improve motor function in everyday life situations, it could be relevant to evaluate gait adaptation after a few minutes of walking exercise.
Collapse
|
41
|
Lerner ZF, Damiano DL, Bulea TC. Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses. IEEE Trans Neural Syst Rehabil Eng 2016; 24:621-9. [PMID: 27101612 DOI: 10.1109/tnsre.2016.2550860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses.
Collapse
|
42
|
De Groote F, Kinney AL, Rao AV, Fregly BJ. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem. Ann Biomed Eng 2016; 44:2922-2936. [PMID: 27001399 PMCID: PMC5043004 DOI: 10.1007/s10439-016-1591-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 01/29/2023]
Abstract
Estimation of muscle forces during motion involves solving an indeterminate problem (more unknown muscle forces than joint moment constraints), frequently via optimization methods. When the dynamics of muscle activation and contraction are modeled for consistency with muscle physiology, the resulting optimization problem is dynamic and challenging to solve. This study sought to identify a robust and computationally efficient formulation for solving these dynamic optimization problems using direct collocation optimal control methods. Four problem formulations were investigated for walking based on both a two and three dimensional model. Formulations differed in the use of either an explicit or implicit representation of contraction dynamics with either muscle length or tendon force as a state variable. The implicit representations introduced additional controls defined as the time derivatives of the states, allowing the nonlinear equations describing contraction dynamics to be imposed as algebraic path constraints, simplifying their evaluation. Problem formulation affected computational speed and robustness to the initial guess. The formulation that used explicit contraction dynamics with muscle length as a state failed to converge in most cases. In contrast, the two formulations that used implicit contraction dynamics converged to an optimal solution in all cases for all initial guesses, with tendon force as a state generally being the fastest. Future work should focus on comparing the present approach to other approaches for computing muscle forces. The present approach lacks some of the major limitations of established methods such as static optimization and computed muscle control while remaining computationally efficient.
Collapse
Affiliation(s)
- Friedl De Groote
- Department of Kinesiology, KU Leuven, Tervuursevest 101 bus 1501, 3001, Leuven, Belgium.
| | - Allison L Kinney
- Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH, USA
| | - Anil V Rao
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Benjamin J Fregly
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Bosmans L, Jansen K, Wesseling M, Molenaers G, Scheys L, Jonkers I. The role of altered proximal femoral geometry in impaired pelvis stability and hip control during CP gait: A simulation study. Gait Posture 2016; 44:61-7. [PMID: 27004634 DOI: 10.1016/j.gaitpost.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 10/06/2015] [Accepted: 11/15/2015] [Indexed: 02/02/2023]
Abstract
Children with cerebral palsy (CP) often present aberrant hip geometry, more specifically increased femoral anteversion and neck-shaft angle. Furthermore, altered gait patterns are present within this population. This study analyzed the effect of aberrant femoral geometry, as present in subjects with CP, on the ability of muscles to control hip and knee joint kinematics. Given the specific gait deficits observed during crouch gait, increased ability to abduct, externally rotate the hip and extend the knee and hip were denoted as beneficial effects. We ran dynamic simulations of CP and normal gait using two musculoskeletal models, one reflecting normal femoral geometry and one reflecting proximal femoral deformities. The results show that the combination of aberrant bone geometry and CP-specific gait characteristics beneficially increased the ability of gluteus medius and maximus to extend the hip and knee. In contrast, the potentials of the hamstrings to extend the hip decreased whereas the potentials to flex the knee increased. These changes closely followed the observed changes in the muscle moment arm lengths. In conclusion, this study emphasizes the concomitant effect of the presence of proximal femoral deformity and CP gait characteristics on the muscle control of hip and knee joint kinematics during single stance. Not accounting for subject-specific geometry will affect the calculated muscles' potential during gait. Therefore, the use of generic models to assess muscle function in the presence of femoral deformity and CP gait should be treated with caution.
Collapse
Affiliation(s)
- Lode Bosmans
- KU Leuven, Department of Kinesiology, Leuven, Belgium
| | - Karen Jansen
- KU Leuven, Department of Kinesiology, Leuven, Belgium
| | | | - Guy Molenaers
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Lennart Scheys
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Ilse Jonkers
- KU Leuven, Department of Kinesiology, Leuven, Belgium.
| |
Collapse
|
44
|
Biomechanical and Clinical Correlates of Stance‐Phase Knee Flexion in Persons With Spastic Cerebral Palsy. PM R 2015; 8:11-8; quiz 18. [DOI: 10.1016/j.pmrj.2015.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 11/23/2022]
|
45
|
Hsiao H, Knarr BA, Higginson JS, Binder-Macleod SA. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum Mov Sci 2014; 39:212-21. [PMID: 25498289 DOI: 10.1016/j.humov.2014.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
A major factor for increasing walking speed is the ability to increase propulsive force. Although propulsive force has been shown to be related to ankle moment and trailing limb angle, the relative contribution of each factor to propulsive force has never been determined. The primary purpose of this study was to quantify the relative contribution of ankle moment and trailing limb angle to propulsive force for able-bodied individuals walking at different speeds. Twenty able-bodied individuals walked at their self-selected and 120% of self-selected walking speed on the treadmill. Kinematic data were collected using an 8-camera motion-capture system. A model describing the relationship between ankle moment, trailing limb angle and propulsive force was obtained through quasi-static analysis. Our main findings were that ankle moment and trailing limb angle each contributes linearly to propulsive force, and that the change in trailing limb angle contributes almost as twice as much as the change in ankle moment to the increase in propulsive force during speed modulation for able-bodied individuals. Able-bodied individuals preferentially modulate trailing limb angle more than ankle moment to increase propulsive force. Future work will determine if this control strategy can be applied to individuals poststroke.
Collapse
Affiliation(s)
- HaoYuan Hsiao
- Biomechanics and Movement Science Program, University of Delaware, 547 S. College Avenue, Newark, DE 19716, United States.
| | - Brian A Knarr
- Delaware Rehabilitation Institute, University of Delaware, 540 S. College Avenue, Newark, DE 19716, United States.
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, 126 Spencer Laboratory, Newark, DE 19716, United States.
| | - Stuart A Binder-Macleod
- Department of Physical Therapy, University of Delaware, 540 S. College Avenue, Newark, DE 19716, United States.
| |
Collapse
|
46
|
Bosmans L, Wesseling M, Desloovere K, Molenaers G, Scheys L, Jonkers I. Hip contact force in presence of aberrant bone geometry during normal and pathological gait. J Orthop Res 2014; 32:1406-15. [PMID: 25087777 DOI: 10.1002/jor.22698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/24/2014] [Indexed: 02/04/2023]
Abstract
Children with cerebral palsy (CP) often present aberrant hip geometry, specifically increased femoral anteversion and neck-shaft angle. Furthermore, altered gait patterns are present within this population. We analyzed the effect of aberrant femoral geometry, as present in CP subjects, on hip contact force (HCF) during pathological and normal gait. We ran dynamic simulations of CP-specific and normal gait using two musculoskeletal models (MSMs), one reflecting normal femoral geometry and one reflecting proximal femoral deformities. The combination of aberrant bone geometry and CP-specific gait characteristics reduced HCF compared to normal gait on a CP subject-specific MSM, but drastically changed the orientation of the HCF vector. The HCF was orientated more vertically and anteriorly than compared to HCF orientation during normal gait. Furthermore, subjects with more pronounced bony deformities encountered larger differences in resultant HCF and HCF orientation. When bone deformities were not accounted for in MSMs of pathologic gait, the HCF orientation was more similar to normal children. Thus, our results support a relation between aberrant femoral geometry and joint loading during pathological/normal gait and confirm a compensatory effect of altered gait kinematics on joint loading.
Collapse
Affiliation(s)
- Lode Bosmans
- KU Leuven, Human Movement Biomechanics Research Group, Department of Kinesiology, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Lerner ZF, Shultz SP, Board WJ, Kung S, Browning RC. Does adiposity affect muscle function during walking in children? J Biomech 2014; 47:2975-82. [DOI: 10.1016/j.jbiomech.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/18/2022]
|
48
|
Klemetti R, Steele KM, Moilanen P, Avela J, Timonen J. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J Biomech 2014; 47:2263-8. [PMID: 24873862 DOI: 10.1016/j.jbiomech.2014.04.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/24/2014] [Accepted: 04/26/2014] [Indexed: 11/19/2022]
Abstract
This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies.
Collapse
Affiliation(s)
- Rudolf Klemetti
- Department of Physics, P.O. Box 35 (YFL), FI-40014, University of Jyväskylä, Jyväskylä, Finland.
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Petro Moilanen
- Department of Physics, P.O. Box 35 (YFL), FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi Timonen
- Department of Physics, P.O. Box 35 (YFL), FI-40014, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
49
|
Improving Inverse Dynamics Accuracy in a Planar Walking Model Based on Stable Reference Point. JOURNAL OF ROBOTICS 2014. [DOI: 10.1155/2014/245896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Physiologically and biomechanically, the human body represents a complicated system with an abundance of degrees of freedom (DOF). When developing mathematical representations of the body, a researcher has to decide on how many of those DOF to include in the model. Though accuracy can be enhanced at the cost of complexity by including more DOF, their necessity must be rigorously examined. In this study a planar seven-segment human body walking model with single DOF joints was developed. A reference point was added to the model to track the body’s global position while moving. Due to the kinematic instability of the pelvis, the top of the head was selected as the reference point, which also assimilates the vestibular sensor position. Inverse dynamics methods were used to formulate and solve the equations of motion based on Newton-Euler formulae. The torques and ground reaction forces generated by the planar model during a regular gait cycle were compared with similar results from a more complex three-dimensional OpenSim model with muscles, which resulted in correlation errors in the range of 0.9–0.98. The close comparison between the two torque outputs supports the use of planar models in gait studies.
Collapse
|
50
|
Hamner SR, Seth A, Steele KM, Delp SL. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait. J Biomech 2013; 46:1772-6. [PMID: 23702045 DOI: 10.1016/j.jbiomech.2013.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 03/24/2013] [Accepted: 03/30/2013] [Indexed: 11/29/2022]
Abstract
Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are consistent with experimentally measured ground reaction forces and moments. We show here that a rolling constraint can model foot-ground contact and reproduce measured ground reaction forces and moments in an induced acceleration analysis of muscle-driven simulations of walking, running, and crouch gait. We also illustrate that a point constraint and a weld constraint used to model foot-ground contact in previous studies produce inaccurate reaction moments and lead to contradictory interpretations of muscle function. To enable others to use and test these different constraint types (i.e., rolling, point, and weld constraints) we have included them as part of an induced acceleration analysis in OpenSim, a freely-available biomechanics simulation package.
Collapse
Affiliation(s)
- Samuel R Hamner
- Department of Mechanical Engineering, Stanford University, USA
| | | | | | | |
Collapse
|