1
|
Lee C, Yi J, Park J, Ahn B, Won YW, Jeon J, Lee BJ, Cho WJ, Park JW. Hedgehog signalling is involved in acquired resistance to KRAS G12C inhibitors in lung cancer cells. Cell Death Dis 2024; 15:56. [PMID: 38225225 PMCID: PMC10789740 DOI: 10.1038/s41419-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, Texas, USA
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - JiHeung Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
2
|
Leonurine Regulates Hippocampal Nerve Regeneration in Rats with Chronic and Unpredictable Mild Stress by Activating SHH/GLI Signaling Pathway and Restoring Gut Microbiota and Microbial Metabolic Homeostasis. Neural Plast 2023; 2023:1455634. [PMID: 36647544 PMCID: PMC9840550 DOI: 10.1155/2023/1455634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Depression is a highly prevalent and heterogeneous disorder that requires new strategies to overcome depression. In this study, we aimed to investigate whether leonurine modulated hippocampal nerve regeneration in chronic and unpredictable mild stress (CUMS) rats through the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis. The CUMS rat model was constructed and treated with leonurine. The body weight of rats was recorded, and a series of tests were performed. Western blot was utilized to measure the expression of BDNF and 5-HT in the hippocampus. Then the expression of SHH, GLI, PTCH, and SMO were measured by qRT-PCR and western blot. The colocalization of BrdU+DCX and BrdU+NeuN was evaluated by IF. 16S rDNA high-throughput sequencing was applied to detect the composition and distribution of gut microbiota. The differential metabolites were analyzed by untargeted metabolomics. The correlation between gut microbiota and microbial metabolites was analyzed by Pearson correlation coefficient. After CUMS modeling, the body weight of rats was decreased, and the expression of BDNF and 5-HT were decreased, while the body weight was recovered, and the expression of BDNF and 5-HT were increased after leonurine treatment. Leonurine reversed the reduction in the colocalization of BrdU+DCX and BrdU+NeuN and the reduction in the levels of SHH, GLI, PTCH, and SMO induced by CUMS modeling. Leonurine also restored gut microbiota and microbial metabolites homeostasis in CUMS rats. Furthermore, Prevotellaceae_Ga6A1_group was negatively correlated with 3-Oxocholic acid, nutriacholic acid, and cholic acid. Collectively, leonurine regulated hippocampal nerve regeneration in CUMS rats by activating the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis.
Collapse
|
3
|
Patel R, Singh SK, Bhattacharya V, Ali A. Novel GLI3 pathogenic variants in complex pre- and postaxial polysyndactyly and Greig cephalopolysyndactyly syndrome. Am J Med Genet A 2020; 185:97-104. [PMID: 33058447 DOI: 10.1002/ajmg.a.61919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
Polydactyly is a limb malformation and can occur as nonsyndromic polydactyly, syndromic polydactyly, or along with other limb defects. A few genes have been identified that cause various forms of syndromic and nonsyndromic polydactyly, of which GLI3 has been extensively explored. In the present study, GLI3 gene was screened by direct resequencing in 15 polydactyly cases with or without other anomalies. GLI3 screening revealed two novel pathogenic variants, NM_000168.6:c.3414delC [p.(H1138Qfs*68)] and NM_000168.6:c.1862C>T [p.(P621L)], found in two unrelated cases of familial complex pre- and postaxial polysyndactyly and sporadic Greig cephalopolysyndactyly syndrome (GCPS), respectively. The first pathogenic GLI3 variant, NM_000168.6:c.3414delC, causes premature protein truncation at the C-terminal domain of GLI3. Alternatively, the second pathogenic variant, NM_000168.6:c.1862C>T, lies in the DNA binding domain of GLI3 protein and may affect its hydrophobic interaction with DNA. Both pathogenic GLI3 variants had reduced transcriptional activity in HEK293 cells that likely had led to haploinsufficiency and, consequently, the clinical phenotypes. Overall, the present study reports a novel familial case of complex pre- and postaxial polysyndactyly and the underlying novel pathogenic GLI3 variant expanding the clinical criteria for GLI3 mutational spectrum to complex pre- and postaxial polysyndactyly. Furthermore, this study also reports a novel GLI3 pathogenic variant linked to GCPS, highlighting the known genotype-phenotype correlation.
Collapse
Affiliation(s)
- Rashmi Patel
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Subodh Kumar Singh
- Department of Plastic Surgery, G S Memorial Plastic Surgery Hospital & Trauma Center, Varanasi, India
| | | | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
WDR34 mutation from anencephaly patients impaired both SHH and PCP signaling pathways. J Hum Genet 2020; 65:985-993. [PMID: 32576942 DOI: 10.1038/s10038-020-0793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Neural tube defects (NTDs) are debilitating human congenital abnormalities due to failure of neural tube closure. Sonic Hedgehog (SHH) signaling is required for dorsal-ventral patterning of the neural tube. The loss of activation in SHH signaling normally causes holoprosencephaly while the loss of inhibition causes exencephaly due to failure in neural tube closure. WDR34 is a dynein intermedia chain component which is required for SHH activation. However, Wdr34 knockout mouse exhibit exencephaly. Here we screened mutations in WDR34 gene in 100 anencephaly patients of Chinese Han population. Compared to 1000 Genome Project data, two potentially disease causing missense mutations of WDR34 gene (c.1177G>A; p.G393S and c.1310A>G; p.Y437C) were identified in anencephaly patients. These two mutations did not affect the protein expression level of WDR34. Luciferase reporter and endogenous target gene expression level showed that both mutations are lose-of-function mutations in SHH signaling. Surprisingly, WDR34 could promote planar cell polarity (PCP) signaling and the G393S lost this promoting effect on PCP signaling. Morpholino knockdown of wdr34 in zebrafish caused severe convergent extension defects and pericardial abnormalities. The G393S mutant has less rescuing effects than both WT and Y437C WDR34 in zebrafish. Our results suggested that mutation in WDR34 could contribute to human NTDs by affecting both SHH and PCP signaling.
Collapse
|
5
|
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C. GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 2019; 450:141-154. [PMID: 30953627 DOI: 10.1016/j.ydbio.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Barbieri M. What is code biology? Biosystems 2018; 164:1-10. [DOI: 10.1016/j.biosystems.2017.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023]
|
7
|
Zhang Z, Shen L, Law K, Zhang Z, Liu X, Hua H, Li S, Huang H, Yue S, Hui CC, Cheng SY. Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling. Mol Cell Biol 2017; 37:e00421-16. [PMID: 27849569 PMCID: PMC5247608 DOI: 10.1128/mcb.00421-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1-/-, Sufu-/-, and Ptch1-/-; Sufu-/- double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longyan Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kelvin Law
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaotong Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu Hua
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sanen Li
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huijie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Sena E, Feistel K, Durand BC. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. J Dev Biol 2016; 4:jdb4040031. [PMID: 29615594 PMCID: PMC5831802 DOI: 10.3390/jdb4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli). The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh) whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN).
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstr. 30, 70593 Stuttgart, Germany.
| | - Béatrice C Durand
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| |
Collapse
|
9
|
|
10
|
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW. Hedgehog signaling regulates gene expression in planarian glia. eLife 2016; 5:e16996. [PMID: 27612382 PMCID: PMC5055395 DOI: 10.7554/elife.16996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Sylvain W Lapan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - M Lucila Scimone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Peter W Reddien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
11
|
Zhang Y, Alvarez-Bolado G. Differential developmental strategies by Sonic hedgehog in thalamus and hypothalamus. J Chem Neuroanat 2016; 75:20-7. [DOI: 10.1016/j.jchemneu.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
12
|
Matz-Soja M, Rennert C, Schönefeld K, Aleithe S, Boettger J, Schmidt-Heck W, Weiss TS, Hovhannisyan A, Zellmer S, Klöting N, Schulz A, Kratzsch J, Guthke R, Gebhardt R. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 2016; 5. [PMID: 27185526 PMCID: PMC4869931 DOI: 10.7554/elife.13308] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond. DOI:http://dx.doi.org/10.7554/eLife.13308.001 The liver is one of the main organs responsible for processing everything that mammals eat and drink. Nutrients absorbed by the gut like sugars and lipids (fats) are processed by the liver and are stored or distributed to provide energy to other organs. Sometimes these metabolic processes become unbalanced. This can lead to lipids accumulating in the liver – a process known as steatosis, which is a feature of human non-alcoholic fatty liver disease. In organs like the liver, cells are instructed how to behave via signaling pathways. A protein outside the cell signals to specific proteins inside, which switch on a set of target genes. One such pathway is the Hedgehog pathway, which primarily regulates tissue regeneration and the development of embryos. A component of this pathway is the Smoothened gene, which indirectly switches on proteins called GLI factors that regulate metabolic genes, including those involved in lipid metabolism. The Hedgehog pathway has been found to control the metabolism of lipids in fat tissue but it is not known whether it is important for lipid metabolism in the liver. Matz-Soja et al. investigated this possible role of the Hedgehog pathway in the liver using mice with a Smoothened gene that could be deleted specifically in that organ. This deletion disrupted Hedgehog signaling and led to lipids accumulating in the liver and eventually to steatosis. These changes were associated with an increase in the amounts and activityof several enzymes (and the proteins that regulate these enzymes) that help to synthesize lipids. Steatosis was also associated with low amounts of two of the three GLI factors; indeed, this seems to be key for triggering problems with lipid metabolism. Human livers with steatosis showed the same changes in levels of the GLI factors. Increasing the amount of GLI factors in liver cells taken from mice with steatosis reduced the accumulation of lipids and brought lipid metabolism back to its normal balance. A focus of future studies will be to understand how the Hedgehog signaling pathway interacts with other signaling pathways known to regulate liver lipid metabolism, such as insulin signaling. This knowledge will help clinicians to design new treatments for lipid-associated diseases like non-alcoholic fatty liver disease. DOI:http://dx.doi.org/10.7554/eLife.13308.002
Collapse
Affiliation(s)
- Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christiane Rennert
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Schönefeld
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jan Boettger
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Thomas S Weiss
- University Children Hospital, Regensburg University Hospital, Regensburg, Germany
| | - Amalya Hovhannisyan
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sebastian Zellmer
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Integrated Research and Treatment Centre Adiposity Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Angela Schulz
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Reinhardt Guthke
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
14
|
Barbieri M. A new theory of development: the generation of complexity in ontogenesis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0148. [PMID: 26857661 DOI: 10.1098/rsta.2015.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
Today there is a very wide consensus on the idea that embryonic development is the result of a genetic programme and of epigenetic processes. Many models have been proposed in this theoretical framework to account for the various aspects of development, and virtually all of them have one thing in common: they do not acknowledge the presence of organic codes (codes between organic molecules) in ontogenesis. Here it is argued instead that embryonic development is a convergent increase in complexity that necessarily requires organic codes and organic memories, and a few examples of such codes are described. This is the code theory of development, a theory that was originally inspired by an algorithm that is capable of reconstructing structures from incomplete information, an algorithm that here is briefly summarized because it makes it intuitively appealing how a convergent increase in complexity can be achieved. The main thesis of the new theory is that the presence of organic codes in ontogenesis is not only a theoretical necessity but, first and foremost, an idea that can be tested and that has already been found to be in agreement with the evidence.
Collapse
Affiliation(s)
- Marcello Barbieri
- Dipartimento di Morfologia ed Embriologia, via Fossato di Mortara 64a, Ferrara 44121, Italy
| |
Collapse
|
15
|
Bhattacharyya S, Rainey MA, Arya P, Mohapatra BC, Mushtaq I, Dutta S, George M, Storck MD, McComb RD, Muirhead D, Todd GL, Gould K, Datta K, Gelineau-van Waes J, Band V, Band H. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep 2016; 6:20727. [PMID: 26884322 PMCID: PMC4756679 DOI: 10.1038/srep20727] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Priyanka Arya
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Samikshan Dutta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Rodney D McComb
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Muirhead
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gordon L Todd
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karen Gould
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Vimla Band
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
17
|
Bandín S, Morona R, González A. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. Front Neuroanat 2015; 9:107. [PMID: 26321920 PMCID: PMC4530589 DOI: 10.3389/fnana.2015.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/24/2015] [Indexed: 01/18/2023] Open
Abstract
Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates.
Collapse
Affiliation(s)
- Sandra Bandín
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Ruth Morona
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| |
Collapse
|
18
|
Alvarez-Bolado G, Grinevich V, Puelles L. Editorial: Development of the hypothalamus. Front Neuroanat 2015; 9:83. [PMID: 26157363 PMCID: PMC4477166 DOI: 10.3389/fnana.2015.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 01/25/2023] Open
Affiliation(s)
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center and University of Heidelberg Heidelberg, Germany
| | - Luis Puelles
- Department of Human Anatomy and IMIB, University of Murcia Murcia, Spain
| |
Collapse
|
19
|
Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice. Proc Natl Acad Sci U S A 2015; 112:4803-8. [PMID: 25825751 DOI: 10.1073/pnas.1419300112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia.
Collapse
|
20
|
Haddad-Tóvolli R, Paul FA, Zhang Y, Zhou X, Theil T, Puelles L, Blaess S, Alvarez-Bolado G. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front Neuroanat 2015; 9:34. [PMID: 25859185 PMCID: PMC4373379 DOI: 10.3389/fnana.2015.00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
Secreted protein Sonic hedgehog (Shh) ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR) of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e., we wanted to approach the question of a possible hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: (1) hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; (2) another source of diversity are differential requirements for Shh of neural vs. non-neural origin; (3) the medial progenitor domain known to depend on Gli2 for its development generates several essential hypothalamic nuclei plus the pituitary and median eminence; (4) the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Fabian A Paul
- Laboratory of Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| | - Yuanfeng Zhang
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Xunlei Zhou
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| | - Luis Puelles
- Department of Morphology, Instituto Murciano de Investigación Biosanitaria, School of Medicine, University of Murcia Murcia, Spain ; Facultad de Medicina, University of Murcia Murcia, Spain
| | - Sandra Blaess
- Laboratory of Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| | - Gonzalo Alvarez-Bolado
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| |
Collapse
|
21
|
Inversion of Sonic hedgehog action on its canonical pathway by electrical activity. Proc Natl Acad Sci U S A 2015; 112:4140-5. [PMID: 25829542 DOI: 10.1073/pnas.1419690112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) is a morphogenic protein that operates through the Gli transcription factor-dependent canonical pathway to orchestrate normal development of many tissues. Because aberrant levels of Gli activity lead to a wide spectrum of diseases ranging from neurodevelopmental defects to cancer, understanding the regulatory mechanisms of Shh canonical pathway is paramount. During early stages of spinal cord development, Shh specifies neural progenitors through the canonical signaling. Despite persistence of Shh as spinal cord development progresses, Gli activity is switched off by unknown mechanisms. In this study we find that Shh inverts its action on Gli during development. Strikingly, Shh decreases Gli signaling in the embryonic spinal cord by an electrical activity- and cAMP-dependent protein kinase-mediated pathway. The inhibition of Gli activity by Shh operates at multiple levels. Shh promotes cytosolic over nuclear localization of Gli2, induces Gli2 and Gli3 processing into repressor forms, and activates cAMP-responsive element binding protein that in turn represses gli1 transcription. The regulatory mechanisms identified in this study likely operate with different spatiotemporal resolution and ensure effective down-regulation of the canonical Shh signaling as spinal cord development progresses. The developmentally regulated intercalation of electrical activity in the Shh pathway may represent a paradigm for switching from canonical to noncanonical roles of developmental cues during neuronal differentiation and maturation.
Collapse
|
22
|
He P, Staufenbiel M, Li R, Shen Y. Deficiency of patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice. Hum Mol Genet 2014; 23:6512-27. [PMID: 25027328 DOI: 10.1093/hmg/ddu370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Normally, sonic hedgehog (Shh) signaling induces high levels of Patched 1 (Ptc1) and its associated transcription factor Gli1 with genesis of specific neuronal progeny. But their roles in the neural stem cells (NSCs), including glial precursor cells (GPCs), of Alzheimer's disease (AD) are unclear. Here, we show that Ptc1 and Gli1 are significantly deficits in the hippocampus of an aged AD transgenic mouse mode, whereas these two molecules are highly elevated at young ages. Our similar findings in autopsied AD brains validate the discovery in AD mouse models. To examine whether Aβ peptides, which are a main component of the amyloid plaques in AD brains, affected Ptc1-Gli1 signaling, we treated GPCs with Aβ peptides, we found that high dose of Aβ1-42 but not Aβ1-40 significantly decreased Ptc1-Gli1, while Shh itself was elevated in hippocampal NSCs/GPCs. Furthermore, we found that deficits of Ptc1-Gli1 signaling induced NSCs/GPCs into asymmetric division, which results in an increase in the number of dividing cells including transit-amplifying cells and neuroblasts. These precursor cells commit to apoptosis-like death under the toxic conditions. By this way, adult neural precursor cell pool is exhausted and defective neurogenesis happens in AD brains. Our findings suggest that Ptc1-Gli1 signaling deregulation resulting abnormal loss of GPCs may contribute to a cognition decline in AD brains. The novel findings elucidate a new molecular mechanism of adult NSCs/GPCs on neurogenesis and demonstrate a regulatory role for Ptc1-Gli1 in adult neural circuit integrity of the brain.
Collapse
Affiliation(s)
- Ping He
- Center for Advanced Therapeutic Strategies for Brain Disorders and
| | | | - Rena Li
- Center for Hormone Advanced Science and Education, The Roskamp Institute, Sarasota, FL 34243, USA,
| | - Yong Shen
- Center for Advanced Therapeutic Strategies for Brain Disorders and, Department of Neurology, University of Florida College of Medicine, Gainesville FL32610, USA
| |
Collapse
|
23
|
Tsang SW, Zhang H, Lin C, Xiao H, Wong M, Shang H, Yang ZJ, Lu A, Yung KKL, Bian Z. Rhein, a natural anthraquinone derivative, attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis. PLoS One 2013; 8:e82201. [PMID: 24312641 PMCID: PMC3849497 DOI: 10.1371/journal.pone.0082201] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023] Open
Abstract
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.
Collapse
Affiliation(s)
- Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chengyuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Haitao Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Michael Wong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hongcai Shang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhi-Jun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
24
|
Xu GF, Xie WF. Effect of ERBB2 expression on invasiveness of glioma TJ905 cells. ASIAN PAC J TROP MED 2013; 6:964-7. [DOI: 10.1016/s1995-7645(13)60172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022] Open
|
25
|
Abbasi AA, Minhas R, Schmidt A, Koch S, Grzeschik KH. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs. Dev Growth Differ 2013; 55:699-709. [PMID: 24102645 DOI: 10.1111/dgd.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.
Collapse
Affiliation(s)
- Amir A Abbasi
- Faculty of Biological Sciences, National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | |
Collapse
|
26
|
Wang Z, Wang L, Shangguan S, Lu X, Chang S, Wang J, Zou J, Wu L, Zhang T, Luo Y. Association between PTCH1 polymorphisms and risk of neural tube defects in a Chinese population. ACTA ACUST UNITED AC 2013; 97:409-15. [PMID: 23761049 DOI: 10.1002/bdra.23152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND SHH signaling pathway plays an important role in the formation of the neural plate and is involved in the regulation of the dorsoventral (DV) axis of the neural tube. Some neural tube defects (NTDs) may be caused through overactivation of the SHH signaling pathway. The PTCH1 gene, encoding a negative regulator of SHH signaling, affects neural tube closure in animal models. However, in humans, the relationship between single nucleotide polymorphisms (SNPs) of the PTCH1 gene and neural tube defects remains unclear. METHODS MassARRAY®GENOTYPER™ was used to genotype 18 SNPs of the PTCH1 gene in 187 NTDs and 212 control samples, to determine whether PTCH1 polymorphisms are related to NTDs. MassARRAY®EpiTYPER™ was performed to assess whether methylation modifications may be associated with SNP genotypes in this Chinese population. RESULT Increased risk for spina bifida was observed with the G allele of c.3944C>T and the T allele of c.1729™2350G>A in female patients when compared to the normal control group. High methylation levels were detected in those controls bearing the G allele of c.3944C>T. CONCLUSION In summary, polymorphisms of the PTCH1 gene may be genetic predisposing factors for spina bifida in the population studied. In addition, methylation modifications associated with the c.3944C>T polymorphism, may provide protection.
Collapse
Affiliation(s)
- Zhen Wang
- Capital Institute of Pediatrics, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum. BMC Neurosci 2012. [PMID: 23031710 DOI: 10.1186/1471‐2202‐13‐117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. RESULTS In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. CONCLUSIONS The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department Biostructural Sciences, Favaloro University, Solís 453 (1078), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum. BMC Neurosci 2012; 13:117. [PMID: 23031710 PMCID: PMC3564940 DOI: 10.1186/1471-2202-13-117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. RESULTS In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. CONCLUSIONS The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department Biostructural Sciences, Favaloro University, Solís 453 (1078), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Matise MP. Molecular genetic control of cell patterning and fate determination in the developing ventral spinal cord. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:419-25. [DOI: 10.1002/wdev.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Sinor-Anderson A, Lillien L. Akt1 interacts with epidermal growth factor receptors and hedgehog signaling to increase stem/transit amplifying cells in the embryonic mouse cortex. Dev Neurobiol 2012; 71:759-71. [PMID: 21312341 DOI: 10.1002/dneu.20878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A subset of precursors in the embryonic mouse cortex and in neurospheres expresses a higher level of the serine/threonine kinase Akt1 than neighboring precursors. We reported previously that the functional significance of high Akt1 expression was enhanced Akt1 activity, resulting in an increase in survival, proliferation, and self-renewal of multipotent stem/transit amplifying cells. Akt1 can interact with a number of signaling pathways, but the extrinsic factors that are required for specific effects of elevated Akt1 expression have not been identified. In this study we addressed the contributions of signaling via epidermal growth factor (EGF) and hedgehog (Hh) receptors. In EGF receptor-null precursors or following transient inhibition of EGF receptor tyrosine kinase activity, elevating Akt1 by retroviral transduction could still increase survival and proliferation but could not increase self-renewal. We also found that elevated Akt1 expression induced the expression of EGF receptors (EGFRs) in wild-type precursors. Several extrinsic factors, including Shh, can induce EGFR expression by cortical precursors, and we found that elevating Akt1 allowed them to respond to a subthreshold concentration of Shh to induce EGFRs. In precursors that lack the Hh receptor smoothened, however, elevating Akt1 did not increase EGFR expression or self-renewal, though it could still stimulate proliferation. These findings suggest that a subset of precursors in the embryonic cortex that express an elevated level of Akt1 can respond to lower concentrations of Shh than neighboring precursors, resulting in an increase in their expression of EGFRs. Signaling via EGFRs is required for their self-renewal.
Collapse
Affiliation(s)
- Amy Sinor-Anderson
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
31
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
32
|
Haddad-Tóvolli R, Heide M, Zhou X, Blaess S, Alvarez-Bolado G. Mouse thalamic differentiation: gli-dependent pattern and gli-independent prepattern. Front Neurosci 2012; 6:27. [PMID: 22371696 PMCID: PMC3283895 DOI: 10.3389/fnins.2012.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/08/2012] [Indexed: 12/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential for thalamic development. The Gli transcription factors act downstream of Shh – while Gli2 is the major activator (GliA), Gli3 acts primarily as a repressor (GliR). The thalamus is remarkable among dorsal structures because of its proximity to the mid-diencephalic organizer, a unique dorsal Shh source. This lends complexity to the interactions between Shh, Gli2, and Gli3, suggesting the presence of a dorsal Gli activator which elsewhere is found only ventrally, and making the dissection of thalamic Gli functions particularly interesting. A current model based on mutant phenotypes in telencephalon and midbrain postulates a degree of reciprocal antagonism of Shh and Gli3 in dorsal brain regions. To approach the role of Gli factors in thalamic specification we first analyzed mice deficient in Gli2 or Gli3. In Gli2 mutants, the thalamus is small and poorly differentiated with the exception of the medial and intralaminar nuclei which, in contrast, are specifically and severely affected by Gli3 inactivation. Gbx2 expression is very reduced in the Gli3 mutant. Most thalamic nuclei are present in both mutants, although incompletely differentiated, as reflected by the loss of specific markers. The ventral posterior group, revealed by novel specific marker Hes1, is present in both mutants and extends axons to the telencephalon. To test the Gli3/Shh interaction we generated a novel mutant deficient in Gli3 and neuroepithelial Shh. The thalamus of the n-Shh/Gli3 double mutants is very large and very poorly differentiated except for a broad domain of Gbx2, Lhx2, and Calb2 expression. In utero electroporation experiments on wild type embryos suggest that a stage-specific factor acting early is responsible for this prepattern. We show that, in the thalamus, GliA acts downstream of Shh to specify pattern and size of the thalamic nuclei to the exception of the medial and intralaminar groups. Gli3A can partially substitute for Gli2A in the Gli2 mutant. GliR is essential for specification and growth of the medial and intralaminar nuclei, contributes to the specification of other thalamic nuclei and reduces thalamic size. GliA (from neuroepithelial Shh signaling) and GliR do not show reciprocal antagonism in the thalamus, and their joint abolition does not rescue the wild type phenotype.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. Dev Biol 2012; 364:99-113. [PMID: 22309705 DOI: 10.1016/j.ydbio.2012.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 11/23/2022]
Abstract
Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.
Collapse
|
34
|
Wang H, Lei Q, Oosterveen T, Ericson J, Matise MP. Tcf/Lef repressors differentially regulate Shh-Gli target gene activation thresholds to generate progenitor patterning in the developing CNS. Development 2011; 138:3711-21. [PMID: 21775418 DOI: 10.1242/dev.068270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neural tube development, Shh signaling through Gli transcription factors is necessary to establish five distinct ventral progenitor domains that give rise to unique classes of neurons and glia that arise in specific positions along the dorsoventral axis. These cells are generated from progenitors that display distinct transcription factor gene expression profiles in specific domains in the ventricular zone. However, the molecular genetic mechanisms that control the differential spatiotemporal transcriptional responses of progenitor target genes to graded Shh-Gli signaling remain unclear. The current study demonstrates a role for Tcf/Lef repressor activity in this process. We show that Tcf3 and Tcf7L2 (Tcf4) are required for proper ventral patterning and function by independently regulating two Shh-Gli target genes, Nkx2.2 and Olig2, which are initially induced in a common pool of progenitors that ultimately segregate into unique territories giving rise to distinct progeny. Genetic and functional studies in vivo show that Tcf transcriptional repressors selectively elevate the strength and duration of Gli activity necessary to induce Nkx2.2, but have no effect on Olig2, and thereby contribute to the establishment of their distinct expression domains in cooperation with graded Shh signaling. Together, our data reveal a Shh-Gli-independent transcriptional input that is required to shape the precise spatial and temporal response to extracellular morphogen signaling information during lineage segregation in the CNS.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
35
|
Mukhopadhyay P, Brock G, Appana S, Webb C, Greene RM, Pisano MM. MicroRNA gene expression signatures in the developing neural tube. ACTA ACUST UNITED AC 2011; 91:744-62. [PMID: 21770019 DOI: 10.1002/bdra.20819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube defects (NTDs). MicroRNAs (miRNAs) are key modulators of cell and tissue differentiation. To define potential roles of miRNAs in development of the murine neural tube (NT), miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS The miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0, and 9.5 were defined and compared utilizing miRXplore microarrays from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany. Gene expression changes were verified by TaqMan quantitative Real-Time PCR. The clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS The miRXplore chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biologic networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs might direct expression of numerous genes encoding proteins, which have been shown to be indispensable for normal neurulation. This study is the first to identify miRNA expression profiles and their potential regulatory networks in the developing mammalian NT.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, 501 South Preston Street, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gongal PA, March LD, Holly VL, Pillay LM, Berry-Wynne KM, Kagechika H, Waskiewicz AJ. Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning. Dev Biol 2011; 355:55-64. [DOI: 10.1016/j.ydbio.2011.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/01/2023]
|
37
|
Mizutani CM, Bier E. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 2011; 9:663-77. [PMID: 18679435 DOI: 10.1038/nrg2417] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic systems controlling body axis formation trace back as far as the ancestor of diploblasts (corals, hydra, and jellyfish) and triploblasts (bilaterians). Comparative molecular studies, often referred to as evo-devo, provide powerful tools for elucidating the origins of mechanisms for establishing the dorsal-ventral and anterior-posterior axes in bilaterians and reveal differences in the evolutionary pressures acting upon tissue patterning. In this Review, we focus on the origins of nervous system patterning and discuss recent comparative genetic studies; these indicate the existence of an ancient molecular mechanism underlying nervous system organization that was probably already present in the bilaterian ancestor.
Collapse
Affiliation(s)
- Claudia Mieko Mizutani
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, 92093-0349, USA.
| | | |
Collapse
|
38
|
Hudson C, Ba M, Rouvière C, Yasuo H. Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 2011; 138:1643-52. [DOI: 10.1242/dev.055426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ascidians are members of the vertebrate sister group Urochordata. Their larvae exhibit a chordate body plan, which forms by a highly accelerated embryonic strategy involving a fixed cell lineage and small cell numbers. We report a detailed analysis of the specification of three of the five pairs of motoneurons in the ascidian Ciona intestinalis and show that despite well-conserved gene expression patterns and embryological outcomes compared with vertebrates, key signalling molecules have adopted different roles. We employed a combination of cell ablation and gene manipulation to analyse the function of two signalling molecules with key roles in vertebrate motoneuron specification that are known to be expressed equivalently in ascidians: the inducer Sonic hedgehog, produced ventrally by the notochord and floorplate; and the inhibitory BMP2/4, produced on the lateral/dorsal side of the neural plate. Our surprising conclusion is that neither BMP2/4 signalling nor the ventral cell lineages expressing hedgehog play crucial roles in motoneuron formation in Ciona. Furthermore, BMP2/4 overexpression induced ectopic motoneurons, the opposite of its vertebrate role. We suggest that the specification of motoneurons has been modified during ascidian evolution, such that BMP2/4 has adopted a redundant inductive role rather than a repressive role and Nodal, expressed upstream of BMP2/4 in the dorsal neural tube precursors, acts as a motoneuron inducer during normal development. Thus, our results uncover significant differences in the mechanisms used for motoneuron specification within chordates and also highlight the dangers of interpreting equivalent expression patterns as indicative of conserved function in evo-devo studies.
Collapse
Affiliation(s)
- Clare Hudson
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Moly Ba
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Christian Rouvière
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| |
Collapse
|
39
|
Elsawa SF, Almada LL, Ziesmer SC, Novak AJ, Witzig TE, Ansell SM, Fernandez-Zapico ME. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J Biol Chem 2011; 286:21524-34. [PMID: 21454528 DOI: 10.1074/jbc.m111.234146] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cells interact with their surrounding microenvironment to survive and persist within the host. Cytokines play a key role in regulating this crosstalk between malignant cells and surrounding cells in the microenvironment. Although this phenomenon is clearly established, the molecular mechanisms mediating this cellular event remain elusive. Here, using as a model bone marrow stromal cells, we describe a novel signaling mechanism initiated by CCL5 in these cells leading to up-regulation of immunoglobulin secretion by malignant B cells. CCL5 increases IL-6 expression and secretion in bone marrow stromal cells. IL-6 in turn induces Ig secretion by malignant B cells. Analysis of the mechanism reveals that CCL5 signaling induces GLI2 through a PI3K-AKT-IκBα-p65 pathway and requires GLI2 transcriptional activity to modulate IL-6 expression and Ig secretion in vitro and in vivo. Together, these results identify a novel signaling pathway mediating the stromal-cancer cell interactions, leading to increased Ig production by malignant cells.
Collapse
Affiliation(s)
- Sherine F Elsawa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cruz C, Ribes V, Kutejova E, Cayuso J, Lawson V, Norris D, Stevens J, Davey M, Blight K, Bangs F, Mynett A, Hirst E, Chung R, Balaskas N, Brody SL, Marti E, Briscoe J. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development 2010; 137:4271-82. [PMID: 21098568 PMCID: PMC2990214 DOI: 10.1242/dev.051714] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2010] [Indexed: 01/24/2023]
Abstract
Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium.
Collapse
Affiliation(s)
- Catarina Cruz
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
- Programa Doutoral em Biologia Experimental e Biomedicina, Department of Zoology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Vanessa Ribes
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Eva Kutejova
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jordi Cayuso
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Josep Samitier 1-5, Barcelona, 08028, Spain
| | - Victoria Lawson
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | - Megan Davey
- Division of Genetics and Genomics, Roslin Institute, Roslin, EH25 9PS, UK
| | - Ken Blight
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Fiona Bangs
- Biology and Biochemistry Department, University of Bath, Bath BA2 7AY, UK
| | - Anita Mynett
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Elizabeth Hirst
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Rachel Chung
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nikolaos Balaskas
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Elisa Marti
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Josep Samitier 1-5, Barcelona, 08028, Spain
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
41
|
Prykhozhij SV. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish. PLoS One 2010; 5:e13549. [PMID: 21042410 PMCID: PMC2958845 DOI: 10.1371/journal.pone.0013549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022] Open
Abstract
Background Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. Methodology/Principal Findings Analysis of the zebrafish shh−/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh−/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh−/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh−/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53−/−shh−/− mutant retina suggesting the effect of p53 on retinal differentiation. Conclusions Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
42
|
Murdoch JN, Copp AJ. The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:633-52. [PMID: 20544799 PMCID: PMC3635124 DOI: 10.1002/bdra.20686] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog signaling pathway is essential for many aspects of normal embryonic development, including formation and patterning of the neural tube. Absence of the sonic hedgehog (shh) ligand is associated with the midline defect holoprosencephaly, whereas increased Shh signaling is associated with exencephaly and spina bifida. To complicate this apparently simple relationship, mutation of proteins required for function of cilia often leads to impaired Shh signaling and to disruption of neural tube closure. In this article, we review the literature on Shh pathway mutants and discuss the relationship between Shh signaling, cilia, and neural tube defects.
Collapse
Affiliation(s)
- Jennifer N Murdoch
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | |
Collapse
|
43
|
Bragina O, Sergejeva S, Serg M, Zarkovsky T, Maloverjan A, Kogerman P, Zarkovsky A. Smoothened agonist augments proliferation and survival of neural cells. Neurosci Lett 2010; 482:81-5. [PMID: 20600593 DOI: 10.1016/j.neulet.2010.06.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
Abstract
Sonic hedgehog signaling pathway is important in developmental processes like dorsoventral neural tube patterning, neural stem cell proliferation and neuronal and glial cell survival. Shh is also implicated in the regulation of the adult hippocampal neurogenesis. Recently, nonpeptidyl Smoothened activators of the Shh pathway have been identified. The aim of this study was to investigate the effects of chlorobenzothiophene-containing molecule, Smo agonist (SAG), which has been shown to activate Shh signaling pathway, in neurogenesis and neuronal survival in in vitro and in vivo models. Our in vitro experiments showed that SAG induces increased expression of Gli1 mRNA, transcriptional target and mediator of Shh signal. In vitro experiments also demonstrated that SAG in low-nanomolar concentrations induces proliferation of neuronal and glial precursors without affecting the differentiation pattern of newly produced cells. In contrast to Shh, SAG did not induce neurotoxicity in neuronal cultures. The SAG and Shh treatment also promoted the survival of newly generated neural cells in the dentate gyrus after their intracerebroventricular administration to adult rats. We propose that SAG and similar compounds represent attractive molecules to be developed for treatment of disorders where stimulation of the generation and survival of new neural cells would be beneficial.
Collapse
Affiliation(s)
- Olga Bragina
- Institute of Clinical Medicine, Tallinn University of Technology, Estonia
| | | | | | | | | | | | | |
Collapse
|
44
|
Robinson JF, Guerrette Z, Yu X, Hong S, Faustman EM. A systems-based approach to investigate dose- and time-dependent methylmercury-induced gene expression response in C57BL/6 mouse embryos undergoing neurulation. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2010; 89:188-200. [PMID: 20540155 PMCID: PMC3726008 DOI: 10.1002/bdrb.20241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg-linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS Using a systems-based toxicogenomic approach, we examined dose- and time-dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO-based application GO-Quant, we quantitatively assessed dose- and time-dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation-related GO biological processes. CONCLUSIONS Our results suggest that MeHg-induced impacts within these biological processes during gestational development may underlie MeHg-induced teratogenic and neurodevelopmental toxicity outcomes.
Collapse
Affiliation(s)
- Joshua F. Robinson
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Zachariah Guerrette
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Xiaozhong Yu
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Sungwoo Hong
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health
Sciences, University of Washington, Seattle, Washington
- Center for Ecogenetics and Environmental Health, Seattle,
Washington
- Institute for Risk Analysis and Risk Communication,
Seattle, Washington
- Center on Human Development and Disability, Seattle,
Washington
- Center for Child Environmental Health Risks Research,
Seattle, Washington
| |
Collapse
|
45
|
Dessaud E, Ribes V, Balaskas N, Yang LL, Pierani A, Kicheva A, Novitch BG, Briscoe J, Sasai N. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol 2010; 8:e1000382. [PMID: 20532235 PMCID: PMC2879390 DOI: 10.1371/journal.pbio.1000382] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.
Collapse
Affiliation(s)
- Eric Dessaud
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Vanessa Ribes
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Nikolaos Balaskas
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Lin Lin Yang
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alessandra Pierani
- Institut Jacques Monod, Université Paris Diderot, Program of Development and Neurobiology, Paris, France
| | - Anna Kicheva
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Bennett G. Novitch
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - James Briscoe
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Noriaki Sasai
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
46
|
Carney RSE, Mangin JM, Hayes L, Mansfield K, Sousa VH, Fishell G, Machold RP, Ahn S, Gallo V, Corbin JG. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Dev 2010; 5:14. [PMID: 20507551 PMCID: PMC2892491 DOI: 10.1186/1749-8104-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/27/2010] [Indexed: 11/23/2022] Open
Abstract
Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh)-expressing and Shh-responsive (Nkx2-1+ and Gli1+) neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2) temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ulloa F, Martí E. Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 2010; 239:69-76. [PMID: 19681160 DOI: 10.1002/dvdy.22058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spinal cord has been used as a model to dissect the mechanisms that govern the patterning of tissues during animal development, since the principles that rule the dorso-ventral patterning of the neural tube are applicable to other systems. Signals that determine the dorso-ventral axis of the spinal cord include Sonic hedgehog (Shh), acting as a bona fide morphogenetic signal to determine ventral progenitor identities, and members of the Bmp and the Wnt families, acting in the dorsal neural tube. Although Wnts have been initially recognized as important in proliferation of neural progenitor cells, their role in the dorso-ventral patterning has been controversial. In this review, we discuss recent reports that show an important contribution of the Wnt canonical pathway in dorso-ventral pattern formation. These data allow building a model by which the ventralizing activity of Shh is antagonized by Wnt activity through the expression of Gli3, a potent inhibitor of the Shh pathway. Therefore, antagonistic interactions between canonical Wnt, promoting dorsal identities, and Shh pathways, inducing ventral ones, would define the dorso-ventral patterning of the developing central nervous system.
Collapse
Affiliation(s)
- Fausto Ulloa
- Institute for Research in Biomedicine, Parc Cientific de Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
48
|
Goetz SC, Ocbina PJR, Anderson KV. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol 2009; 94:199-222. [PMID: 20362092 DOI: 10.1016/s0091-679x(08)94010-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Hedgehog (Hh) signal transduction pathway is essential for the development and patterning of numerous organ systems, and has important roles in a variety of human cancers. Genetic screens for mouse embryonic patterning mutants first showed a connection between mammalian Hh signaling and intraflagellar transport (IFT), a process required for construction of the primary cilium, a small cellular projection found on most vertebrate cells. Additional genetic and cell biological studies have provided very strong evidence that mammalian Hh signaling depends on the primary cilium. Here, we review the evidence that defines the integral roles that IFT proteins and cilia play in the regulation of the Hh signal transduction pathway in vertebrates. We discuss the mechanisms that control localization of Hh pathway proteins to the cilium, focusing on the transmembrane protein Smoothened (Smo), which moves into the cilium in response to Hh ligand. The phenotypes caused by loss of cilia-associated proteins are complex, which suggests that cilia and IFT play active roles in mediating Hh signaling rather than serving simply as a compartment in which pathway components are concentrated. Hh signaling in Drosophila does not depend on cilia, but there appear to be ancient links between cilia and components of the Hh pathway that may reveal how this fundamental difference between the Drosophila and mammalian Hh pathways arose in evolution.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
49
|
Liu S, Li Z, Gui JF. Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog pathway and maintains left-right asymmetry establishment function. PLoS One 2009; 4:e7261. [PMID: 19789708 PMCID: PMC2749440 DOI: 10.1371/journal.pone.0007261] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/09/2009] [Indexed: 12/01/2022] Open
Abstract
Gene duplication is thought to provide raw material for functional divergence and innovation. Fish-specific dmrt2b has been identified as a duplicated gene of the dmrt2a/terra in fish genomes, but its function has remained unclear. Here we reveal that Dmrt2b knockdown zebrafish embryos display a downward tail curvature and have U-shaped somites. Then, we demonstrate that Dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway, because Dmrt2b knockdown reduces target gene expression of Hedgehog signaling, and also impairs slow muscle development and neural tube patterning through Hedgehog signaling. Moreover, the Dmrt2b morphants display defects in heart and visceral organ asymmetry, and, some lateral-plate mesoderm (LPM) markers expressed in left side are randomized. Together, these data indicate that fish-specific duplicated dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway and maintains the common function for left-right asymmetry establishment.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
50
|
Ribes V, Le Roux I, Rhinn M, Schuhbaur B, Dollé P. Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways. Development 2009; 136:665-76. [PMID: 19168680 DOI: 10.1242/dev.016204] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The progressive generation of embryonic trunk structures relies on the proper patterning of the caudal epiblast, which involves the integration of several signalling pathways. We have investigated the function of retinoic acid (RA) signalling during this process. We show that, in addition to posterior mesendoderm, primitive streak and node cells transiently express the RA-synthesizing enzyme Raldh2 prior to the headfold stage. RA-responsive cells (detected by the RA-activated RARE-lacZ transgene) are additionally found in the epiblast layer. Analysis of RA-deficient Raldh2(-/-) mutants reveals early caudal patterning defects, with an expansion of primitive streak and mesodermal markers at the expense of markers of the prospective neuroepithelium. As a result, many genes involved in neurogenesis and/or patterning of the embryonic spinal cord are affected in their expression. We demonstrate that RA signalling is required at late gastrulation stages for mesodermal and neural progenitors to respond to the Shh signal. Whole-embryo culture experiments indicate that the proper response of cells to Shh requires two RA-dependent mechanisms: (1) a balanced antagonism between Fgf and RA signals, and (2) a RA-mediated repression of Gli2 expression. Thus, an interplay between RA, Fgf and Shh signalling is likely to be an important mechanism underpinning the tight regulation of caudal embryonic development.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Inserm, U 964, Illkirch, F-67400 France
| | | | | | | | | |
Collapse
|