1
|
Impact of gastrointestinal comorbidities in patients with right and left atrial isomerism. Cardiol Young 2022; 32:1053-1060. [PMID: 34470692 DOI: 10.1017/s1047951121003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND AIM Heterotaxy syndrome, being right atrial isomerism (RAI) or left atrial isomerism (LAI), often presents with Congenital Heart Disease (CHD). Intestinal abnormalities, including malrotation are common. We assessed the spectrum of gut abnormalities and their impact on medium-term outcome in a cohort of patients with fetal and postnatal diagnoses of heterotaxy syndrome. METHODS We reviewed the cardiology records of heterotaxy syndrome patients from two centres, regarding the presence of CHD, time for cardiac intervention, presence of gastrointestinal abnormalities, and type/time of surgery. A questionnaire about gastrointestinal status was sent to patients <18 years old. Kaplan-Meier curves were derived for survival data and freedom from intervention. RESULTS Data were included for 182 patients (49 RAI and 133 LAI) of 247 identified. Questionnaires were sent to 77 families and 47 replied. CHD was present in all RAI and 61.7% of LAI cases. Thirty-eight patients had abdominal surgery (20.9%), similar for RAI and LAI (20.4% versus 21%, p> 0.99): Ladd procedure in 17 (44.7%), non-Ladd in 12 (31.5%), and both procedures in 9 (23.7%). Ten-year freedom from Ladd procedure for all was 86% for the whole cohort (RAI = 87%; LAI = 85%, p = 0.98). Freedom from any gastrointestinal surgery at 10 years was 79% for the whole cohort (RAI = 77%; LAI = 80%, p = 0.54). Ten-year freedom from cardiac surgery was 31% for the whole cohort (RAI = 6%; LAI = 43%, p < 0.0001). CONCLUSIONS In our cohort, one in five patients required abdominal surgery, mostly in their first year of life, similar for RAI and LAI. Between 1 and 10 years of follow-up, the impact of gastrointestinal abnormalities on outcome was minimal. Medium term survival was related to CHD.
Collapse
|
2
|
Life inter vivos: modeling regeneration in the relation between bodies and biomaterials. BIOSOCIETIES 2020. [DOI: 10.1057/s41292-020-00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
4
|
Pai VP, Willocq V, Pitcairn EJ, Lemire JM, Paré JF, Shi NQ, McLaughlin KA, Levin M. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner. Biol Open 2017; 6:1445-1457. [PMID: 28818840 PMCID: PMC5665463 DOI: 10.1242/bio.025957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Emily J Pitcairn
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Joan M Lemire
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Jean-François Paré
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Nian-Qing Shi
- Department of Medicine at University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kelly A McLaughlin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
5
|
Franzosa JA, Bugel SM, Tal TL, La Du JK, Tilton SC, Waters KM, Tanguay RL. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects. FASEB J 2013; 27:4866-76. [PMID: 23975936 DOI: 10.1096/fj.12-225524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA) is involved in multifarious and complex functions necessary for vertebrate development. RA signaling is reliant on strict enzymatic regulation of RA synthesis and metabolism. Improper spatiotemporal expression of RA during development can result in vertebrate axis defects. microRNAs (miRNAs) are also pivotal in orchestrating developmental processes. While mechanistic links between miRNAs and axial development are established, the role of miRNAs in regulating metabolic enzymes responsible for RA abundance during axis formation has yet to be elucidated. Our results uncovered a role of miR-19 family members in controlling RA metabolism through the regulation of CYP26A1 during vertebrate axis formation. Global miRNA expression profiling showed that developmental RA exposure suppressed the expression of miR-19 family members during zebrafish somitogenesis. A reporter assay confirmed that cyp26a1 is a bona fide target of miR-19 in vivo. Transient knockdown of miR-19 phenocopied axis defects caused by RA exposure. Exogenous miR-19 rescued the axis defects induced by RA exposure. Taken together, these results indicate that the teratogenic effects of RA exposure result, in part, from repression of miR-19 expression and subsequent misregulation of cyp26a1. This highlights a previously unidentified role of miR-19 in facilitating vertebrate axis development via regulation of RA signaling.
Collapse
Affiliation(s)
- Jill A Franzosa
- 3Department of Environmental and Molecular Toxicology, Oregon State University, 28645 East HWY 34. Corvallis, OR 97333, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Williams GD, Feng A. Heterotaxy Syndrome: Implications for Anesthesia Management. J Cardiothorac Vasc Anesth 2010; 24:834-44. [DOI: 10.1053/j.jvca.2010.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Indexed: 11/11/2022]
|
7
|
Sutherland MJ, Ware SM. Disorders of left-right asymmetry: Heterotaxy and situs inversus. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2009; 151C:307-17. [DOI: 10.1002/ajmg.c.30228] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Ibañes M, Izpisúa Belmonte JC. Left–right axis determination. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2009; 1:210-219. [DOI: 10.1002/wsbm.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marta Ibañes
- Department of Estructura i Constituents de la Matèria, University of Barcelona, Barcelona, Spain
| | - Juan Carlos Izpisúa Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Lin X, Xu X. Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development 2009; 136:207-17. [PMID: 19103803 DOI: 10.1242/dev.029561] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt/beta-catenin pathway exhibits distinct and developmental stage-specific roles during cardiogenesis. However, little is known about the molecular mechanisms of Wnt/beta-catenin signaling in the establishment of cardiac left-right (LR) asymmetry. Using zebrafish as an animal model, we show here that Wnt/beta-catenin signaling is differentially required in cardiac LR patterning. At an early stage, during asymmetric signal generation, Wnt/beta-catenin signaling is necessary for Kupffer's vesicle development and for the regulation of both heart and visceral laterality. At a later stage, during asymmetric signal propagation, excessive Wnt/beta-catenin signaling inhibits the transmission of asymmetric cues from the lateral plate mesoderm (LPM) to the cardiac field but not to the developing gut; as such, it only regulates heart laterality. Molecular analysis identifies Gata4 as the downstream target of Wnt/beta-catenin signaling in the cardiac field that responds to the Wnt/beta-catenin signaling and regulates the competence of the heart field to express left-sided genes. In summary, our results reveal a previously unexpected role of Wnt-Gata4 signaling in the control of asymmetric signal propagation from the LPM to the cardiac field.
Collapse
Affiliation(s)
- Xueying Lin
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
10
|
Jahr M, Schlueter J, Brand T, Männer J. Development of the proepicardium in Xenopus laevis. Dev Dyn 2008; 237:3088-96. [PMID: 18816844 DOI: 10.1002/dvdy.21713] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The proepicardium (PE) is an embryonic progenitor cell population, which provides the epicardium, the majority of the cardiac interstitium, the coronary vasculature and possibly some cardiomyocytes. Recent studies have documented (1) the presence of bilaterally paired PE anlagen in several vertebrates, and (2) species-specific differences in the fate of the left and right PE anlagen. Here, we document PE development in Xenopus laevis (stages 37-46). The PE appears at stage 41 in the form of a cone-shaped accumulation of mesothelial cells covering the pericardial surface of the right horn of the sinus venosus. No such structure appears on the left sinus horn. At the end of stage 41, the tip of the PE establishes a firm contact with the developing ventricle. A secondary tissue bridge is established facilitating the transfer of PE cells to the heart. During stages 41-46, this tissue bridge is visible in vivo through the transparent body wall. Corresponding to the morphological data, the PE marker gene Tbx18 is expressed only on the right sinus horn suggesting a right-sided origin of the PE. Left-right lineage tracing has confirmed this idea. These results show that Xenopus PE development proceeds in a bilaterally asymmetric pattern as previously observed in chicks. We speculate that asymmetric PE development is controlled by signals from left-right signaling pathways and that the PE is an indicator for right-sidedness in Xenopus embryos. Xenopus might be a good model to uncover the role of left-right signaling pathways in the control of asymmetric PE development.
Collapse
Affiliation(s)
- Maike Jahr
- Department of Anatomy and Embryology, Georg-August University of Göttingen, Germany
| | | | | | | |
Collapse
|
11
|
Hadjantonakis AK, Pisano E, Papaioannou VE. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One 2008; 3:e2511. [PMID: 18575602 PMCID: PMC2427182 DOI: 10.1371/journal.pone.0002511] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/24/2008] [Indexed: 01/14/2023] Open
Abstract
Background The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. Results Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. Conclusions We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in the mouse and acts through effects on notch signaling around the node as well as through an effect on the morphology and motility of the nodal cilia.
Collapse
Affiliation(s)
| | - Elinor Pisano
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Raya Á, Izpisúa Belmonte JC. Insights into the establishment of left–right asymmetries in vertebrates. ACTA ACUST UNITED AC 2008; 84:81-94. [DOI: 10.1002/bdrc.20122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Aw S, Adams DS, Qiu D, Levin M. H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 2008; 125:353-72. [PMID: 18160269 PMCID: PMC2346612 DOI: 10.1016/j.mod.2007.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/05/2007] [Accepted: 10/24/2007] [Indexed: 12/23/2022]
Abstract
Consistent laterality is a fascinating problem, and study of the Xenopus embryo has led to molecular characterization of extremely early steps in left-right patterning: bioelectrical signals produced by ion pumps functioning upstream of asymmetric gene expression. Here, we reveal a number of novel aspects of the H+/K+-ATPase module in chick and frog embryos. Maternal H+/K+-ATPase subunits are asymmetrically localized along the left-right, dorso-ventral, and animal-vegetal axes during the first cleavage stages, in a process dependent on cytoskeletal organization. Using a reporter domain fused to molecular motors, we show that the cytoskeleton of the early frog embryo can provide asymmetric, directional information for subcellular transport along all three axes. Moreover, we show that the Kir4.1 potassium channel, while symmetrically expressed in a dynamic fashion during early cleavages, is required for normal LR asymmetry of frog embryos. Thus, Kir4.1 is an ideal candidate for the K+ ion exit path needed to allow the electroneutral H+/K+-ATPase to generate voltage gradients. In the chick embryo, we show that H+/K+-ATPase and Kir4.1 are expressed in the primitive streak, and that the known requirement for H+/K+-ATPase function in chick asymmetry does not function through effects on the circumferential expression pattern of Connexin43. These data provide details crucial for the mechanistic modeling of the physiological events linking subcellular processes to large-scale patterning and suggest a model where the early cytoskeleton sets up asymmetric ion flux along the left-right axis as a system of planar polarity functioning orthogonal to the apical-basal polarity of the early blastomeres.
Collapse
Affiliation(s)
- Sherry Aw
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Dayong Qiu
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Michael Levin
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| |
Collapse
|
14
|
Esguerra CV, Nelles L, Vermeire L, Ibrahimi A, Crawford AD, Derua R, Janssens E, Waelkens E, Carmeliet P, Collen D, Huylebroeck D. Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development 2008; 134:4381-93. [PMID: 18039968 DOI: 10.1242/dev.000026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate development, signaling by the TGFbeta ligand Nodal is critical for mesoderm formation, correct positioning of the anterior-posterior axis, normal anterior and midline patterning, and left-right asymmetric development of the heart and viscera. Stimulation of Alk4/EGF-CFC receptor complexes by Nodal activates Smad2/3, leading to left-sided expression of target genes that promote asymmetric placement of certain internal organs. We identified Ttrap as a novel Alk4- and Smad3-interacting protein that controls gastrulation movements and left-right axis determination in zebrafish. Morpholino-mediated Ttrap knockdown increases Smad3 activity, leading to ectopic expression of snail1a and apparent repression of e-cadherin, thereby perturbing cell movements during convergent extension, epiboly and node formation. Thus, although the role of Smad proteins in mediating Nodal signaling is well-documented, the functional characterization of Ttrap provides insight into a novel Smad partner that plays an essential role in the fine-tuning of this signal transduction cascade.
Collapse
Affiliation(s)
- Camila V Esguerra
- Center for Transgene Technology and Gene Therapy, VIB, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rohr S, Otten C, Abdelilah-Seyfried S. Asymmetric involution of the myocardial field drives heart tube formation in zebrafish. Circ Res 2008; 102:e12-9. [PMID: 18202314 DOI: 10.1161/circresaha.107.165241] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many vertebrate organs are derived from monolayered epithelia that undergo morphogenesis to acquire their shape. Whereas asymmetric left/right gene expression within the zebrafish heart field has been well documented, little is known about the tissue movements and cellular changes underlying early cardiac morphogenesis. Here, we demonstrate that asymmetric involution of the myocardium of the right-posterior heart field generates the ventral floor, whereas the noninvoluting left heart field gives rise to the dorsal roof of the primary heart tube. During heart tube formation, asymmetric left/right gene expression within the myocardium correlates with asymmetric tissue morphogenesis. Disruption of left/right gene expression causes randomized myocardial tissue involution. Time-lapse analysis combined with genetic analyses reveals that motility of the myocardial epithelium is a tissue migration process. Our results demonstrate that asymmetric morphogenetic movements of the 2 bilateral myocardial cell populations generate different dorsoventral regions of the zebrafish heart tube. Failure to generate a heart tube does not affect the acquisition of atrial versus ventricular cardiac cell shapes. Therefore, establishment of basic cardiac cell shapes precedes cardiac function. Together, these results provide the framework for the integration of single cell behaviors during the formation of the vertebrate primary heart tube.
Collapse
Affiliation(s)
- Stefan Rohr
- Max Delbrück Center for Molecular Medicine, University of Freiburg, Germany
| | | | | |
Collapse
|
16
|
Aquilina-Beck A, Ilagan K, Liu Q, Liang JO. Nodal signaling is required for closure of the anterior neural tube in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:126. [PMID: 17996054 PMCID: PMC2214732 DOI: 10.1186/1471-213x-7-126] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 11/08/2007] [Indexed: 02/08/2023]
Abstract
Background Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. Results We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFβ Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. Conclusion This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain.
Collapse
Affiliation(s)
- Allisan Aquilina-Beck
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
17
|
Spéder P, Petzoldt A, Suzanne M, Noselli S. Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 2007; 17:351-8. [PMID: 17643981 DOI: 10.1016/j.gde.2007.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Left/right (L/R) asymmetry is essential during embryonic development for organ positioning, looping and handed morphogenesis. A major goal in the field is to understand how embryos initially determine their left and right hand sides, a process known as symmetry breaking. A number of recent studies on several vertebrate and invertebrate model organisms have provided a more complex view on how L/R asymmetry is established, revealing an apparent partition between deuterostomes and protostomes. In deuterostomes, nodal cilia represent a conserved symmetry-breaking process; nevertheless, growing evidence shows the existence of pre-cilia L/R asymmetries involving active ion flows. In protostomes like snails and Drosophila, symmetry breaking relies on different mechanisms, involving, in particular, the actin cytoskeleton and associated molecular motors.
Collapse
Affiliation(s)
- Pauline Spéder
- ISBDC, University of Nice Sophia-Antipolis, CNRS, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | |
Collapse
|
18
|
Schulte I, Schlueter J, Abu-Issa R, Brand T, Männer J. Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn 2007; 236:684-95. [PMID: 17238175 DOI: 10.1002/dvdy.21065] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The proepicardium (PE) is an embryonic progenitor cell population that delivers the epicardium, the majority of the cardiac interstitium, and the coronary vasculature. In the present study, we compared PE development in mouse and chick embryos. In the mouse, a left and a right PE anlage appear simultaneously, which subsequently merge at the embryonic midline to form a single PE. In chick embryos, the right PE anlage appears earlier than the left and only the right anlage acquires the full PE-phenotype. The left anlage remains in a rudimentary state. The expression patterns of PE marker genes (Tbx18, Wt1) correspond to the morphological data, being bilateral in the mouse and unilateral in the chick. Bmp4, which is unilaterally expressed in the right PE of chick embryos, is symmetrically expressed in the sinus venosus wall cranial to the PE in mouse embryos. Asymmetric development of the chicken PE might reflect side-specific differences in topographical relationships to tissues with PE-inducing or repressing activity or might result from the PE-repressing activity of the right PE, which grows earlier. To test these hypotheses, we analyzed PE development in chick embryos, firstly, subsequent to experimentally induced inversion of PE topographical relationships to neighbouring tissues; secondly, in organ cultures; and, thirdly, subsequent to induction of cardia bifida. In all three experiments, only the right PE develops the full PE phenotype. Our results suggest that PE development might be controlled by the L-R pathway in the chick but not in the mouse embryo.
Collapse
Affiliation(s)
- Inga Schulte
- Department of Anatomy and Embryology, Georg-August University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Spéder P, Noselli S. Left-right asymmetry: class I myosins show the direction. Curr Opin Cell Biol 2006; 19:82-7. [PMID: 17174542 DOI: 10.1016/j.ceb.2006.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/07/2006] [Indexed: 02/03/2023]
Abstract
Myosins are actin-based molecular motors that are found in almost all eukaryotes. Phylogenetic analysis allows the discrimination of 37 different types of myosins, most with unknown functions. Recent work in Drosophila has revealed a crucial role for type ID unconventional myosin in left-right asymmetry. Mutations in Myosin ID completely reverse the left-right axis (situs inversus), a phenotype that is dependent on an intact actin cytoskeleton. How this myosin might orient the left-right axis has began to be elucidated by showing that it interacts directly with beta-catenin, suggesting that myosin ID interacts with the adherens junction to control the direction of organ looping. This is the first demonstration of a role of a myosin in body patterning.
Collapse
Affiliation(s)
- Pauline Spéder
- Institute of Signalling, Developmental Biology & Cancer, CNRS - UMR 6543, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France
| | | |
Collapse
|
20
|
Manoli DS, Meissner GW, Baker BS. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci 2006; 29:444-51. [PMID: 16806511 DOI: 10.1016/j.tins.2006.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/10/2006] [Accepted: 06/07/2006] [Indexed: 11/16/2022]
Abstract
Innate behaviors offer a unique opportunity to use genetic analysis to dissect and characterize the neural substrates of complex behavioral programs. Courtship in Drosophila involves a complex series of stereotyped behaviors that include numerous exchanges of multimodal sensory information over time. As we will discuss in this review, recent work has demonstrated that male-specific expression of Fruitless transcription factors (Fru(M) proteins) is necessary and sufficient to confer the potential for male courtship behaviors. Fru(M) factors program neurons of the male central and peripheral nervous systems whose function is dedicated to sexual behaviors. This circuitry seems to integrate sensory information to define behavioral states and regulate conserved neural elements for sex-specific behavioral output. The principles that govern the circuitry specified by Fru(M) expression might also operate in subcortical networks that govern innate behaviors in mammals.
Collapse
Affiliation(s)
- Devanand S Manoli
- Medical Scientist Training Program, Neurosciences Program and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
21
|
Soroldoni D, Bajoghli B, Aghaallaei N, Czerny T. Dynamic expression pattern of Nodal-related genes during left-right development in medaka. Gene Expr Patterns 2006; 7:93-101. [PMID: 16831571 DOI: 10.1016/j.modgep.2006.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Nodal-related genes have been implicated in mesendoderm induction, establishment of embryonic axes, neural patterning and left-right development among vertebrates. Here we report the isolation of three Nodal-related genes in medaka (Oryzias latipes). Based on sequence analysis and in accordance to zebrafish orthologues we named the isolated genes Ndr1, Ndr2 and Spaw. Gene expression analysis throughout medaka development confirmed this assignment. Ndr1 and Ndr2 are detectable during gastrulation whereas Ndr2 and Spaw are expressed asymmetrically during somitogenesis. In accordance with its zebrafish orthologue, Spaw is expressed as the first asymmetric marker in the left lateral plate mesoderm (LPM) and Ndr2 displays asymmetric expression domains in the brain and the LPM. In general, the spatial distribution of Nodal transcripts resembles those reported for zebrafish, in case of Ndr2, however, we report a novel left-right asymmetry in the posterior paraxial mesoderm flanking the Kupffer's vesicle.
Collapse
Affiliation(s)
- Daniele Soroldoni
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Duval D, Trouillas M, Thibault C, Dembelé D, Diemunsch F, Reinhardt B, Mertz AL, Dierich A, Boeuf H. Apoptosis and differentiation commitment: novel insights revealed by gene profiling studies in mouse embryonic stem cells. Cell Death Differ 2006; 13:564-75. [PMID: 16311515 DOI: 10.1038/sj.cdd.4401789] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38alpha mitogen-activated protein kinase (MAPK) activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at 3 days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene, which prevents apoptosis of early differentiated cells.
Collapse
Affiliation(s)
- D Duval
- UMR5096-CNRS/UP/IRD, Perpignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Raya A, Izpisúa Belmonte JC. Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 2006; 7:283-93. [PMID: 16543932 DOI: 10.1038/nrg1830] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vertebrates seem to be essentially bilaterally symmetrical on the exterior, there are numerous interior left-right asymmetries in the disposition and placement of internal organs. These asymmetries are established during embryogenesis by complex epigenetic and genetic cascades. Recent studies in a range of model organisms have made important progress in understanding how this laterality information is generated and conveyed to large regions of the embryo. Both commonalities and divergences are emerging in the mechanisms that different vertebrates use in left-right axis specification. Recent evidence also provides intriguing links between the establishment of left-right asymmetries and the symmetrical elongation of the anterior-posterior axis.
Collapse
Affiliation(s)
- Angel Raya
- Center of Regenerative Medicine in Barcelona and Instituci Catalana de Recerca i Estudis Avanats (ICREA), Doctor Aiguader 80, 08003 Barcelona, Spain
| | | |
Collapse
|
24
|
Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, Yelick P, Kuo L, McSweeney M, Levin M. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 2006; 133:1657-71. [PMID: 16554361 PMCID: PMC3136117 DOI: 10.1242/dev.02341] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H+ flux. A pharmacological screen implicated the H+-pump H+-V-ATPase in Xenopus asymmetry, where it acts upstream of early asymmetric markers. Immunohistochemistry revealed an actin-dependent asymmetry of H+-V-ATPase subunits during the first three cleavages. H+-flux across plasma membranes is also asymmetric at the four- and eight-cell stages, and this asymmetry requires H+-V-ATPase activity. Abolishing the asymmetry in H+ flux, using a dominant-negative subunit of the H+-V-ATPase or an ectopic H+ pump, randomized embryonic situs without causing any other defects. To understand the mechanism of action of H+-V-ATPase, we isolated its two physiological functions, cytoplasmic pH and membrane voltage (Vmem) regulation. Varying either pH or Vmem, independently of direct manipulation of H+-V-ATPase, caused disruptions of normal asymmetry, suggesting roles for both functions. V-ATPase inhibition also abolished the normal early localization of serotonin, functionally linking these two early asymmetry pathways. The involvement of H+-V-ATPase in asymmetry is conserved to chick and zebrafish. Inhibition of the H+-V-ATPase induces heterotaxia in both species; in chick, H+-V-ATPase activity is upstream of Shh; in fish, it is upstream of Kupffer's vesicle and Spaw expression. Our data implicate H+-V-ATPase activity in patterning the LR axis of vertebrates and reveal mechanisms upstream and downstream of its activity. We propose a pH- and Vmem-dependent model of the early physiology of LR patterning.
Collapse
Affiliation(s)
- Dany S. Adams
- The Forsyth Center for Regenerative and Developmental Biology, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Kenneth R. Robinson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Takahiro Fukumoto
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - Shipeng Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - R. Craig Albertson
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - Pamela Yelick
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - Lindsay Kuo
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - Megan McSweeney
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | - Michael Levin
- The Forsyth Center for Regenerative and Developmental Biology, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
25
|
Spéder P, Adám G, Noselli S. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 2006; 440:803-7. [PMID: 16598259 DOI: 10.1038/nature04623] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 02/01/2006] [Indexed: 01/06/2023]
Abstract
Breaking left-right symmetry in Bilateria embryos is a major event in body plan organization that leads to polarized adult morphology, directional organ looping, and heart and brain function. However, the molecular nature of the determinant(s) responsible for the invariant orientation of the left-right axis (situs choice) remains largely unknown. Mutations producing a complete reversal of left-right asymmetry (situs inversus) are instrumental for identifying mechanisms controlling handedness, yet only one such mutation has been found in mice (inversin) and snails. Here we identify the conserved type ID unconventional myosin 31DF gene (Myo31DF) as a unique situs inversus locus in Drosophila. Myo31DF mutations reverse the dextral looping of genitalia, a prominent left-right marker in adult flies. Genetic mosaic analysis pinpoints the A8 segment of the genital disc as a left-right organizer and reveals an anterior-posterior compartmentalization of Myo31DF function that directs dextral development and represses a sinistral default state. As expected of a determinant, Myo31DF has a trigger-like function and is expressed symmetrically in the organizer, and its symmetrical overexpression does not impair left-right asymmetry. Thus Myo31DF is a dextral gene with actin-based motor activity controlling situs choice. Like mouse inversin, Myo31DF interacts and colocalizes with beta-catenin, suggesting that situs inversus genes can direct left-right development through the adherens junction.
Collapse
Affiliation(s)
- Pauline Spéder
- Institute of Signalling, Developmental Biology & Cancer, UMR6543-CNRS, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
26
|
Schlueter J, Männer J, Brand T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 2006; 295:546-58. [PMID: 16677627 DOI: 10.1016/j.ydbio.2006.03.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
The proepicardium (PE) is a transient structure formed by pericardial coelomic mesothelium at the venous pole of the embryonic heart and gives rise to several cell types of the mature heart. In order to study PE development in chick embryos, we have analyzed the expression pattern of the marker genes Tbx18, Wt1, and Cfc. During PE induction, the three marker genes displayed a left-right asymmetric expression pattern. In each case, expression on the right side was stronger than on the left side. The left-right asymmetric gene expression observed here is in accord with the asymmetric formation of the proepicardium in the chick embryo. While initially the marker genes were expressed in the primitive sinus horn, subsequently, expression became confined to the PE mesothelium. In order to search for signaling factors involved in PE development, we studied Bmp2 and Bmp4 expression. Bmp2 was bilaterally expressed in the sinus venosus. In contrast, Bmp4 expression was initially expressed unilaterally in the right sinus horn and subsequently in the PE. In order to assess its functional role, BMP signaling was experimentally modulated by supplying exogenous BMP2 and by inhibiting endogenous BMP signaling through the addition of Noggin. Both supplying BMP and blocking BMP signaling resulted in a loss of PE marker gene expression. Surprisingly, both experimental situations lead to cardiac myocyte formation in the PE cultures. Careful titration experiments with exogenously added BMP2 or Noggin revealed that PE-specific marker gene expression depends on a low level of BMP signaling. Implantation of BMP2-secreting cells or beads filled with Noggin protein into the right sinus horn of HH stage 11 embryos resulted in downregulation of Tbx18 expression, corresponding to the results of the explant assay. Thus, a distinct level of BMP signaling is required for PE formation in the chick embryo.
Collapse
Affiliation(s)
- Jan Schlueter
- Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
27
|
Rego C, Matos M, Santos M. SYMMETRY BREAKING IN INTERSPECIFIC DROSOPHILA HYBRIDS IS NOT DUE TO DEVELOPMENTAL NOISE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01153.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
29
|
Rego C, Matos M, Santos M. SYMMETRY BREAKING IN INTERSPECIFIC DROSOPHILA HYBRIDS IS NOT DUE TO DEVELOPMENTAL NOISE. Evolution 2006. [DOI: 10.1554/05-540.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Tamakoshi T, Itakura T, Chandra A, Uezato T, Yang Z, Xue XD, Wang B, Hackett BP, Yokoyama T, Miura N. Roles of the Foxj1 and Inv genes in the left-right determination of internal organs in mice. Biochem Biophys Res Commun 2005; 339:932-8. [PMID: 16325766 DOI: 10.1016/j.bbrc.2005.11.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/14/2005] [Indexed: 01/23/2023]
Abstract
In Foxj1 knockout mice, half show situs solitus while the other half show situs inversus, which means a random determination of the left-right axis. In contrast, the inv mutant mice show a mirror-image configuration of the internal organs, which means a reversal of the left-right axis. Although these two mutant mice have primary cilia on the nodal cells, their phenotypes are different in laterality determination. We thus made Foxj1/inv double mutant mice and analyzed their phenotype. We found the phenotypes of Foxj1/inv double mutant mice to be more similar to those of the Foxj1 mutant mice than those of the inv mutant mice. We also found right pulmonary isomerism to be a major phenotype of the Foxj1 mutant mice and the Foxj1/inv double mutant mice, which is likely due to the absence of the Pitx2 expression at both lateral plate mesoderms. These results indicate that a random signal of laterality (Foxj1) is dominant over the reversal signal of laterality (Inv).
Collapse
Affiliation(s)
- Tomoki Tamakoshi
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In mammals, left-right symmetry is broken by a mechanically driven leftward flow of liquid at the embryonic node (nodal flow). Various models have emerged explaining how this may happen. Work from Tanaka and colleagues has provided a new mechanism by which nodal flow may be breaking symmetry. They describe small membrane-bound particles, which they term nodal vesicular parcels (NVPs), that are carried to the left side of the node. In the paper, they argue how signals carried within these parcels may break L-R symmetry.
Collapse
Affiliation(s)
- Dominic Norris
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK.
| |
Collapse
|
32
|
Abstract
The past decade has seen remarkable advances in defining the molecular mechanisms underlying formation of the embryonic left right (LR) axis. This information is slowly transforming our understanding of human birth defects that are caused by disturbed LR axis patterning. Reversals, isomerisms, or segmental discordances of thoraco-abdominal organ position, that is, classic heterotaxy, clearly indicate embryonic disruption of normal LR patterning. Other isolated birth defects, particularly cardiovascular malformations, may be caused by deficiencies in the same pathways. Here, we review the distinctive clinical features of human heterotaxias and try to summarize the known connections between them and the corresponding developmental pathways.
Collapse
Affiliation(s)
- Lirong Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Abstract
Somites are the bilaterally symmetric embryonic precursors of the vertebrate skeleton and axial muscle. Three recent studies reveal that somites form asymmetrically in the absence of retinoic acid signaling. These results uncover an unexpected relationship between somitogenesis and left-right patterning, and suggest that bilateral somite formation is regulated along the left-right axis.
Collapse
Affiliation(s)
- Ava E Brent
- Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA.
| |
Collapse
|
34
|
Abstract
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
35
|
Kawakami Y, Raya A, Raya RM, Rodríguez-Esteban C, Izpisúa Belmonte JC. Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 2005; 435:165-71. [PMID: 15889082 DOI: 10.1038/nature03512] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 03/01/2005] [Indexed: 01/03/2023]
Abstract
During embryogenesis, cells are spatially patterned as a result of highly coordinated and stereotyped morphogenetic events. In the vertebrate embryo, information on laterality is conveyed to the node, and subsequently to the lateral plate mesoderm, by a complex cascade of epigenetic and genetic events, eventually leading to a left-right asymmetric body plan. At the same time, the paraxial mesoderm is patterned along the anterior-posterior axis in metameric units, or somites, in a bilaterally symmetric fashion. Here we characterize a cascade of laterality information in the zebrafish embryo and show that blocking the early steps of this cascade (before it reaches the lateral plate mesoderm) results in random left-right asymmetric somitogenesis. We also uncover a mechanism mediated by retinoic acid signalling that is crucial in buffering the influence of the flow of laterality information on the left-right progression of somite formation, and thus in ensuring bilaterally symmetric somitogenesis.
Collapse
Affiliation(s)
- Yasuhiko Kawakami
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Vermot J, Pourquié O. Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature 2005; 435:215-20. [PMID: 15889094 DOI: 10.1038/nature03488] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 02/24/2005] [Indexed: 11/09/2022]
Abstract
A striking feature of the body plan of a majority of animals is bilateral symmetry. Almost nothing is known about the mechanisms controlling the symmetrical arrangement of the left and right body sides during development. Here we report that blocking the production of retinoic acid (RA) in chicken embryos leads to a desynchronization of somite formation between the two embryonic sides, demonstrated by a shortened left segmented region. This defect is linked to a loss of coordination of the segmentation clock oscillations. The lateralization of this defect led us to investigate the relation between somitogenesis and the left-right asymmetry machinery in RA-deficient embryos. Reversal of the situs in chick or mouse embryos lacking RA results in a reversal of the somitogenesis laterality defect. Our data indicate that RA is important in buffering the lateralizing influence of the left-right machinery, thus permitting synchronization of the development of the two embryonic sides.
Collapse
Affiliation(s)
- Julien Vermot
- Stowers Institute for Medical Research, 1000E 50th Street, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
37
|
Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 2005; 132:1247-60. [PMID: 15716348 DOI: 10.1242/dev.01663] [Citation(s) in RCA: 478] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.
Collapse
Affiliation(s)
- Jeffrey J Essner
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|