1
|
Naik A, Iqbal R, Hélie S, Ambike S. Human movement strategies in uncertain environments: A synergy-based approach to the stability-agility tradeoff. Hum Mov Sci 2024; 97:103259. [PMID: 39110998 DOI: 10.1016/j.humov.2024.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
Humans frequently prepare for agile movements by decreasing stability. This facilitates transitions between movements but increases vulnerability to external disruptions. Therefore, humans might weigh the risk of disruption against the gain in agility and scale their stability to the likelihood of having to perform an agility-demanding action. We used the theory of motor synergies to investigate how humans manage this stability-agility tradeoff under uncertainty. This theory has long quantified stability using the synergy index, and reduction in stability before movement transitions using anticipatory synergy adjustment (ASA). However, the impact of uncertainty - whether a quick action should be executed or inhibited - on ASA is unknown. Furthermore, the impact of ASA on execution and inhibition of the action is unclear. We combined multi-finger, isometric force production with the go/no-go paradigm. Thirty participants performed constant force (no-go task), rapid force pulse (go task), and randomized go and no-go trials (go/no-go task) in response to visual cues. We measured the pre-cue finger forces and computed ASA using the uncontrolled manifold method and quantified the spatio-temporal features of the force after the visual cue. We expected ASA in both go/no-go and go tasks, but larger ASA for the latter. Surprisingly, we observed ASA only for the go task. For the go/no-go task, 53% of participants increased stability before the cue. The high stability hindered performance, leading to increased errors in no-go trials and lower peak forces in go trials. These results align with the stability-agility tradeoff. It is puzzling why some participants increased stability even though 80% of the trials demanded agility. This study indicates that individual differences in the effect of task uncertainty and motor inhibition on ASA is unexplored in motor synergy theory and presents a method for further development.
Collapse
Affiliation(s)
- Anvesh Naik
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Ruchika Iqbal
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Sébastien Hélie
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Villarón-Casales C, de Bernardo N, Alarcón-Jiménez J, López-Malo D, Proaño B, Martín-Ruiz J, de la Rubia Ortí JE. Amplitude of Lower Limb Muscle Activation in Different Phases of the Illinois Test in Parkinson's Disease Patients: A Pilot Study. J Clin Med 2024; 13:5792. [PMID: 39407859 PMCID: PMC11476849 DOI: 10.3390/jcm13195792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder with high prevalence in men and is characterized by symptoms such as tremors and gait difficulties. This study aimed to determine muscle activation in patients with PD by considering sex differences. Methods: This pilot study used analytical, quantitative, observational, and case-control methods. Surface electromyography was used to assess muscle activity during a variant of the Illinois agility test. The study population comprised an experimental group of patients with PD (N = 30) and a control group of healthy individuals without the disease (N = 10). Results: The Illinois agility test revealed significant differences in completion times between the groups. The Parkinson's disease group took longer overall (p = 0.004), especially for standing up (p < 0.001) and sitting down (p = 0.002), than the control group. In the control group, sex influenced gastrocnemius muscle activation, with women showing higher activation (rs = -0.87). Women also had greater rectus femoris activation during standing and sitting, with higher activation on the right side when standing (rs = -0.66) and the left side when sitting (rs = -0.87). In the control group, men exhibited greater activation of the right biceps femoris (rs = 0.87). However, in the Parkinson's disease group, sex did not affect muscle activation. Conclusions: Patients with Parkinson's showed lower muscle activation than healthy individuals while standing up, sitting down, and walking.
Collapse
Affiliation(s)
- Carlos Villarón-Casales
- Biomechanics and Physiotherapy in Sports (BIOCAPS), Faculty of Health Sciences, European University of Valencia, 46001 Valencia, Spain; (C.V.-C.); (D.L.-M.)
| | - Nieves de Bernardo
- Department of Physiotherapy, Catholic University of Valencia, 46900 Valencia, Spain;
| | - Jorge Alarcón-Jiménez
- Department of Physiotherapy, Catholic University of Valencia, 46900 Valencia, Spain;
| | - Daniel López-Malo
- Biomechanics and Physiotherapy in Sports (BIOCAPS), Faculty of Health Sciences, European University of Valencia, 46001 Valencia, Spain; (C.V.-C.); (D.L.-M.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia, 46001 Valencia, Spain; (B.P.); (J.E.d.l.R.O.)
| | - Julio Martín-Ruiz
- Department of Health and Functional Assessment, Catholic University of Valencia, 46900 Valencia, Spain
| | | |
Collapse
|
3
|
De SD, Ambike S, Latash ML. Two aspects of feed-forward control of action stability: effects of action speed and unexpected events. Exp Brain Res 2024; 242:2177-2191. [PMID: 38992203 DOI: 10.1007/s00221-024-06892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
We explored two types of anticipatory synergy adjustments (ASA) during accurate four-finger total force production task. The first type is a change in the index of force-stabilizing synergy during a steady state when a person is expecting a signal to produce a quick force change, which is seen even when the signal does not come (steady-state ASA). The other type is the drop in in the synergy index prior to a planned force change starting at a known time (transient ASA). The subjects performed a task of steady force production at 10% of maximal voluntary contraction (MVC) followed by a ramp to 20% MVC over 1 s, 3 s, and as a step function (0 s). In another task, in 50% of the trials during the steady-state phase, an unexpected signal could come requiring a quick force pulse to 20% MVC (0-surprise). Inter-trial variance in the finger force space was used to quantify the index of force-stabilizing synergy within the uncontrolled manifold hypothesis. We observed significantly lower synergy index values during the steady state in the 0-ramp trials compared to the 1-ramp and 3-ramp trials. There was also larger transient ASA during the 0-ramp trials. In the 0-surprise condition, the synergy index was significantly higher compared to the 0-ramp condition whereas the transient ASA was significantly larger. The finding of transient ASA scaling is of importance for clinical studies, which commonly involve populations with slower actions, which can by itself be associated with smaller ASAs. The participants varied the sharing pattern of total force across the fingers more in the task with "surprises". This was coupled to more attention to precision of performance, i.e., inter-trial deviations from the target as reflected in smaller variance affecting total force, possibly reflecting higher concentration on the task, which the participants perceived as more challenging compared to a similar task without surprise targets.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Dussault-Picard C, Havashinezhadian S, Turpin NA, Moissenet F, Turcot K, Cherni Y. Age-related modifications of muscle synergies during daily-living tasks: A scoping review. Clin Biomech (Bristol, Avon) 2024; 113:106207. [PMID: 38367481 DOI: 10.1016/j.clinbiomech.2024.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Aging is associated with changes in neuromuscular control that can lead to difficulties in performing daily living tasks. Muscle synergy analysis allows the assessment of neuromuscular control strategies and functional deficits. However, the age-related changes of muscle synergies during functional tasks are scattered throughout the literature. This review aimed to synthesize the existing literature on muscle synergies in elderly people during daily-living tasks and examine how they differ from those exhibited by young adults. METHODS The Medline, CINAHL and Web of Science databases were searched. Studies were included if they focused on muscle synergies in elderly people during walking, sit-to-stand or stair ascent, and if muscle synergies were obtained by a matrix factorization algorithm. FINDINGS Seventeen studies were included after the screening process. The muscle synergies of 295 elderly people and 182 young adults were reported, including 5 to 16 muscles per leg, or leg and trunk. Results suggest that: 1) elderly people and young adults retain similar muscle synergies' number, 2) elderly people have higher muscles weighting during walking, and 3) an increased inter and intra-subject temporal activation variability during specific tasks (i.e., walking and stair ascent, respectively) was reported in elderly people compared to young adults. INTERPRETATION This review gives a comprehensive understanding of age-related changes in neuromuscular control during daily living tasks. Our findings suggested that although the number of synergies remains similar, metrics such as spatial and temporal structures of synergies are more suitable to identify neuromuscular control deficits between young adults and elderly people.
Collapse
Affiliation(s)
- Cloé Dussault-Picard
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada
| | - Sara Havashinezhadian
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE, Département des sciences du sport (STAPS), Université de la Réunion, France
| | - Florent Moissenet
- Laboratoire de kinésiologie, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland; Laboratoire de biomécanique, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland
| | - Katia Turcot
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Yosra Cherni
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada; Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
De SD, Ricotta JM, Benamati A, Latash ML. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry. J Neurophysiol 2024; 131:152-165. [PMID: 38116603 DOI: 10.1152/jn.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
We explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production. Individual MUs were identified in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Principal component analysis was applied to motor unit frequencies to identify robust MU groups (MU-modes) with parallel scaling of the firing frequencies in FDS, in EDC, and the combined MUs of FDS + EDC. The framework of the uncontrolled manifold hypothesis was used to quantify force-stabilizing synergies when visual feedback on the force magnitude was available and 15 s after turning the visual feedback off. Removing visual feedback led to a force drift toward lower magnitudes, accompanied by the disappearance of multifinger synergies. In contrast, MU-mode synergies were minimally affected by removing visual feedback off and continued to be robust for the FDS and for the EDC, while being absent for the (FDS + EDC) analysis. We interpret the findings within the theory of hierarchical control of action with spatial referent coordinates. The qualitatively different behavior of the multifinger and MU-mode-based synergies likely reflects the difference in the involved neural circuitry, supraspinal for the former and spinal for the latter.NEW & NOTEWORTHY Two types of synergies, in the space of commands to individual fingers and in the space of motor unit groups, show qualitatively different behaviors during accurate multifinger force-production tasks. After removing visual feedback, finger force synergies disappear, whereas motor unit-based synergies persist. These results point at different neural circuitry involved in these two basic classes of synergies: supraspinal for multieffector synergies, and spinal for motor unit-based synergies.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
6
|
Altenburger P, Ambike SS, Haddad JM. Integrating Motor Variability Evaluation Into Movement System Assessment. Phys Ther 2023; 103:pzad075. [PMID: 37364059 DOI: 10.1093/ptj/pzad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/26/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Common assessment tools for determining therapeutic success in rehabilitation typically focus on task-based outcomes. Task-based outcomes provide some understanding of the individual's functional ability and motor recovery; however, these clinical outcomes may have limited translation to a patient's functional ability in the real world. Limitations arise because (1) the focus on task-based outcome assessment often disregards the complexity of motor behavior, including motor variability, and (2) mobility in highly variable real-world environments requires movement adaptability that is made possible by motor variability. This Perspective argues that incorporating motor variability measures that reflect movement adaptability into routine clinical assessment would enable therapists to better evaluate progress toward optimal and safe real-world mobility. The challenges and opportunities associated with incorporating variability-based assessment of pathological movements are also discussed. This Perspective also indicates that the field of rehabilitation needs to leverage technology to advance the understanding of motor variability and its impact on an individual's ability to optimize movement. IMPACT This Perspective contends that traditional therapeutic assessments do not adequately evaluate the ability of individuals to adapt their movements to the challenges faced when negotiating the dynamic environments encountered during daily life. Assessment of motor variability derived during movement execution can address this issue and provide better insight into a patient's movement stability and maneuverability in the real world. Creating such a shift in motor system assessment would advance understanding of rehabilitative approaches to motor system recovery and intervention.
Collapse
Affiliation(s)
- Peter Altenburger
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Satyajit S Ambike
- Department of Health & Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Jeffrey M Haddad
- Department of Health & Kinesiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Falaki A, Cuadra C, Lewis MM, Prado-Rico JM, Huang X, Latash ML. Multi-muscle synergies in preparation for gait initiation in Parkinson's disease. Clin Neurophysiol 2023; 154:12-24. [PMID: 37524005 DOI: 10.1016/j.clinph.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE We investigated changes in indices of muscle synergies prior to gait initiation and the effects of gaze shift in patients with Parkinson's disease (PD). A long-term objective of the study is to develop a method for quantitative assessment of gait-initiation problems in PD. METHODS PD patients without clinical signs of postural instability and two control groups (age-matched and young) performed a gait initiation task in a self-paced manner, with and without a quick prior gaze shift produced by turning the head. Muscle groups with parallel scaling of activation levels (muscle modes) were identified as factors in the muscle activation space. Synergy index stabilizing center of pressure trajectory in the anterior-posterior and medio-lateral directions (indices of stability) was quantified in the muscle mode space. A drop in the synergy index in preparation to gait initiation (anticipatory synergy adjustment, ASA) was quantified. RESULTS Compared to the control groups, PD patients showed significantly smaller synergy indices and ASA for both directions of the center of pressure shift. Both PD and age-matched controls, but not younger controls, showed detrimental effects of the prior gaze shift on the ASA indices. CONCLUSIONS PD patients without clinically significant posture or gait disorders show impaired stability of the center of pressure and its diminished adjustment during gait initiation. SIGNIFICANCE The indices of stability and ASA may be useful to monitor pre-clinical gait disorders, and lower ASA may be relevant to emergence of freezing of gait in PD.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Cristian Cuadra
- Department of Physical Therapy, Emory University, Atlanta, GA, USA; Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538 Santiago, Chile
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Wang S, Hase K, Funato T. Computational prediction of muscle synergy using a finite element framework for a musculoskeletal model on lower limb. Front Bioeng Biotechnol 2023; 11:1130219. [PMID: 37533695 PMCID: PMC10392837 DOI: 10.3389/fbioe.2023.1130219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Previous studies have demonstrated that the central nervous system activates muscles in module patterns to reduce the complexity needed to control each muscle while producing a movement, which is referred to as muscle synergy. In previous musculoskeletal modeling-based muscle synergy analysis studies, as a result of simplification of the joints, a conventional rigid-body link musculoskeletal model failed to represent the physiological interactions of muscle activation and joint kinematics. However, the interaction between the muscle level and joint level that exists in vivo is an important relationship that influences the biomechanics and neurophysiology of the musculoskeletal system. In the present, a lower limb musculoskeletal model coupling a detailed representation of a joint including complex contact behavior and material representations was used for muscle synergy analysis using a decomposition method of non-negative matrix factorization (NMF). The complexity of the representation of a joint in a musculoskeletal system allows for the investigation of the physiological interactions in vivo on the musculoskeletal system, thereby facilitating the decomposition of the muscle synergy. Results indicated that, the activities of the 20 muscles on the lower limb during the stance phase of gait could be controlled by three muscle synergies, and total variance accounted for by synergies was 86.42%. The characterization of muscle synergy and musculoskeletal biomechanics is consistent with the results, thus explaining the formational mechanism of lower limb motions during gait through the reduction of the dimensions of control issues by muscle synergy and the central nervous system.
Collapse
Affiliation(s)
- Sentong Wang
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Kazunori Hase
- Faculty of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Tetsuro Funato
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
9
|
Hoveizavi R, Gao F, Ramirez VJ, Shuman BR, Joiner JC, Fisher SJ. Compromised neuromuscular function of walking in people with diabetes: a narrative review. Diabetes Res Clin Pract 2023:110802. [PMID: 37356728 DOI: 10.1016/j.diabres.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIM This review summarizes recent studies that have investigated the neuromuscular dysfunction of walking in people with diabetes and its relationship to ulcer formation. METHODS A comprehensive electronic search in the database (Scopus, Web of Science, PsycINFO, ProQuest, and PubMed) was performed for articles pertaining to diabetes and gait biomechanics. RESULTS The Achilles tendon is thicker and stiffer in those with diabetes. People with diabetes demonstrate changes in walking kinematics and kinetics, including slower self-selected gait speed, shorter stride length, longer stance phase duration, and decreased ankle, knee, and metatarsophalangeal (MTP) joint range of motion. EMG is altered during walking and may reflect diabetes-induced changes in muscle synergies. Synergies are notable because they provide a more holistic pattern of muscle activations and can help develop better tools for characterizing disease progression. CONCLUSION Diabetes compromises neuromuscular coordination and function. The mechanisms contributing to ulcer formation are incompletely understood. Diabetes-related gait impairments may be a significant independent risk factor for the development of foot ulcers.
Collapse
Affiliation(s)
- Roya Hoveizavi
- Department of Kinesiology and Health promotions, University of Kentucky, Lexington, KY, USA.
| | - Fan Gao
- Department of Kinesiology and Health promotions, University of Kentucky, Lexington, KY, USA.
| | - Vanessa J Ramirez
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Benjamin R Shuman
- RR&D Center for Limb Loss and MoBility (CLiMB), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Joshua C Joiner
- College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Simon J Fisher
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Internal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Devetak GF, Bohrer RCD, Rinaldin C, Rodacki ALF, Manffra EF. Time profile of kinematic synergies of stroke gait. Clin Biomech (Bristol, Avon) 2023; 106:105990. [PMID: 37209470 DOI: 10.1016/j.clinbiomech.2023.105990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND In stroke subjects, the motor skills differ between sides and among subjects with different levels of motor recovery, impacting inter-joint coordination. How these factors can affect the kinematic synergies over time during gait has not been investigated yet. This work aimed to determine the time profile of kinematic synergies of stroke patients throughout the single support phase of gait. METHODS Kinematic data from 17 stroke and 11 healthy individuals was recorded using a Vicon System. The Uncontrolled Manifold approach was employed to determine the distribution of components of variability and the synergy index. To analyze the time profile of kinematic synergies, we applied the statistical parametric mapping method. Comparisons were made within the stroke group (paretic and non-paretic limbs) and between groups (stroke and healthy). The stroke group was also subdivided into subgroups with worse and better motor recovery. FINDINGS There are significant differences in synergy index at the end of the single support phase between stroke and healthy subjects; paretic and non-paretic limbs; and paretic limb according to the motor recovery. Comparisons of mean values showed significantly larger values of synergy index for the paretic limb compared to the non-paretic and healthy. INTERPRETATION Despite the sensory-motor deficits and the atypical kinematic behavior, stroke patients can produce joint covariations to control the center of mass trajectory in the forward progression plane, but the modulation of the synergy is impaired, reflecting altered adjustments, especially in the paretic limb of subjects with worse levels of motor recovery.
Collapse
Affiliation(s)
- Gisele Francini Devetak
- Clinics Hospital, Federal University of Paraná (UFPR/EBSERH), Brazil; Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil.
| | | | - Carla Rinaldin
- Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil
| | | | | |
Collapse
|
11
|
Ghislieri M, Lanotte M, Knaflitz M, Rizzi L, Agostini V. Muscle synergies in Parkinson's disease before and after the deep brain stimulation of the bilateral subthalamic nucleus. Sci Rep 2023; 13:6997. [PMID: 37117317 PMCID: PMC10147693 DOI: 10.1038/s41598-023-34151-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
The aim of this study is to quantitatively assess motor control changes in Parkinson's disease (PD) patients after bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS), based on a novel muscle synergy evaluation approach. A group of 20 PD patients evaluated at baseline (before surgery, T0), at 3 months (T1), and at 12 months (T2) after STN-DBS surgery, as well as a group of 20 age-matched healthy control subjects, underwent an instrumented gait analysis, including surface electromyography recordings from 12 muscles. A smaller number of muscle synergies was found in PD patients (4 muscle synergies, at each time point) compared to control subjects (5 muscle synergies). The neuromuscular robustness of PD patients-that at T0 was smaller with respect to controls (PD T0: 69.3 ± 2.2% vs. Controls: 77.6 ± 1.8%, p = 0.004)-increased at T1 (75.8 ± 1.8%), becoming not different from that of controls at T2 (77.5 ± 1.9%). The muscle synergies analysis may offer clinicians new knowledge on the neuromuscular structure underlying PD motor types of behavior and how they can improve after electroceutical STN-DBS therapy.
Collapse
Affiliation(s)
- Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy.
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy.
| | - Michele Lanotte
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Marco Knaflitz
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| | - Laura Rizzi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| |
Collapse
|
12
|
ERDEM M, BALAL M, DEMİRKIRAN M. Postural stability in early Parkinson’s disease: effect of cognitive dual-tasking. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose: The primary aim of this study is to evaluate postural stability by using a static posturography in patients with early Parkinson’s disease (PD). Secondly, this paper addresses the need for illustrating the effect of dual-tasking on postural stability in early PD patients.
Materials and Methods: Twenty-nine early PD patients with maximum 5 years of disease duration were included in this study. The selected group had no clinical PI while their age- and sex-matched healthy controls were carried out. Neurological examination and mini-mental state examination (MMSE) were performed in all subjects. Unified Parkinson Disease Rating Scale (UPDRS) and modified Hoehn and Yahr (H&Y) scores were recorded in PD patients. Postural stability was assessed in all subjects on a static posturography platform under three different conditions: eyes open, eyes closed and a cognitive task of producing words with given letters.
Results: The mean age of the PD was 59.2±10.5 whereas the control groups mean age was 56.3±7.6 (p>0.05). The female-male ratio was 9/20 in the PD and 12/17 in the control group. There was no important difference between the two groups in terms of demographic characteristics. In the PD group, the mean UPDRS was 12.8±4.9. The patients were mostly receiving polytherapy.
Eye closure and cognitive task caused an increase in most sway parameters in both groups.
Conclusion: Early PD patients on medication, postural stability is preserved and cognitive dual-tasking does not affect postural stability in these patients in the early stage.
Collapse
Affiliation(s)
- Miray ERDEM
- ADANA CITY TRAINING AND RESEARCH HOSPITAL, DEPARTMENT OF NEUROLOGY
| | - Mehmet BALAL
- CUKUROVA UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF NEUROLOGY
| | - Meltem DEMİRKIRAN
- CUKUROVA UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF NEUROLOGY
| |
Collapse
|
13
|
de Freitas PB, Freitas SMSF, Prado-Rico JM, Lewis MM, Du G, Yanosky JD, Huang X, Latash ML. Synergic control in asymptomatic welders during multi-finger force exertion and load releasing while standing. Neurotoxicology 2022; 93:324-336. [PMID: 36309163 PMCID: PMC10398836 DOI: 10.1016/j.neuro.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Motor synergies, i.e., neural mechanisms that organize multiple motor elements to ensure stability of actions, are affected by several neurological condition. Asymptomatic welders showed impaired synergy controlling the stability of multi-finger action compared to non-welders and this impairment was associated with microstructural damage in the globus pallidus. We further explored the effect of welding-related metal exposure on multi-finger synergy and extended our investigation to posture-stabilizing synergy during a standing task. Occupational, MRI, and performance-stabilizing synergies during multi-finger accurate force production and load releasing while standing were obtained from 29 welders and 19 age- and sex-matched controls. R2* and R1 relaxation rate values were used to estimate brain iron and manganese content, respectively, and diffusion tensor imaging was used to reflect brain microstructural integrity. Associations of brain MRI (caudate, putamen, globus pallidus, and red nucleus), and motor synergy were explored by group status. The results revealed that welders had higher R2* values in the caudate (p = 0.03), putamen (p = 0.01), and red nucleus (p = 0.08, trend) than controls. No group effect was revealed on multi-finger synergy index during steady-state phase of action (ΔVZss). Compared to controls, welders exhibited lower ΔVZss (-0.106 ± 0.084 vs. 0.160 ± 0.092, p = 0.04) and variance that did not affect the performance variable (VUCM, 0.022 ± 0.003 vs. 0.038 ± 0.007, p = 0.03) in the load releasing, postural task. The postural synergy index, ΔVZss, was associated negatively with higher R2* in the red nucleus in welders (r = -0.44, p = 0.03), but not in controls. These results suggest that the synergy index in the load releasing during a standing task may reflect welding-related neurotoxicity in workers with chronic metals exposure. This finding may have important clinical and occupational health implications.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Science, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Science, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
14
|
Synergies Stabilizing Vertical Posture in Spaces of Control Variables. Neuroscience 2022; 500:79-94. [PMID: 35952997 DOI: 10.1016/j.neuroscience.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
In this study, we address the question: Can the central nervous system stabilize vertical posture in the abundant space of neural commands? We assume that the control of vertical posture is associated with setting spatial referent coordinates (RC) for the involved muscle groups, which translates into two basic commands, reciprocal and co-activation. We explored whether the two commands co-varied across trials to stabilize the initial postural state. Young, healthy participants stood quietly against an external horizontal load and were exposed to smooth unloading episodes. Linear regression between horizontal force and center of mass coordinate during the unloading phase was computed to define the intercept (RC) and slope (apparent stiffness, k). Hyperbolic regression between the intercept and slope across unloading episodes and randomization analysis both demonstrated high indexes of co-variation stabilizing horizontal force in the initial state. Higher co-variation indexes were associated with lower average k values across the participants suggesting destabilizing effects of muscle coactivation. Analysis of deviations in the {RC; k} space keeping the posture unchanged (motor equivalent) between two states separated by a voluntary quick body sway showed significantly larger motor equivalent deviations compared to non-motor equivalent ones. This is the first study demonstrating posture-stabilizing synergies in the space of neural control variables using various computational methods. It promises direct applications to studies of postural disorders and rehabilitation.
Collapse
|
15
|
A Dynamical Approach to the Uncontrolled Manifold: Predicting Performance Error During Steady-State Isometric Force Production. Motor Control 2022; 26:536-557. [PMID: 35894879 DOI: 10.1123/mc.2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022]
Abstract
The uncontrolled manifold (UCM) approach quantifies the presence of compensatory variability between musculoskeletal elements involved in a motor task. This approach has proved useful for identifying synergistic control strategies for a variety of everyday motor tasks and for investigating how control strategies are affected by motor pathology. However, the UCM approach is limited in its ability to relate compensatory motor variance directly to task performance because variability along the UCM is mathematically agnostic to performance. We present a new approach to UCM analysis that quantifies patterns of irregularity in the compensatory variability between motor elements over time. In a bimanual isometric force stabilization task, irregular patterns of compensation between index fingers predicted greater performance error associated with difficult task conditions, in particular for individuals who exploited a larger set of compensatory strategies (i.e., a larger subspace of the UCM). This relationship between the amount and structure of compensatory motor variance might be an expression of underlying processes supporting performance resilience.
Collapse
|
16
|
Madarshahian S, Latash ML. Effects of hand muscle function and dominance on intra-muscle synergies. Hum Mov Sci 2022; 82:102936. [PMID: 35217391 DOI: 10.1016/j.humov.2022.102936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
The goal of the study was to explore the effects of hand dominance and muscle function (prime mover vs. supporting muscle) on recently discovered intra-muscle synergies as potential windows into their neural origin. Healthy right-handed subjects performed accurate cyclical force production tasks while pressing with the middle phalanges and distal phalanges of the fingers of the dominant and non-dominant hand. Surface electromyography was used to identify individual motor unit action potentials in two muscles, flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Stable motor unit groups (MU-modes) were defined in each muscle and in both muscles together. The composition of the MU-modes allowed linking them to the reciprocal and co-activation command. Force-stabilizing synergies were quantified in each hand and during force production at both sites using the framework of the uncontrolled manifold hypothesis. Force-stabilizing synergies were seen in the spaces of MU-modes from FDS and EDC separately, but not of MU-modes defined for both muscles together. Synergy indices were similar for both hands and both sites of force application. In contrast, force-stabilizing synergies in the space of finger forces were present in the non-dominant hand and absent in the dominant hand. The data suggest existence of distributed mechanisms of synergic control. Finger force synergies are likely to reflect functioning of subcortical loops involving the basal ganglia and cerebellum, while MU-mode synergies are likely to reflect spinal circuitry. Studies of both force-based and motor-unit-based synergies may be clinically valuable for distinguishing effects of spinal and supraspinal disorders.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Troka M, Wojnicz W, Szepietowska K, Podlasiński M, Walerzak S, Walerzak K, Lubowiecka I. Towards classification of patients based on surface EMG data of temporomandibular joint muscles using self-organising maps. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study. J Biomech 2022; 134:110997. [DOI: 10.1016/j.jbiomech.2022.110997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
|
19
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
20
|
Madarshahian S, Latash ML. Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 2021; 240:321-340. [PMID: 34725732 DOI: 10.1007/s00221-021-06255-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
We explored the synergic organization of motor units in extrinsic finger muscles, flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC). Healthy subjects produced accurate cyclical force by pressing with the middle phalanges of one of the three fingers (Index, Middle, and Ring) and all three together. Two wireless sensor arrays were used to record and identify motor unit action potentials in FDS and EDC. Stable motor unit groups were identified within each muscle and across both muscles. Analysis of motor units combined over the two muscles showed one of the first two motor unit groups with consistently opposite signs of the loading factors for the FDS and EDC motor units, and the other group with consistently same signs of the loading factors for the two muscles. We interpret the two motor unit groups as reflections of the reciprocal and co-activation commands within the theory of control with spatial referent coordinates. Force changes within the cycle were primarily associated with the modulation of the co-activation motor unit group. Analysis of inter-cycle variance within the spaces of motor unit groups defined for FDS and EDC separately showed force-stabilizing synergies across both single-finger and three-finger tasks. In contrast, analysis within the motor unit groups defined across both muscles failed to show force-stabilizing synergies. We interpret these results as a reflection of the trade-off across levels within a hierarchical control system.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
21
|
Latash ML, Yamagata M. Recent Advances in the Neural Control of Movements: Lessons for Functional Recovery. Phys Ther Res 2021; 25:1-11. [PMID: 35582118 PMCID: PMC9095426 DOI: 10.1298/ptr.r0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 09/05/2023]
Abstract
We review the current views on the control and coordination of movements following the traditions set by Nikolai Bernstein. In particular, we focus on the theory of neural control of effectors - from motor units to individual muscles, to joints, limbs, and to the whole body - with spatial referent coordinates organized into a hierarchy with multiple few-to-many mappings. Further, we discuss synergies ensuring stability of natural human movements within the uncontrolled manifold hypothesis. Synergies are organized within the neural control hierarchy based on the principle of motor abundance. Movement disorders are discussed as consequences of an inability to use the whole range of changes in referent coordinates (as in spasticity) and an inability to ensure controlled stability of salient variables as reflected in indices of multi-element synergies and their adjustments in preparation to actions (as in brain disorders, including Parkinson's disease, multiple-system atrophy, and stroke). At the end of the review, we discuss possible implications of this theoretical approach to peripheral disorders and their rehabilitations using, as an example, osteoarthritis. In particular, "joint stiffening" is viewed as a maladaptive strategy, which can compromise stability of salient variables during walking.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, USA
| | - Momoko Yamagata
- Department of Human Development, Graduate School of Human Development and Environment, Kobe University, Japan
- Department of Physical Therapy, Human Health Science, Graduate School of Medicine, Kyoto University, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Japan
| |
Collapse
|
22
|
Latash ML. One more time about motor (and non-motor) synergies. Exp Brain Res 2021; 239:2951-2967. [PMID: 34383080 DOI: 10.1007/s00221-021-06188-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Conway ZJ, Silburn PA, Perera T, O'Maley K, Cole MH. Low-frequency STN-DBS provides acute gait improvements in Parkinson's disease: a double-blinded randomised cross-over feasibility trial. J Neuroeng Rehabil 2021; 18:125. [PMID: 34376190 PMCID: PMC8353795 DOI: 10.1186/s12984-021-00921-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background Some people with Parkinson’s disease (PD) report poorer dynamic postural stability following high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS), which may contribute to an increased falls risk. However, some studies have shown low-frequency (60 Hz) STN-DBS improves clinical measures of postural stability, potentially providing support for this treatment. This double-blind randomised crossover study aimed to investigate the effects of low-frequency STN-DBS compared to high-frequency stimulation on objective measures of gait rhythmicity in people with PD. Methods During high- and low-frequency STN-DBS and while off-medication, participants completed assessments of symptom severity and walking (e.g., Timed Up-and-Go). During comfortable walking, the harmonic ratio, an objective measures of gait rhythmicity, was derived from head- and trunk-mounted accelerometers to provide insight in dynamic postural stability. Lower harmonic ratios represent less rhythmic walking and have discriminated people with PD who experience falls. Linear mixed model analyses were performed on fourteen participants. Results Low-frequency STN-DBS significantly improved medial–lateral and vertical trunk rhythmicity compared to high-frequency. Improvements were independent of electrode location and total electrical energy delivered. No differences were noted between stimulation conditions for temporal gait measures, clinical mobility measures, motor symptom severity or the presence of gait retropulsion. Conclusions This study provides evidence for the acute benefits of low-frequency stimulation for gait outcomes in STN-DBS PD patients, independent of electrode location. However, the perceived benefits of this therapy may be diminished for people who experienced significant tremor pre-operatively, as lower frequencies may cause these symptoms to re-emerge. Trial registration: This study was prospectively registered with the Australian and New Zealand Clinical Trials Registry on 5 June 2018 (ACTRN12618000944235). Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00921-4.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia.
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Neurosciences Queensland, Brisbane, QLD, Australia
| | - Thushara Perera
- The Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia. .,Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia. .,Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, Australian Catholic University, Brisbane, Australia.
| |
Collapse
|
24
|
Bonnet CT, Delval A, Singh T, Defebvre L. Parkinson's disease-related changes in the behavioural synergy between eye movements and postural movements. Eur J Neurosci 2021; 54:5161-5172. [PMID: 34128272 DOI: 10.1111/ejn.15351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Patients with Parkinson's disease (PD patients) have been shown to exhibit abnormally low levels of synergy in their posture control. The goal of this study was to determine how synergic interactions between vision and posture are affected in PD patients. These synergic interactions were expected to be impaired because PD affects the basal ganglia, which are involved in the modulation of both types of movement. Twenty patients (mean age: 60) on levodopa and 20 age-matched-controls (mean age: 61) performed a precise visual task (searching for targets in an image) and an unprecise control task (randomly looking at an image) in which images were projected onto a large panoramic display. Lower back, upper back, head and eye movements were recorded simultaneously. To test behavioural synergies, Pearson correlations between eye and postural movements were analysed. The relationships between eye movements and upper and lower back movements were impaired in the patients. The age-matched controls did not show any significant correlations between eye and postural movements. Overall, our results showed that the PD patients failed to adjust and control their postural stability for success in the visual task. The impaired synergy between eye and postural movements was not related to clinical variables-probably because our patients had early-stage PD. Our results showed that impairments in synergy can occur very early in PD. Hence, the analysis of this synergy might provide a better understanding of postural instability, visual task performance in the upright stance, and perhaps the risk of falls in PD patients.
Collapse
Affiliation(s)
- Cédrick T Bonnet
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | - Arnaud Delval
- Univ. Lille, Unité INSERM 1172, CHU Lille, Lille, France
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Luc Defebvre
- Univ. Lille, Unité INSERM 1172, CHU Lille, Lille, France
| |
Collapse
|
25
|
Ambike S, Penedo T, Kulkarni A, Santinelli FB, Barbieri FA. Step length synergy while crossing obstacles is weaker in patients with Parkinson's disease. Gait Posture 2021; 84:340-345. [PMID: 33454501 DOI: 10.1016/j.gaitpost.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impaired movement stability is a common symptom of Parkinson's disease (PD) that leads to falls and mishandled objects. Decline in synergistic stabilization of movement in PD patients has been observed in manual and postural tasks. However, locomotor synergies have not been quantified in PD patients. RESEARCH QUESTION The purpose of this work was to quantify the strength of the synergy stabilizing the step length while crossing an obstacle in PD patients. We hypothesized that (1) the distances of the front and rear feet relative to the obstacle would display compensatory across-trial co-variance that stabilizes step length in PD patients and age-matched controls, and (2) the step-length stabilization would be weaker in PD patients. METHODS Thirteen PD patients and eleven healthy age-matched controls walked up to and stepped over a 15 cm high obstacle fifteen times.We measured the distances of the rear and front foot toes from the obstacle during the crossing step. We used the uncontrolled manifold method to parse the across-trial variance in toe distances into a component that maintains the step length and a component that changes the step length. These variance components yielded the synergy index that quantified the stability of step length. RESULTS Step length was stabilized in PD patients as well as controls. However, the synergy index was 53% lower in the PD patients (p < 0.01). Thus, both our hypotheses were supported. SIGNIFICANCE This is the first study reporting impaired locomotor synergies in PD patients. Most PD patients in our sample were early stage (10 out of 13 patients were Hoehn-Yahr ≤ 2). Therefore, this result motivates further studies to establish step-length synergy during adaptive locomotor tasks as a biomarker for early detection of locomotor impairments in PD patients.
Collapse
Affiliation(s)
- Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States.
| | - Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Ashwini Kulkarni
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Felipe Balistieri Santinelli
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Fabio A Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
26
|
Yamagata M, Tateuchi H, Pataky T, Shimizu I, Ichihashi N. Relation between frontal plane center of mass position stability and foot elevation during obstacle crossing. J Biomech 2021; 116:110219. [PMID: 33482594 DOI: 10.1016/j.jbiomech.2020.110219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
High foot elevation during obstacle crossing is viewed as a conservative strategy in older adults, but excessive foot elevation may result in large mediolateral center of mass (CoM) displacement. Since an incorrect transfer of CoM can lead to balance loss during locomotion, both appropriate foot elevation and CoM position must be controlled and coordinated by adjusting body segment positions. However, no studies have revealed time profiles of CoM position by coordinated segment movements and the relation of foot elevation with CoM position during obstacle crossing. Twenty-five healthy older adults crossed an obstacle (depth: 1 cm, width: 60 cm, height: 8 cm) during comfortable-speed walking. Synergy indices were calculated during lead- and trail-limb swing using uncontrolled manifold analysis. High synergy index values indicate a strong multi-joint kinematic synergy, or co-fluctuations in segment movements, to control CoM position. The maximum foot heights of the swing limbs were calculated as the maximum vertical distance between the most distal foot point and the ground. In the mediolateral direction, synergy index values during early lead-limb swing were significantly greater than during early trail-limb swing, and in the vertical direction, large synergy index values were found during early- and mid-swing phases. Moreover, maximum trail-foot height was correlated to vertical synergy index during early phase. CoM position was not well controlled by a kinematic synergy during trail-limb swing and the low control of CoM position was observed with great trail-foot height. The results suggest that a conservative strategy with great trail-foot height would not always be helpful for successful obstacle crossing.
Collapse
Affiliation(s)
- Momoko Yamagata
- Human Development, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan; Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyodaku, Tokyo 102-0083, Japan.
| | - Hiroshige Tateuchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Todd Pataky
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Itsuroh Shimizu
- Fukui General Clinic, 1-42-1 Nittazuka, Fukui-shi, Fukui 910-0067, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Madarshahian S, Letizi J, Latash ML. Synergic control of a single muscle: The example of flexor digitorum superficialis. J Physiol 2020; 599:1261-1279. [DOI: 10.1113/jp280555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology The Pennsylvania State University University Park PA USA
| | | | - Mark L. Latash
- Department of Kinesiology The Pennsylvania State University University Park PA USA
| |
Collapse
|
28
|
Freitas SMSF, de Freitas PB, Falaki A, Corson T, Lewis MM, Huang X, Latash ML. Synergic control of action in levodopa-naïve Parkinson's disease patients: II. Multi-muscle synergies stabilizing vertical posture. Exp Brain Res 2020; 238:2931-2945. [PMID: 33068173 PMCID: PMC7644647 DOI: 10.1007/s00221-020-05947-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
Postural instability is a major disabling feature in Parkinson's disease (PD). We quantified the organization of leg and trunk muscles into synergies stabilizing the center of pressure (COP) coordinate within the uncontrolled manifold hypothesis in levodopa-naïve patients with PD and age-matched control subjects. The main hypothesis was that changes in the synergic control of posture are present early in the PD process even before levodopa exposure. Eleven levodopa-naïve patients with PD and 11 healthy controls performed whole-body cyclical voluntary sway tasks and a self-initiated load-release task during standing on a force plate. Surface electromyographic activity in 13 muscles on the right side of the body was analyzed to identify muscle groups with parallel scaling of activation levels (M-modes). Data were collected both before ("off-drug") and approximately 60 min after the first dose of 25/100 carbidopa/levodopa ("on-drug"). COP-stabilizing synergies were quantified for the load-release task. Levodopa-naïve patients with PD showed no COP-stabilizing synergy "off-drug", whereas controls showed posture-stabilizing multi-M-mode synergy. "On-drug", patients with PD demonstrated a significant increase in the synergy index. There were no significant drug effects on the M-mode composition, anticipatory postural adjustments, indices of motor equivalence, or indices of COP variability. The results suggest that levodopa-naïve patients with PD already show impaired posture-stabilizing multi-muscle synergies that may be used as promising behavioral biomarkers for emerging postural disorders in PD. Moreover, levodopa modified synergy metrics differently in these levodopa-naïve patients compared to a previous study of patients on chronic antiparkinsonian medications (Falaki et al. in J Electromyogr Kinesiol 33:20-26, 2017a), suggesting different neurocircuitry involvement.
Collapse
Affiliation(s)
- Sandra M S F Freitas
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Paulo B de Freitas
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Interdisciplinary Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ali Falaki
- Department of Physiology, University of Montreal, Montreal, QC, Canada
| | - Tyler Corson
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
29
|
Elmeua González M, Šarabon N. Muscle modes of the equestrian rider at walk, rising trot and canter. PLoS One 2020; 15:e0237727. [PMID: 32810165 PMCID: PMC7446812 DOI: 10.1371/journal.pone.0237727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023] Open
Abstract
Equestrian sports have been a source of numerous studies throughout the past two decades, however, few scientists have focused on the biomechanical effects, including muscle activation, that the horse has on the rider. Because equitation is a sport of two (the horse-human dyad), we believe there is a need to fill in the knowledge gap in human biomechanics during riding. To investigate the differences between novice and advanced riders at a neuromuscular level we characterized the motor output of a set of riders’ key muscles during horse riding. Six recreational riders (24 ± 7 years) and nine professional riders (31 ± 5 years) from the Spanish Classical School of Riding (Lipica) volunteered to take part in this study. Riders’ upper body, core and lower limb muscles were monitored and synchronized with inertial data from the left horse’s leg at walk, rising trot and canter. We used principal component analysis to extract muscle modes. Three modes were identified in the advanced group whereas five modes were identified in the novice group. From the novice group, one mode united dorsal and ventral muscles of the body (reciprocal mode). Advanced riders showed higher core muscles engagement and better intermuscular coordination. We concluded that advanced horse riding is characterized by an ability to activate muscles contralaterally but not reciprocally (dorsal-ventral contraction). In addition, activating each muscle independently with different levels of activation, and the ability to quickly decrease overall muscle activity is distinctive of advanced riders.
Collapse
Affiliation(s)
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Koper, Slovenia
- S2P, Science to Practice, ltd., Laboratory for Motor Control and Motor Behaviour, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
30
|
Degani AM, Cardoso VS, Magalhães AT, Assunção ALS, Soares EDC, Danna-Dos-Santos A. Postural Behavior in Medicated Parkinson Disease Patients: A Preliminary Study Searching for Indicators to Track Progress. J Cent Nerv Syst Dis 2020; 12:1179573520922645. [PMID: 32536782 PMCID: PMC7268163 DOI: 10.1177/1179573520922645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: The establishment of early diagnostic methods for Parkinson disease (PD) is one of the key features to clinically control the rate of PD progression. This study aimed to give a first step toward recognizing the efficacy of multiple postural indices of balance control in differentiating medicated PD patients from health participants. Methods: Nine individuals with PD (Hoehn and Yahr Stage up to 2), 9 staged 2.5 and up, and 9 healthy age-matched Controls performed bipedal stances for 120 seconds with eyes either open or closed on a stable force platform. All participants with PD were under anti-Parkinsonian medication. Non-parametric tests investigated the effects of PD and visual input on postural indices extracted from the center of pressure coordinates. Results: Independent of the stage of the disease, individuals with PD presented faster and shakier body sway compared with Controls. Advanced stages of PD also revealed increased body sway length and variability. In addition, medio-lateral postural instability was more pronounced in all stages of PD when visual inputs were not allowed. Conclusion and Significance: Body sway velocity, jerkiness, length, and its variability revealed to be potential markers for subclinical signs of adjustments in the neuromechanisms of balance control and postural instability even at early stages of disease and under anti-Parkinsonian medication. Results produced here will direct future studies aiming to investigate the efficacy of these same indices on recognizing subclinical development of PD as well as those individuals susceptible to faster rates of progression.
Collapse
Affiliation(s)
- Adriana Menezes Degani
- Department of Physical Therapy, Western Michigan University, Kalamazoo, MI, USA.,Unified Clinics, Western Michigan University, Kalamazoo, MI, USA.,Synergy Applied Medical & Research, Missoula, MT, USA
| | - Vinicius Saura Cardoso
- BioSignal Laboratory, School of Physical Therapy, Federal University of Piauí, Parnaíba, Brazil
| | | | | | | | - Alessander Danna-Dos-Santos
- Department of Physical Therapy, Western Michigan University, Kalamazoo, MI, USA.,Synergy Applied Medical & Research, Missoula, MT, USA
| |
Collapse
|
31
|
Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. SENSORS 2020; 20:s20113247. [PMID: 32517315 PMCID: PMC7308812 DOI: 10.3390/s20113247] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Balance impairment is a major mechanism behind falling along with environmental hazards. Under physiological conditions, ageing leads to a progressive decline in balance control per se. Moreover, various neurological disorders further increase the risk of falls by deteriorating specific nervous system functions contributing to balance. Over the last 15 years, significant advancements in technology have provided wearable solutions for balance evaluation and the management of postural instability in patients with neurological disorders. This narrative review aims to address the topic of balance and wireless sensors in several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical syndromes. The review discusses the physiological and pathophysiological bases of balance in neurological disorders as well as the traditional and innovative instruments currently available for balance assessment. The technical and clinical perspectives of wearable technologies, as well as current challenges in the field of teleneurology, are also examined.
Collapse
|
32
|
Mileti I, Zampogna A, Santuz A, Asci F, Del Prete Z, Arampatzis A, Palermo E, Suppa A. Muscle Synergies in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3209. [PMID: 32517013 PMCID: PMC7308810 DOI: 10.3390/s20113209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Over the last two decades, experimental studies in humans and other vertebrates have increasingly used muscle synergy analysis as a computational tool to examine the physiological basis of motor control. The theoretical background of muscle synergies is based on the potential ability of the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine the pathophysiological basis of specific motor symptoms in Parkinson's disease (PD), including balance and gait disorders that are often unresponsive to treatment. The precise mechanisms contributing to these motor symptoms in PD remain largely unknown. A better understanding of the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms in PD. We first discuss the theoretical background and computational methods for muscle synergy extraction from physiological data. We then critically examine studies assessing muscle synergies in PD during different motor tasks including balance, gait and upper limb movements. Finally, we speculate about the prospects and challenges of muscle synergy analysis in order to promote future research protocols in PD.
Collapse
Affiliation(s)
- Ilaria Mileti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (A.S.); (A.A.)
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (A.S.); (A.A.)
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
33
|
Does the postural stability of patients with Parkinson’s disease affect the physical activity? Int J Rehabil Res 2020; 43:41-47. [DOI: 10.1097/mrr.0000000000000382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Positive Relations Between Vision and Posture in the Fixation Task Performed Upright. Motor Control 2020; 24:1-16. [PMID: 31170867 DOI: 10.1123/mc.2018-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/14/2019] [Accepted: 02/23/2019] [Indexed: 11/18/2022]
Abstract
In an upright stance, individuals sway in unpredictable ways. Their eyes also move in unpredictable ways in fixation tasks. The objective of this study was to analyze visual functions, postural control, and cognitive involvement in stationary gaze. A total of 14 healthy young adults performed a fixation task and a free-viewing task (three trials per task, 45 s per trial). As expected, the results showed many (n = 32) significant positive Pearson correlation coefficients between the eye and center of pressure/body (head, neck, and lower back) movements in the fixation task. In the free-viewing task, the correlations were nonsignificant. Only 3 of the 32 significant correlations (9.4%) were significantly related to cognitive involvement (measured with a subjective questionnaire). These results indirectly strengthened the validity of the synergistic model of postural control.
Collapse
|
35
|
Effects of Voluntary Agonist–Antagonist Coactivation on Stability of Vertical Posture. Motor Control 2019; 23:304-326. [DOI: 10.1123/mc.2018-0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Nardini AG, Freitas SMSF, Falaki A, Latash ML. Preparation to a quick whole-body action: control with referent body orientation and multi-muscle synergies. Exp Brain Res 2019; 237:1361-1374. [PMID: 30877340 PMCID: PMC6475607 DOI: 10.1007/s00221-019-05510-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 11/28/2022]
Abstract
We examined the control of postural stability in preparation to a discrete, quick whole-body sway toward a target and back to the initial position. Several predictions were tested based on the theory of control with referent body orientation and the notion of multi-muscle synergies stabilizing center of pressure (COP) coordinate. Healthy, young adults performed fast, discrete whole-body motion forward-and-back and backward-and-back under visual feedback on the COP. We used two methods to assess COP stability, analysis of inter-trial variance and analysis of motor equivalence in the muscle activation space. Actions were always preceded by COP counter-movements. Backward COP shifts were faster, and the indices of multi-muscle synergies stabilizing COP were higher prior to those actions. Patterns of muscle activation at the motion onset supported the idea of a gradual shift in the referent body orientation. Prior to the backward movements, there was a trend toward higher muscle co-activation, compared to reciprocal activation. We found strong correlations between the sets of indices of motor equivalence and those of inter-trial variance. Overall, the results support the theory of control with referent coordinates and the idea of multi-muscle synergies stabilizing posture by confirming a number of non-trivial predictions based on these concepts. The findings favor using indices of motor equivalence in clinical studies to minimize the number of trials performed by each subject.
Collapse
Affiliation(s)
- Alethéa Gomes Nardini
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Undergraduate Program in Physical Therapy, University of Paulista, São Paulo, SP, Brazil
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
37
|
Coordination in adults with neurological impairment - A systematic review of uncontrolled manifold studies. Gait Posture 2019; 69:66-78. [PMID: 30677709 DOI: 10.1016/j.gaitpost.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Analysis of sensorimotor synergies has been greatly advanced by the Uncontrolled Manifold (UCM) approach. The UCM method is based on partitioning inter-trial variance displayed by elemental variables into 'good' (VUCM) and 'bad' (VORT) variability that, respectively, indicate maintenance or loss of task stability. In clinical populations, these indices can be used to investigate the strength, flexibility, stereotypy and agility of synergistic control. RESEARCH QUESTION How are synergies affected by neurological impairment in adults? Specifically, this study aimed to determine i) the impact of pathology on VUCM, VORT, and their ratio (synergy index); ii) the relationship between synergy indices and functional performance; iii) changes in anticipatory synergy adjustments (ASAs); and iv) the effects of interventions on synergies. METHODS Systematic review of UCM studies on adults with neurological impairment. RESULTS Most of the 17 studies had moderate to high quality scores in the adapted Critical Review Form and the UCM reporting quality checklist developed for this review. i) Most of the studies found reduced synergy indices for patients with Parkinson's disease (PD), olivo-ponto-cerebellar atrophy, multiple sclerosis and spinocerebellar degeneration, with variable levels of change in VUCM and VORT. Reduction in synergy indices was not as consistent for stroke, in three out of six studies it was unchanged. ii) Five of seven studies found no significant correlations between scores on motor function scales and UCM indices. iii) Seven studies consistently reported ASAs that are smaller in magnitude, delayed, or both, for patients compared to healthy controls. iv) Two studies reported increased synergy indices, either via increase in VUCM or decrease in VORT, after dopaminergic drugs for patients with PD. There were similar synergy indices but improved ASAs after deep brain stimulation for patients with PD. SIGNIFICANCE UCM can provide reliable and sensitive indicators of altered synergistic control in adults with neurological impairment.
Collapse
|
38
|
Rosenblatt NJ, Hurt CP. Recommendation for the minimum number of steps to analyze when performing the uncontrolled manifold analysis on walking data. J Biomech 2019; 85:218-223. [PMID: 30718066 DOI: 10.1016/j.jbiomech.2019.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/08/2023]
Abstract
The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of variables facilitates consistent performance by partitioning variance in those variables into two components then calculating their normalized difference (i.e., the synergy index). Although UCM-derived measures are thought to depend on the number of data points analyzed, the minimum number needed to reasonably approximate true values of these measures is unknown. For each of two performance variables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while motion capture tracked movement. For each subject, n steps (where n = 2-99) were randomly sampled from the first 100, then used to calculate UCM-derived variables. For each subject, variables were expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations. For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of steps to "reasonably approximate" a variables was defined as the value of n for which the lower CI was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the variance components However, the differences between using 16 steps and 50 steps were small. Collecting 15-20 steps is recommended for a reasonable approximation of the synergy indices considered herein, particularly when data collection is constrained to a limited number of steps.
Collapse
Affiliation(s)
- Noah J Rosenblatt
- Rosalind Franklin University of Medicine and Science, Center for Lower Extremity Ambulatory Research (CLEAR) at the Dr. William M. Scholl College of Podiatric Medicine, 3333 Greenbay Road, North Chicago, IL 60064, United States.
| | - Christopher P Hurt
- University of Alabama at Birmingham, Department of Physical Therapy, United States
| |
Collapse
|
39
|
|
40
|
Coordinated activities of trunk and upper extremity muscles during walker-assisted paraplegic gait: A synergy study. Hum Mov Sci 2018; 62:184-193. [DOI: 10.1016/j.humov.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022]
|
41
|
Santuz A, Ekizos A, Janshen L, Mersmann F, Bohm S, Baltzopoulos V, Arampatzis A. Modular Control of Human Movement During Running: An Open Access Data Set. Front Physiol 2018; 9:1509. [PMID: 30420812 PMCID: PMC6216155 DOI: 10.3389/fphys.2018.01509] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
The human body is an outstandingly complex machine including around 1000 muscles and joints acting synergistically. Yet, the coordination of the enormous amount of degrees of freedom needed for movement is mastered by our one brain and spinal cord. The idea that some synergistic neural components of movement exist was already suggested at the beginning of the 20th century. Since then, it has been widely accepted that the central nervous system might simplify the production of movement by avoiding the control of each muscle individually. Instead, it might be controlling muscles in common patterns that have been called muscle synergies. Only with the advent of modern computational methods and hardware it has been possible to numerically extract synergies from electromyography (EMG) signals. However, typical experimental setups do not include a big number of individuals, with common sample sizes of 5 to 20 participants. With this study, we make publicly available a set of EMG activities recorded during treadmill running from the right lower limb of 135 healthy and young adults (78 males and 57 females). Moreover, we include in this open access data set the code used to extract synergies from EMG data using non-negative matrix factorization (NMF) and the relative outcomes. Muscle synergies, containing the time-invariant muscle weightings (motor modules) and the time-dependent activation coefficients (motor primitives), were extracted from 13 ipsilateral EMG activities using NMF. Four synergies were enough to describe as many gait cycle phases during running: weight acceptance, propulsion, early swing, and late swing. We foresee many possible applications of our data that we can summarize in three key points. First, it can be a prime source for broadening the representation of human motor control due to the big sample size. Second, it could serve as a benchmark for scientists from multiple disciplines such as musculoskeletal modeling, robotics, clinical neuroscience, sport science, etc. Third, the data set could be used both to train students or to support established scientists in the perfection of current muscle synergies extraction methods. All the data is available at Zenodo (doi: 10.5281/zenodo.1254380).
Collapse
Affiliation(s)
- Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Janshen
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
42
|
Fil-Balkan A, Salci Y, Keklicek H, Armutlu K, Aksoy S, Kayihan H, Elibol B. Sensorimotor integration training in Parkinson`s disease. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2018; 23:208-215. [PMID: 30007996 PMCID: PMC8015575 DOI: 10.17712/nsj.2018.3.20180021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine the effects of sensorimotor integration training on postural control in Parkinson`s disease. METHODS This prospective, randomized controlled trial was conducted at Hacettepe University (Ankara, Turkey). The study was carried out from August 2012 until March 2015 and included 24 Parkinson`s patients with stage 2-3 according to the Modified Hoehn&Yahr Rating Scale. The patients were divided into 2 groups (control and study). The control group received conventional physiotherapy; the study group received sensorimotor integration training combined with conventional physiotherapy, 2 times per week for 6 weeks. We assessed the patients with clinical balance tests and computerized dynamic posturography. Assessments were performed at baseline, 7- and 12-weeks follow-up. RESULTS Computerized dynamic posturography posturography values (5th and 6th positions, composite balance, and vestibular system scores) were higher in the study group than in the control group. The improvements were maintained at the 12-week follow up except 6th positions scores (p<0.05). CONCLUSION Sensorimotor integration training combined with conventional physiotherapy approach ameliorated postural control by improving vestibular system in patients with Parkinson`s disease by improving sensory processes.
Collapse
Affiliation(s)
- Ayla Fil-Balkan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey. E-mail:
| | | | | | | | | | | | | |
Collapse
|
43
|
Falaki A, Jo HJ, Lewis MM, O'Connell B, De Jesus S, McInerney J, Huang X, Latash ML. Systemic effects of deep brain stimulation on synergic control in Parkinson's disease. Clin Neurophysiol 2018; 129:1320-1332. [PMID: 29573980 PMCID: PMC5938107 DOI: 10.1016/j.clinph.2018.02.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE We explored effects of deep brain stimulation (DBS) in patients with Parkinson's disease (PD) on the synergic control of fingers in a multi-finger force production task and of muscles in a task involving vertical posture. METHODS The finger task involved the four fingers of a hand producing accurate total force followed by a targeted quick force pulse. The postural task involved releasing a load from extended arms. The analysis of synergies was performed within the framework of the uncontrolled manifold hypothesis. RESULTS DBS led to no significant changes in indices of stability during steady-state phases. In contrast, DBS improved indices of agility, quantified as anticipatory synergy adjustments that reduced stability of salient performance variables in preparation to their quick change. There were moderate-to-strong correlations between indices of both stability and agility measured in the multi-finger force production and multi-muscle whole-body action. CONCLUSIONS Our results point at systemic changes in synergic control in PD. They show that DBS is effective in improving only one components of synergic control related to agility in performance being relatively ineffective for the stability component. SIGNIFICANCE The results show systemic brain mechanisms of synergies and suggest differential effects of DBS on indices of stability and agility.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hang Jin Jo
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Mechelle M Lewis
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Barbara O'Connell
- Departments of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Sol De Jesus
- Departments of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - James McInerney
- Departments of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Departments of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Abstract
The phenomenon of agonist-antagonist muscle coactivation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of coactivation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Furthermore, coactivation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle coactivation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist coactivation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by covaried adjustments in spaces of control variables. This hypothesis is able to account for higher levels of coactivation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
45
|
Yamagata M, Falaki A, Latash ML. Stability of vertical posture explored with unexpected mechanical perturbations: synergy indices and motor equivalence. Exp Brain Res 2018; 236:1501-1517. [PMID: 29564504 DOI: 10.1007/s00221-018-5239-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 01/05/2023]
Abstract
We explored the relations between indices of mechanical stability of vertical posture and synergy indices under unexpected perturbations. The main hypotheses predicted higher posture-stabilizing synergy indices and higher mechanical indices of center of pressure stability during perturbations perceived by subjects as less challenging. Healthy subjects stood on a force platform and held in fully extended arms a bar attached to two loads acting downward and upward. One of the loads was unexpectedly released by the experimenter causing a postural perturbations. In different series, subjects either knew or did not know which of the two loads would be released. Forward perturbations were perceived as more challenging and accompanied by co-activation patterns among the main agonist-antagonist pairs. Backward perturbation led to reciprocal muscle activation patterns and was accompanied by indices of mechanical stability and of posture-stabilizing synergy which indicated higher stability. Changes in synergy indices were observed as early as 50-100 ms following the perturbation reflecting involuntary mechanisms. In contrast, predictability of perturbation direction had weak or no effect on mechanical and synergy indices of stability. These observations are interpreted within a hierarchical scheme of synergic control of motor tasks and a hypothesis on the control of movements with shifts of referent coordinates. The findings show direct correspondence between stability indices based on mechanics and on the analysis of multi-muscle synergies. They suggest that involuntary posture-stabilizing mechanisms show synergic organization. They also show that predictability of perturbation direction has strong effects on anticipatory postural adjustment but not corrective adjustments. We offer an interpretation of co-activation patterns that questions their contribution to postural stability.
Collapse
Affiliation(s)
- Momoko Yamagata
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
46
|
Silva TCD, Felippe LA, Carregaro RL, Christofoletti G. Postural instability in subjects with parkinson’s disease undergoing different sensory pitfalls. HUMAN MOVEMENT 2017. [DOI: 10.1515/humo-2017-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractPurpose. Previous research has reported postural instability in subjects with Parkinson’s disease (PD). However, there are still doubts about the effect of sensory stimuli on one’s balance. In this study, we further investigated the stabilometric measures of individuals with PD, analysing the impact of different sensory stimuli on the outcomes. Methods. The total of 26 participants (13 with PD and 13 matched control peers) were submitted to 8 sensorimotor dynamics differing in relation to support base (30 cm vs. 10 cm, feet in parallel vs. feet in semi-tandem position), contact surface (foam vs. no foam), and visual conditions (eyes open vs. eyes closed). The measures used to assess one’s balance were body position in space, area of support base, and velocity of postural control. The variables involved the anterior-posterior and the mediolateral axes. Participants with PD were evaluated during the off medication state. Mann-Whitney U test and Friedman’s test were applied to carry out inter- and intra-group comparisons. Significance was set at 5%. Results. Cross-sectional analyses illustrated that tasks with sensory pitfalls impacted postural stability to a larger extent in PD subjects. The differences were found in anterior-posterior body position, area of support base, anterior-posterior velocity, and mediolateral velocity. Complementary analyses confirmed considerable instability on balance when support bases were small and visual information was absent (p < 0.05). Conclusions. The current results confirm worse postural stability response in subjects with PD and highlight that the interference of the sensory pitfalls is notable when individuals are off medication.
Collapse
|
47
|
Furmanek MP, Solnik S, Piscitelli D, Rasouli O, Falaki A, Latash ML. Synergies and Motor Equivalence in Voluntary Sway Tasks: The Effects of Visual and Mechanical Constraints. J Mot Behav 2017; 50:492-509. [PMID: 28915097 DOI: 10.1080/00222895.2017.1367642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors used two analyses developed within the framework of the uncontrolled manifold hypothesis to quantify multimuscle synergies during voluntary body sway: analysis of intertrial variance and analysis of motor equivalence with respect to the center of pressure (COP) trajectory. Participants performed voluntary sway tasks in the anteroposterior direction at 0.33 and 0.66 Hz. Muscle groups were identified in the space of muscle activations and used as elemental variables in the synergy analyses. Changing mechanical and vision feedback-based constraints led to significant changes in indices of sway performance such as COP deviations in the uninstructed, mediolateral direction and indices of spontaneous postural sway. In contrast, there were no significant effects on synergy indices. These findings show that the neural control of performance and of its stability may involve different control variables and neurophysiological structures. There were strong correlations between the indices of motor equivalence and those computed using the intercycle variance analysis. This result is potentially important for studies of patients with movement disorders who may be unable to perform multiple trials (cycles) at any given task, making analysis of motor equivalence of single trials a viable alternative to explore changes in stability of actions.
Collapse
Affiliation(s)
- Mariusz P Furmanek
- a Department of Human Motor Behavior , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland.,b Department of Kinesiology , Pennsylvania State University , University Park
| | - Stanisław Solnik
- c Department of Physical Therapy, University of North Georgia , Dahlonega.,d University School of Physical Education , Wroclaw , Poland
| | - Daniele Piscitelli
- b Department of Kinesiology , Pennsylvania State University , University Park.,e School of Medicine and Surgery , University of Milano-Bicocca , Milan , Italy
| | - Omid Rasouli
- f Faculty of Health and Social Sciences , Norwegian University of Science and Technology , Trondheim
| | - Ali Falaki
- b Department of Kinesiology , Pennsylvania State University , University Park
| | - Mark L Latash
- b Department of Kinesiology , Pennsylvania State University , University Park
| |
Collapse
|
48
|
Falaki A, Huang X, Lewis MM, Latash ML. Motor equivalence and structure of variance: multi-muscle postural synergies in Parkinson's disease. Exp Brain Res 2017; 235:2243-2258. [PMID: 28455740 PMCID: PMC5507367 DOI: 10.1007/s00221-017-4971-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023]
Abstract
We explored posture-stabilizing multi-muscle synergies with two methods of analysis of multi-element, abundant systems: (1) Analysis of inter-cycle variance; and (2) Analysis of motor equivalence, both quantified within the framework of the uncontrolled manifold (UCM) hypothesis. Data collected in two earlier studies of patients with Parkinson's disease (PD) were re-analyzed. One study compared synergies in the space of muscle modes (muscle groups with parallel scaling of activation) during tasks performed by early-stage PD patients and controls. The other study explored the effects of dopaminergic medication on multi-muscle-mode synergies. Inter-cycle variance and absolute magnitude of the center of pressure displacement across consecutive cycles were quantified during voluntary whole-body sway within the UCM and orthogonal to the UCM space. The patients showed smaller indices of variance within the UCM and motor equivalence compared to controls. The indices were also smaller in the off-drug compared to on-drug condition. There were strong across-subject correlations between the inter-cycle variance within/orthogonal to the UCM and motor equivalent/non-motor equivalent displacements. This study has shown that, at least for cyclical tasks, analysis of variance and analysis of motor equivalence lead to metrics of stability that correlate with each other and show similar effects of disease and medication. These results show, for the first time, intimate links between indices of variance and motor equivalence. They suggest that analysis of motor equivalence, which requires only a handful of trials, could be used broadly in the field of motor disorders to analyze problems with action stability.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Falaki A, Huang X, Lewis MM, Latash ML. Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson's disease. J Electromyogr Kinesiol 2017; 33:20-26. [PMID: 28110044 PMCID: PMC5357450 DOI: 10.1016/j.jelekin.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Postural instability is one of most disabling motor symptoms in Parkinson's disease. Indices of multi-muscle synergies are new measurements of postural stability. OBJECTIVES We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson's disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. METHODS Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. RESULTS Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. CONCLUSIONS Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson's disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
50
|
Piscitelli D, Falaki A, Solnik S, Latash ML. Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction. Exp Brain Res 2017; 235:713-730. [PMID: 27866261 PMCID: PMC5316309 DOI: 10.1007/s00221-016-4835-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.
Collapse
Affiliation(s)
- Daniele Piscitelli
- School of Medicine and Surgery, PhD Program in Neuroscience, University of Milano-Bicocca, Milan, Italy
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stanislaw Solnik
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
- University School of Physical Education, Wroclaw, Poland
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|