1
|
Kashevarova AA, Lopatkina ME, Vasilyeva OY, Fedotov DA, Lobanov AD, Fonova EA, Zhalsanova IZ, Zarubin AA, Salyukova OA, Belyaeva EO, Petrova VV, Ravzhaeva EG, Agafonova AA, Cheremnykh AD, Torkhova NB, Vovk SL, Lebedev IN. Delineation of the Genetic Architecture and Clinical Polymorphism of 3q29 Duplication Syndrome: A Review of the Literature and a Report of Two Novel Patients With Single-Gene BDH1 Duplications. Mol Genet Genomic Med 2025; 13:e70047. [PMID: 39739615 DOI: 10.1002/mgg3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Chromosome 3q29 duplication syndrome is a rare chromosomal disorder with a frequency of 1:5000 in patients with a neurodevelopmental phenotype. The syndrome is characterized by phenotypic polymorphism and reduced penetrance. METHODS Patients were investigated by performing a cytogenetic analysis of GTG-banded metaphases, aCGH with the SurePrint G3 Human CGH Microarray 8×60K, qPCR, FISH, and WES. RESULTS Here, we report five new patients with atypical duplications overlapping with the 3q29 duplication syndrome region and no other genetic findings. In two patients, duplications were found in the single BDH1 gene, a candidate gene for the 3q29 duplication phenotype. For the first time, we delineated and described the smallest minimal critical region, including the single BDH1 gene; in our patients, this region was associated with ASD, heart defects, biliary tract dysfunction, and obesity. The frequencies of the pathological phenotypes in duplication carriers reported in the literature were calculated and compared with those in patients with 3q29 deletions. Most of the phenotypes were observed in both groups but were significantly less common among individuals with 3q29 duplications. Mirrored phenotypes in patients with duplications and deletions included overweight and weight deficit. Schizophrenia, generalized anxiety disorder, and recurrent ear infections were unique phenotypes of patients carrying deletions. CONCLUSION Chromosome 3q29 duplication syndrome is characterized by a complex genetic architecture and clinical polymorphism.
Collapse
Affiliation(s)
- A A Kashevarova
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - M E Lopatkina
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - O Yu Vasilyeva
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D A Fedotov
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A D Lobanov
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Fonova
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I Z Zhalsanova
- Laboratory of Genomics of Orphan Diseases, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A A Zarubin
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - O A Salyukova
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E O Belyaeva
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V V Petrova
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E G Ravzhaeva
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A A Agafonova
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A D Cheremnykh
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N B Torkhova
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S L Vovk
- Medical Genetic Center (Genetic Clinic), Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
2
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
4
|
Tolezano GC, Bastos GC, da Costa SS, Freire BL, Homma TK, Honjo RS, Yamamoto GL, Passos-Bueno MR, Koiffmann CP, Kim CA, Vianna-Morgante AM, de Lima Jorge AA, Bertola DR, Rosenberg C, Krepischi ACV. Burden of Rare Copy Number Variants in Microcephaly: A Brazilian Cohort of 185 Microcephalic Patients and Review of the Literature. J Autism Dev Disord 2024; 54:1181-1212. [PMID: 36502452 DOI: 10.1007/s10803-022-05853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Giovanna Civitate Bastos
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Bruna Lucheze Freire
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Thais Kataoka Homma
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Celia Priszkulnik Koiffmann
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Chong Ae Kim
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Angela Maria Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
- Institute of Biosciences, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
5
|
Auwerx C, Jõeloo M, Sadler MC, Tesio N, Ojavee S, Clark CJ, Mägi R, Reymond A, Kutalik Z. Rare copy-number variants as modulators of common disease susceptibility. Genome Med 2024; 16:5. [PMID: 38185688 PMCID: PMC10773105 DOI: 10.1186/s13073-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders (GDs) but their impact on health later in life in the general population remains poorly described. METHODS Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated white British UK Biobank (UKBB) participants with replication in the Estonian Biobank. RESULTS We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Number and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported by colocalization with both common and rare single-nucleotide variant association signals. Dissection of association signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement of multiple genes. Finally, we show that while the total burden of rare CNVs-and especially deletions-strongly associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than anticipated by our CNV-GWAS. CONCLUSIONS Our results shed light on the prominent role of rare CNVs in determining common disease susceptibility within the general population and provide actionable insights for anticipating later-onset comorbidities in carriers of recurrent CNVs.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland
| | - Nicolò Tesio
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Sven Ojavee
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Charlie J Clark
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| |
Collapse
|
6
|
Kretz PF, Wagner C, Mikhaleva A, Montillot C, Hugel S, Morella I, Kannan M, Fischer MC, Milhau M, Yalcin I, Brambilla R, Selloum M, Herault Y, Reymond A, Collins SC, Yalcin B. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein. Genome Biol 2023; 24:261. [PMID: 37968726 PMCID: PMC10647150 DOI: 10.1186/s13059-023-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.
Collapse
Affiliation(s)
- Perrine F Kretz
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Christel Wagner
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Sylvain Hugel
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Ilaria Morella
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Meghna Kannan
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Marie-Christine Fischer
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Maxence Milhau
- Inserm UMR1231, Université de Bourgogne, 21000, Dijon, France
| | - Ipek Yalcin
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Riccardo Brambilla
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Mohammed Selloum
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Yann Herault
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Stephan C Collins
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France.
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France.
| |
Collapse
|
7
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
8
|
Lengyel A, Pinti É, Pikó H, Kristóf Á, Abonyi T, Némethi Z, Fekete G, Haltrich I. Clinical evaluation of rare copy number variations identified by chromosomal microarray in a Hungarian neurodevelopmental disorder patient cohort. Mol Cytogenet 2022; 15:47. [PMID: 36320065 PMCID: PMC9623912 DOI: 10.1186/s13039-022-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders are genetically heterogeneous pediatric conditions. The first tier diagnostic method for uncovering copy number variations (CNVs), one of the most common genetic etiologies in affected individuals, is chromosomal microarray (CMA). However, this methodology is not yet a routine molecular cytogenetic test in many parts of the world, including Hungary. Here we report clinical and genetic data of the first, relatively large Hungarian cohort of patients whose genetic testing included CMA. METHODS Clinical data were retrospectively collected for 78 children who were analyzed using various CMA platforms. Phenotypes of patients with disease-causing variants were compared to patients with negative results using the chi squared/Fisher exact tests. RESULTS A total of 30 pathogenic CNVs were identified in 29 patients (37.2%). Postnatal growth delay (p = 0.05564), pectus excavatum (p = 0.07484), brain imaging abnormalities (p = 0.07848), global developmental delay (p = 0.08070) and macrocephaly (p = 0.08919) were more likely to be associated with disease-causing CNVs. CONCLUSION Our results allow phenotypic expansion of 14q11.2 microdeletions encompassing SUPT16H and CHD8 genes. Variants of unknown significance (n = 24) were found in 17 patients. We provide detailed phenotypic and genetic data of these individuals to facilitate future classification efforts, and spotlight two patients with potentially pathogenic alterations. Our results contribute to unraveling the diagnostic value of rare CNVs.
Collapse
Affiliation(s)
- Anna Lengyel
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Éva Pinti
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Árvai Kristóf
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Tünde Abonyi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zaránd Némethi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Sefik E, Purcell RH, Walker EF, Bassell GJ, Mulle JG. Convergent and distributed effects of the 3q29 deletion on the human neural transcriptome. Transl Psychiatry 2021; 11:357. [PMID: 34131099 PMCID: PMC8206125 DOI: 10.1038/s41398-021-01435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The 3q29 deletion (3q29Del) confers high risk for schizophrenia and other neurodevelopmental and psychiatric disorders. However, no single gene in this interval is definitively associated with disease, prompting the hypothesis that neuropsychiatric sequelae emerge upon loss of multiple functionally-connected genes. 3q29 genes are unevenly annotated and the impact of 3q29Del on the human neural transcriptome is unknown. To systematically formulate unbiased hypotheses about molecular mechanisms linking 3q29Del to neuropsychiatric illness, we conducted a systems-level network analysis of the non-pathological adult human cortical transcriptome and generated evidence-based predictions that relate 3q29 genes to novel functions and disease associations. The 21 protein-coding genes located in the interval segregated into seven clusters of highly co-expressed genes, demonstrating both convergent and distributed effects of 3q29Del across the interrogated transcriptomic landscape. Pathway analysis of these clusters indicated involvement in nervous-system functions, including synaptic signaling and organization, as well as core cellular functions, including transcriptional regulation, posttranslational modifications, chromatin remodeling, and mitochondrial metabolism. Top network-neighbors of 3q29 genes showed significant overlap with known schizophrenia, autism, and intellectual disability-risk genes, suggesting that 3q29Del biology is relevant to idiopathic disease. Leveraging "guilt by association", we propose nine 3q29 genes, including one hub gene, as prioritized drivers of neuropsychiatric risk. These results provide testable hypotheses for experimental analysis on causal drivers and mechanisms of the largest known genetic risk factor for schizophrenia and highlight the study of normal function in non-pathological postmortem tissue to further our understanding of psychiatric genetics, especially for rare syndromes like 3q29Del, where access to neural tissue from carriers is unavailable or limited.
Collapse
Affiliation(s)
- Esra Sefik
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychology, Emory University, Atlanta, GA USA
| | - Ryan H. Purcell
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | | | - Elaine F. Walker
- grid.189967.80000 0001 0941 6502Department of Psychology, Emory University, Atlanta, GA USA
| | - Gary J. Bassell
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Jennifer G. Mulle
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA USA
| |
Collapse
|
10
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
11
|
16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nat Commun 2021; 12:2897. [PMID: 34006844 PMCID: PMC8131375 DOI: 10.1038/s41467-021-23113-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.
Collapse
|
12
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Moreau CA, Urchs SGW, Kuldeep K, Orban P, Schramm C, Dumas G, Labbe A, Huguet G, Douard E, Quirion PO, Lin A, Kushan L, Grot S, Luck D, Mendrek A, Potvin S, Stip E, Bourgeron T, Evans AC, Bearden CE, Bellec P, Jacquemont S. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat Commun 2020; 11:5272. [PMID: 33077750 PMCID: PMC7573583 DOI: 10.1038/s41467-020-18997-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
16p11.2 and 22q11.2 Copy Number Variants (CNVs) confer high risk for Autism Spectrum Disorder (ASD), schizophrenia (SZ), and Attention-Deficit-Hyperactivity-Disorder (ADHD), but their impact on functional connectivity (FC) remains unclear. Here we report an analysis of resting-state FC using magnetic resonance imaging data from 101 CNV carriers, 755 individuals with idiopathic ASD, SZ, or ADHD and 1,072 controls. We characterize CNV FC-signatures and use them to identify dimensions contributing to complex idiopathic conditions. CNVs have large mirror effects on FC at the global and regional level. Thalamus, somatomotor, and posterior insula regions play a critical role in dysconnectivity shared across deletions, duplications, idiopathic ASD, SZ but not ADHD. Individuals with higher similarity to deletion FC-signatures exhibit worse cognitive and behavioral symptoms. Deletion similarities identified at the connectivity level could be related to the redundant associations observed genome-wide between gene expression spatial patterns and FC-signatures. Results may explain why many CNVs affect a similar range of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
| | - Sebastian G W Urchs
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada.
| | - Kumar Kuldeep
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Catherine Schramm
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Guillaume Dumas
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Aurélie Labbe
- Département des Sciences de la Décision, HEC, 3000, chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 2A7, Canada
| | - Guillaume Huguet
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Elise Douard
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre-Olivier Quirion
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center 740, Dr. Penfield Avenue, H3A 0G1, Montreal, Canada
| | - Amy Lin
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Stephanie Grot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - David Luck
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Adrianna Mendrek
- Department of Psychology, Bishop's University, 2600 College Street, Sherbrooke, QC, J1M IZ7, Canada
| | - Stephane Potvin
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Emmanuel Stip
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
- United Arab Emirates University, College of Medicine and health Sciences, PO 17666, Al Ain, QC, UAE
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Alan C Evans
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Department of Pediatrics, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
14
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
15
|
Wang Q, Chen P, Liu J, Lou J, Liu Y, Yuan H. Xp11.22 duplications in four unrelated Chinese families: delineating the genotype-phenotype relationship for HSD17B10 and FGD1. BMC Med Genomics 2020; 13:66. [PMID: 32381089 PMCID: PMC7206777 DOI: 10.1186/s12920-020-0728-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Xp11.22 duplications have been reported to contribute to nonsyndromic intellectual disability (ID). The HUWE1 gene has been identified in all male Xp11.22 duplication patients and is associated with nonsyndromic ID. Currently, few Xp11.22 duplication cases have been reported in the Chinese population, with limited knowledge regarding the role of other genes in this interval. CASE PRESENTATION We investigated four unrelated Chinese male Xp11.22 duplication patients, performed a comprehensive clinical evaluation for the patients and discussed the role of other genes in this interval. All patients presented with similar clinical features, including ID, speech impairments and motor delay, which were mostly consistent with those of the Xp11.22 duplication described previously. We searched and compared all cases and noted that one of the probands (Family 1) and DECIPHER case 263,219, who carried small overlapping duplications at Xp11.22 that only covered the entire HSD17B10 gene, also suffered from ID, suggesting the important role of HSD17B10 in this interval. Furthermore, three patients (two probands in Families 3 and 4 and DECIPHER case 249,490) had strikingly similar hypogonadism phenotypes, including micropenis, small testes and cryptorchidism, which have not been previously described in Xp11.22 duplication patients. Interestingly, the FGD1 gene was duplicated only in these three patients. Sufficient evidence has suggested that haploinsufficiency of the FGD1 gene causes Aarskog-Scott syndrome, which is characterized by hypogonadism and other abnormalities. Given that, we are the first group to propose that FGD1 may be a potential dosage-sensitive gene responsible for the hypogonadism observed in our patients. CONCLUSION We reported novel genotypes and phenotypes in Chinese male Xp11.22 duplication patients, and the HSD17B10 and FGD1 genes may be involved.
Collapse
Affiliation(s)
- Qingming Wang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, 523120, China
| | - Pengliang Chen
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Jianxin Liu
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Jiwu Lou
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, 523120, China
| | - Yanhui Liu
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China.
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, 523120, China.
| | - Haiming Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China.
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, 523120, China.
| |
Collapse
|
16
|
Al‐Jawahiri R, Jones M, Milne E. Atypical neural variability in carriers of 16p11.2 copy number variants. Autism Res 2019; 12:1322-1333. [DOI: 10.1002/aur.2166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Myles Jones
- Department of PsychologyUniversity of Sheffield Sheffield UK
| | - Elizabeth Milne
- Department of PsychologyUniversity of Sheffield Sheffield UK
| |
Collapse
|
17
|
Silva AI, Ulfarsson MO, Stefansson H, Gustafsson O, Walters GB, Linden DE, Wilkinson LS, Drakesmith M, Owen MJ, Hall J, Stefansson K. Reciprocal White Matter Changes Associated With Copy Number Variation at 15q11.2 BP1-BP2: A Diffusion Tensor Imaging Study. Biol Psychiatry 2019; 85:563-572. [PMID: 30583851 PMCID: PMC6424871 DOI: 10.1016/j.biopsych.2018.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The 15q11.2 BP1-BP2 cytogenetic region has been associated with learning and motor delays, autism, and schizophrenia. This region includes a gene that codes for the cytoplasmic FMR1 interacting protein 1 (CYFIP1). The CYFIP1 protein is involved in actin cytoskeletal dynamics and interacts with the fragile X mental retardation protein. Absence of fragile X mental retardation protein causes fragile X syndrome. Because abnormal white matter microstructure has been reported in both fragile X syndrome and psychiatric disorders, we looked at the impact of 15q11.2 BP1-BP2 dosage on white matter microstructure. METHODS Combining a brain-wide voxel-based approach and a regional-based analysis, we analyzed diffusion tensor imaging data from healthy individuals with the deletion (n = 30), healthy individuals with the reciprocal duplication (n = 27), and IQ-matched control subjects with no large copy number variants (n = 19), recruited from a large genotyped population sample. RESULTS We found global mirror effects (deletion > control > duplication) on fractional anisotropy. The deletion group showed widespread increased fractional anisotropy when compared with duplication. Regional analyses revealed a greater effect size in the posterior limb of the internal capsule and a tendency for decreased fractional anisotropy in duplication. CONCLUSIONS These results show a reciprocal effect of 15q11.2 BP1-BP2 on white matter microstructure, suggesting that reciprocal chromosomal imbalances may lead to opposite changes in brain structure. Findings in the deletion overlap with previous white matter differences reported in fragile X syndrome patients, suggesting common pathogenic mechanisms derived from disruptions of cytoplasmic CYFIP1-fragile X mental retardation protein complexes. Our data begin to identify specific components of the 15q11.2 BP1-BP2 phenotype and neurobiological mechanisms of potential relevance to the increased risk for disorder.
Collapse
Affiliation(s)
- Ana I. Silva
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Magnus O. Ulfarsson
- deCODE genetics/Amgen, Reykjavik, Iceland,Faculty of Electrical Engineering, Reykjavik, Iceland
| | | | | | - G. Bragi Walters
- deCODE genetics/Amgen, Reykjavik, Iceland,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David E.J. Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom
| | - Michael J. Owen
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
18
|
Abstract
Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for these phenotypes within each CNV have not been successful. Here, we posit using multiple lines of evidence, including pathogenicity metrics, functional assays of model organisms, and gene expression data, that multiple genes within each CNV region are likely responsible for the observed phenotypes. We propose that candidate genes within each region likely interact with each other through shared pathways to modulate the individual gene phenotypes, emphasizing the genetic complexity of CNV-associated neuropsychiatric features.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
19
|
Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, Bodria M, Werth M, Kao C, Martino J, Capone VP, Vivante A, Shril S, Kil BH, Marasà M, Zhang JY, Na YJ, Lim TY, Ahram D, Weng PL, Heinzen EL, Carrea A, Piaggio G, Gesualdo L, Manca V, Masnata G, Gigante M, Cusi D, Izzi C, Scolari F, van Wijk JAE, Saraga M, Santoro D, Conti G, Zamboli P, White H, Drozdz D, Zachwieja K, Miklaszewska M, Tkaczyk M, Tomczyk D, Krakowska A, Sikora P, Jarmoliński T, Borszewska-Kornacka MK, Pawluch R, Szczepanska M, Adamczyk P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Dobson MG, Darlow JM, Puri P, Barton DE, Furth SL, Warady BA, Gucev Z, Lozanovski VJ, Tasic V, Pisani I, Allegri L, Rodas LM, Campistol JM, Jeanpierre C, Alam S, Casale P, Wong CS, Lin F, Miranda DM, Oliveira EA, Simões-E-Silva AC, Barasch JM, Levy B, Wu N, Hildebrandt F, Ghiggeri GM, Latos-Bielenska A, Materna-Kiryluk A, Zhang F, Hakonarson H, Papaioannou VE, Mendelsohn CL, Gharavi AG, Sanna-Cherchi S. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2018; 51:117-127. [PMID: 30578417 PMCID: PMC6668343 DOI: 10.1038/s41588-018-0281-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/18/2018] [Indexed: 12/18/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (i.e. affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12, and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3, and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.,Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alejandra Perez
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Qingxue Liu
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - David A Fasel
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew G Sampson
- University of Michigan School of Medicine, Department of Pediatrics-Nephrology, Ann Arbor, MI, USA
| | - Monica Bodria
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Max Werth
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Charlly Kao
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Valentina P Capone
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Byum Hee Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jun Y Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Young-Ji Na
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dina Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Patricia L Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alba Carrea
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Giorgio Piaggio
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Valeria Manca
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Giuseppe Masnata
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Maddalena Gigante
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Daniele Cusi
- National Research Council of Italy, Inst. Biomedical Technologies Milano Bio4dreams Scientific Unit, Milano, Italy
| | - Claudia Izzi
- Dipartimento Ostetrico-Ginecologico e Seconda Divisione di Nefrologia ASST, Spedali Civili e Presidio di Montichiari, Brescia, Italy
| | - Francesco Scolari
- Cattedra di Nefrologia, Università di Brescia, Seconda Divisione di Nefrologia, Azienda Ospedaliera Spedali Civili di Brescia Presidio di Montichiari, Brescia, Italy
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Domenico Santoro
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Messina, Messina, Italy
| | - Giovanni Conti
- Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria "G. Martino", Messina, Italy
| | - Pasquale Zamboli
- Division of Nephrology, University of Campania "Luigi Vanvitell", Naples, Italy
| | - Hope White
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dorota Drozdz
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Daria Tomczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Anna Krakowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology Medical University of Lublin, Lublin, Poland
| | | | - Maria K Borszewska-Kornacka
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Pawluch
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Maria Szczepanska
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Adamczyk
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Grazyna Krzemien
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Mark G Dobson
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - John M Darlow
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Hospital Tallaght, Dublin, Ireland
| | - David E Barton
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,University College Dublin UCD School of Medicine, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Susan L Furth
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Division of Nephrology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Zoran Gucev
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Vladimir J Lozanovski
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia.,University Clinic for General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Velibor Tasic
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Landino Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lida M Rodas
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Shumyle Alam
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pasquale Casale
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Mount Sinai Medical Center, Kravis Children's Hospital, New York, NY, USA
| | - Craig S Wong
- Division of Pediatric Nephrology, University of New Mexico Children's Hospital, Albuquerque, NM, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Débora M Miranda
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões-E-Silva
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jonathan M Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Medical Research Center of Orthopedics, all at Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Anna Latos-Bielenska
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Tassano E, Uccella S, Giacomini T, Severino M, Fiorio P, Gimelli G, Ronchetto P. Clinical and Molecular Characterization of Two Patients with CNTN6 Copy Number Variations. Cytogenet Genome Res 2018; 156:144-149. [PMID: 30508811 DOI: 10.1159/000494152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Submicroscopic chromosomal alterations usually involve different protein-coding genes and regulatory elements that are responsible for rare contiguous gene disorders, which complicate the understanding of genotype-phenotype correlations. Chromosome band 3p26.3 contains 3 genes encoding neuronal cell adhesion molecules: CHL1, CNTN6, and CNTN4. We describe 2 boys aged 8 years and 11 years mainly affected by intellectual disability and autism spectrum disorder, who harbor a paternally inherited 3p26.3 microdeletion and a 3p26.3 microduplication, respectively. Both anomalies involved only the CNTN6 gene, which encodes contactin 6, a member of the contactin family (MIM 607220). Contactins show pronounced brain expression and function. Interestingly, phenotypes in reciprocal microdeletions and microduplications of CNTN6 are very similar. In conclusion, our data, added to those reported in the literature, are particularly significant for understanding the pathogenic effect of single gene dosage alterations. As for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.
Collapse
|
21
|
Cellular Phenotypes in Human iPSC-Derived Neurons from a Genetic Model of Autism Spectrum Disorder. Cell Rep 2018; 21:2678-2687. [PMID: 29212016 DOI: 10.1016/j.celrep.2017.11.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 01/26/2023] Open
Abstract
A deletion or duplication in the 16p11.2 region is associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. In addition to clinical characteristics, carriers of the 16p11.2 copy-number variant (CNV) manifest opposing neuroanatomical phenotypes-e.g., macrocephaly in deletion carriers (16pdel) and microcephaly in duplication carriers (16pdup). Using fibroblasts obtained from 16pdel and 16pdup carriers, we generated induced pluripotent stem cells (iPSCs) and differentiated them into neurons to identify causal cellular mechanisms underlying neurobiological phenotypes. Our study revealed increased soma size and dendrite length in 16pdel neurons and reduced neuronal size and dendrite length in 16pdup neurons. The functional properties of iPSC-derived neurons corroborated aspects of these contrasting morphological differences that may underlie brain size. Interestingly, both 16pdel and 16pdup neurons displayed reduced synaptic density, suggesting that distinct mechanisms may underlie brain size and neuronal connectivity at this locus.
Collapse
|
22
|
Survey of Human Chromosome 21 Gene Expression Effects on Early Development in Danio rerio. G3-GENES GENOMES GENETICS 2018; 8:2215-2223. [PMID: 29760202 PMCID: PMC6027891 DOI: 10.1534/g3.118.200144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS), one of the most genetically complex conditions compatible with human survival. Assessment of the physiological consequences of dosage-driven overexpression of individual Hsa21 genes during early embryogenesis and the resulting contributions to DS pathology in mammals are not tractable in a systematic way. A recent study looked at loss-of-function of a subset of Caenorhabditis elegans orthologs of Hsa21 genes and identified ten candidates with behavioral phenotypes, but the equivalent over-expression experiment has not been done. We turned to zebrafish as a developmental model and, using a number of surrogate phenotypes, we screened Hsa21 genes for effects on early embyrogenesis. We prepared a library of 164 cDNAs of conserved protein coding genes, injected mRNA into early embryos and evaluated up to 5 days post-fertilization (dpf). Twenty-four genes produced a gross morphological phenotype, 11 of which could be reproduced reliably. Seven of these gave a phenotype consistent with down regulation of the sonic hedgehog (Shh) pathway; two showed defects indicative of defective neural crest migration; one resulted consistently in pericardial edema; and one was embryonic lethal. Combinatorial injections of multiple Hsa21 genes revealed both additive and compensatory effects, supporting the notion that complex genetic relationships underlie end phenotypes of trisomy that produce DS. Together, our data suggest that this system is useful in the genetic dissection of dosage-sensitive gene effects on early development and can inform the contribution of both individual loci and their combinatorial effects to phenotypes relevant to the etiopathology of DS.
Collapse
|
23
|
Crespi BJ. The Paradox of Copy Number Variants in ASD and Schizophrenia: False Facts or False Hypotheses? REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2018. [DOI: 10.1007/s40489-018-0132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Deshpande A, Weiss LA. Recurrent reciprocal copy number variants: Roles and rules in neurodevelopmental disorders. Dev Neurobiol 2018; 78:519-530. [PMID: 29575775 DOI: 10.1002/dneu.22587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Deletions and duplications, called reciprocal CNVs when they occur at the same locus, are implicated in neurodevelopmental phenotypes ranging from morphological to behavioral. In this article, we propose three models of how differences in gene expression in deletion and duplication genotypes may result in deleterious phenotypes. To explore these models, we use examples of the similarities and differences in clinical phenotypes of five reciprocal CNVs known to cause neurodevelopmental disorders: 1q21.1, 7q11.23, 15q13.3, 16p11.2, and 22q11.2. These models and examples may inform some insights into better understanding of gene-phenotype relationships. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 519-530, 2018.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
25
|
Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG. Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest 2018; 128:4-15. [PMID: 29293093 DOI: 10.1172/jci95300] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) encompasses a common birth defect in humans that has significant impact on long-term patient survival. Overall, data indicate that approximately 20% of patients may have a genetic disorder that is usually not detected based on standard clinical evaluation, implicating many different mutational mechanisms and pathogenic pathways. In particular, 10% to 15% of CAKUT patients harbor an unsuspected genomic disorder that increases risk of neurocognitive impairment and whose early recognition can impact clinical care. The emergence of high-throughput genomic technologies is expected to provide insight into the common and rare genetic determinants of diseases and offer opportunities for early diagnosis with genetic testing.
Collapse
Affiliation(s)
- Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, Netherlands
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto Giannina Gaslini, Genoa, Italy
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
26
|
Loviglio MN, Arbogast T, Jønch AE, Collins SC, Popadin K, Bonnet CS, Giannuzzi G, Maillard AM, Jacquemont S, Yalcin B, Katsanis N, Golzio C, Reymond A. The Immune Signaling Adaptor LAT Contributes to the Neuroanatomical Phenotype of 16p11.2 BP2-BP3 CNVs. Am J Hum Genet 2017; 101:564-577. [PMID: 28965845 PMCID: PMC5630231 DOI: 10.1016/j.ajhg.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 02/04/2023] Open
Abstract
Copy-number changes in 16p11.2 contribute significantly to neuropsychiatric traits. Besides the 600 kb BP4-BP5 CNV found in 0.5%-1% of individuals with autism spectrum disorders and schizophrenia and whose rearrangement causes reciprocal defects in head size and body weight, a second distal 220 kb BP2-BP3 CNV is likewise a potent driver of neuropsychiatric, anatomical, and metabolic pathologies. These two CNVs are engaged in complex reciprocal chromatin looping, intimating a functional relationship between genes in these regions that might be relevant to pathomechanism. We assessed the drivers of the distal 16p11.2 duplication by overexpressing each of the nine encompassed genes in zebrafish. Only overexpression of LAT induced a reduction of brain proliferating cells and concomitant microcephaly. Consistently, suppression of the zebrafish ortholog induced an increase of proliferation and macrocephaly. These phenotypes were not unique to zebrafish; Lat knockout mice show brain volumetric changes. Consistent with the hypothesis that LAT dosage is relevant to the CNV pathology, we observed similar effects upon overexpression of CD247 and ZAP70, encoding members of the LAT signalosome. We also evaluated whether LAT was interacting with KCTD13, MVP, and MAPK3, major driver and modifiers of the proximal 16p11.2 600 kb BP4-BP5 syndromes, respectively. Co-injected embryos exhibited an increased microcephaly, suggesting the presence of genetic interaction. Correspondingly, carriers of 1.7 Mb BP1-BP5 rearrangements that encompass both the BP2-BP3 and BP4-BP5 loci showed more severe phenotypes. Taken together, our results suggest that LAT, besides its well-recognized function in T cell development, is a major contributor of the 16p11.2 220 kb BP2-BP3 CNV-associated neurodevelopmental phenotypes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autistic Disorder/genetics
- Autistic Disorder/immunology
- Autistic Disorder/pathology
- Brain/metabolism
- Brain/pathology
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Disorders/immunology
- Chromosome Disorders/pathology
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/immunology
- Cohort Studies
- DNA Copy Number Variations
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Female
- Gene Expression Regulation, Developmental
- Humans
- Infant
- Intellectual Disability/genetics
- Intellectual Disability/immunology
- Intellectual Disability/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microcephaly/genetics
- Microcephaly/pathology
- Middle Aged
- Phenotype
- Phosphoproteins/physiology
- Signal Transduction
- Young Adult
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Maria Nicla Loviglio
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Arbogast
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Aia Elise Jønch
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stephan C Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964; Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Konstantin Popadin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul., Kaliningrad 236041, Russia
| | - Camille S Bonnet
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anne M Maillard
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964; Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Christelle Golzio
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Le Tanno P, Breton J, Bidart M, Satre V, Harbuz R, Ray PF, Bosson C, Dieterich K, Jaillard S, Odent S, Poke G, Beddow R, Digilio MC, Novelli A, Bernardini L, Pisanti MA, Mackenroth L, Hackmann K, Vogel I, Christensen R, Fokstuen S, Béna F, Amblard F, Devillard F, Vieville G, Apostolou A, Jouk PS, Guebre-Egziabher F, Sartelet H, Coutton C. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J Med Genet 2017; 54:502-510. [PMID: 28270404 DOI: 10.1136/jmedgenet-2016-104435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.
Collapse
Affiliation(s)
- Pauline Le Tanno
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Julie Breton
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
| | - Marie Bidart
- Université Grenoble Alpes, Grenoble, France
- UF Clinatec, Pôle Recherche, CHU Grenoble Alpes, Grenoble, France
| | - Véronique Satre
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
| | - Radu Harbuz
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
- Laboratoire de Biochimie Génétique et Moléculaire, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Caroline Bosson
- Laboratoire de Biochimie Génétique et Moléculaire, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Klaus Dieterich
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Sylvie Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, Université de Rennes, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Anomalies du Développement CLAD-Ouest, Hôpital Sud, Rennes, France
| | - Gemma Poke
- Genetic Health Service New Zealand Central Hub, Wellington, New Zealand
| | - Rachel Beddow
- Genetic Health Service New Zealand Central Hub, Wellington, New Zealand
| | | | - Antonio Novelli
- Department of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Bernardini
- Mendel Laboratory IRCCS "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | | | - Luisa Mackenroth
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Dresden, Germany
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Siv Fokstuen
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédérique Béna
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Florence Amblard
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Francoise Devillard
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Gaelle Vieville
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Alexia Apostolou
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Hervé Sartelet
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
- Université Grenoble Alpes, Grenoble, France
- Génétique et Procréation, Laboratoire de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
28
|
Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int J Mol Sci 2017; 18:ijms18040796. [PMID: 28398236 PMCID: PMC5412380 DOI: 10.3390/ijms18040796] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most frequent form of malformation at birth and represent the cause of 40–50% of pediatric and 7% of adult end-stage renal disease worldwide. The pathogenesis of CAKUT is based on the disturbance of normal nephrogenesis, secondary to environmental and genetic causes. Often CAKUT is the first clinical manifestation of a complex systemic disease, so an early molecular diagnosis can help the physician identify other subtle clinical manifestations, significantly affecting the management and prognosis of patients. The number of sporadic CAKUT cases explained by highly penetrant mutations in a single gene may have been overestimated over the years and a genetic diagnosis is missed in most cases, hence the importance of identifying new genetic approaches which can help unraveling the vast majority of unexplained CAKUT cases. The aim of our review is to clarify the current state of play and the future perspectives of the genetic bases of CAKUT.
Collapse
|
29
|
Steinman KJ, Spence SJ, Ramocki MB, Proud MB, Kessler SK, Marco EJ, Green Snyder L, D'Angelo D, Chen Q, Chung WK, Sherr EH. 16p11.2 deletion and duplication: Characterizing neurologic phenotypes in a large clinically ascertained cohort. Am J Med Genet A 2016; 170:2943-2955. [DOI: 10.1002/ajmg.a.37820] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Kyle J. Steinman
- University of Washington and Seattle Children's Research Institute; Seattle Washington
| | - Sarah J. Spence
- Boston Children's Hospital; Harvard Medical School; Boston Massachusetts
| | | | | | - Sudha K. Kessler
- Children's Hospital of Philadelphia; University of Pennsylvania; Philadelphia Pennsylvania
| | - Elysa J. Marco
- University of California, San Francisco; San Francisco California
| | | | - Debra D'Angelo
- Mailman School of Public Health; Columbia University; New York New York
| | - Qixuan Chen
- Mailman School of Public Health; Columbia University; New York New York
| | | | - Elliott H. Sherr
- University of California, San Francisco; San Francisco California
| | | |
Collapse
|
30
|
Lebedev IN, Nazarenko LP, Skryabin NA, Babushkina NP, Kashevarova AA. A de novo microtriplication at 4q21.21-q21.22 in a patient with a vascular malignant hemangioma, elongated sigmoid colon, developmental delay, and absence of speech. Am J Med Genet A 2016; 170:2089-96. [DOI: 10.1002/ajmg.a.37754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/02/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Igor N. Lebedev
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
- Siberian State Medical University; Tomsk Russia
| | - Lyudmila P. Nazarenko
- Institute of Medical Genetics; Tomsk Russia
- Siberian State Medical University; Tomsk Russia
| | - Nikolay A. Skryabin
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
| | | | - Anna A. Kashevarova
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
| |
Collapse
|
31
|
|
32
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Fernández RM, Sánchez J, García-Díaz L, Peláez-Nora Y, González-Meneses A, Antiñolo G, Borrego S. Interstitial 10p deletion derived from a maternal ins(16;10)(q22;p13p15.2): Report of the first familial case of 10p monosomy affecting to two familial members of different generations. Am J Med Genet A 2016; 170A:1268-73. [PMID: 26762557 DOI: 10.1002/ajmg.a.37559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/30/2015] [Indexed: 11/07/2022]
Abstract
Monosomy 10p is a rare chromosomal disorder with a prevalence <1/1,000,000, in which a terminal or interstitial distal region of chromosome 10 is deleted resulting in a variable phenotype depending on the size of the deletion. Two main phenotypes have been defined depending on the location of the deletion: HDR syndrome (Hypoparathyroidism, sensorineural Deafness, and Renal disease), and DGS2 (DiGeorge syndrome type 2). The vast majority of cases reported so far have resulted from de novo events. Here, we present the first familial presentation of this contiguous gene deletion syndrome, affecting two family members in different generations: a child and his maternal uncle. In both cases, the deletion was due to a malsegregation of a maternal balanced rearrangement, ins(16;10)(q22;p13p15.2). The identification and characterization of this rearrangement was possible using a combination of different genetic analyses such as karyotype, MLPA, FISH, and array CGH. We underline the importance of the present results in terms of genetic and reproductive counseling for the carriers of the balanced rearrangement within the family, and demonstrate again the utility of expanding the genetic studies to the relatives of the affected patients.
Collapse
Affiliation(s)
- Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Javier Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Lutgardo García-Díaz
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Yolanda Peláez-Nora
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | | | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| |
Collapse
|
34
|
Mutations in Either TUBB or MAPRE2 Cause Circumferential Skin Creases Kunze Type. Am J Hum Genet 2015; 97:790-800. [PMID: 26637975 DOI: 10.1016/j.ajhg.2015.10.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Circumferential skin creases Kunze type (CSC-KT) is a specific congenital entity with an unknown genetic cause. The disease phenotype comprises characteristic circumferential skin creases accompanied by intellectual disability, a cleft palate, short stature, and dysmorphic features. Here, we report that mutations in either MAPRE2 or TUBB underlie the genetic origin of this syndrome. MAPRE2 encodes a member of the microtubule end-binding family of proteins that bind to the guanosine triphosphate cap at growing microtubule plus ends, and TUBB encodes a β-tubulin isotype that is expressed abundantly in the developing brain. Functional analyses of the TUBB mutants show multiple defects in the chaperone-dependent tubulin heterodimer folding and assembly pathway that leads to a compromised yield of native heterodimers. The TUBB mutations also have an impact on microtubule dynamics. For MAPRE2, we show that the mutations result in enhanced MAPRE2 binding to microtubules, implying an increased dwell time at microtubule plus ends. Further, in vivo analysis of MAPRE2 mutations in a zebrafish model of craniofacial development shows that the variants most likely perturb the patterning of branchial arches, either through excessive activity (under a recessive paradigm) or through haploinsufficiency (dominant de novo paradigm). Taken together, our data add CSC-KT to the growing list of tubulinopathies and highlight how multiple inheritance paradigms can affect dosage-sensitive biological systems so as to result in the same clinical defect.
Collapse
|
35
|
Westland R, Verbitsky M, Vukojevic K, Perry BJ, Fasel DA, Zwijnenburg PJG, Bökenkamp A, Gille JJP, Saraga-Babic M, Ghiggeri GM, D'Agati VD, Schreuder MF, Gharavi AG, van Wijk JAE, Sanna-Cherchi S. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int 2015; 88:1402-1410. [PMID: 26352300 PMCID: PMC4834924 DOI: 10.1038/ki.2015.239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022]
Abstract
Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large dataset of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations.
Collapse
Affiliation(s)
- Rik Westland
- Division of Nephrology, Columbia University, New York, New York, USA.,Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Miguel Verbitsky
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Katarina Vukojevic
- Division of Nephrology, Columbia University, New York, New York, USA.,Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Brittany J Perry
- Division of Nephrology, Columbia University, New York, New York, USA
| | - David A Fasel
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Petra J G Zwijnenburg
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan J P Gille
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA, Chechetkina NN, Tolmacheva EN, Rudko AA, Magini P, Graziano C, Romeo G, Joss S, Tümer Z, Lebedev IN. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol Cytogenet 2014; 7:97. [PMID: 25606055 PMCID: PMC4299808 DOI: 10.1186/s13039-014-0097-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Detection of submicroscopic chromosomal alterations in patients with a idiopathic intellectual disability (ID) allows significant improvement in delineation of the regions of the genome that are associated with brain development and function. However, these chromosomal regions usually contain several protein-coding genes and regulatory elements, complicating the understanding of genotype-phenotype correlations. We report two siblings with ID and an unrelated patient with atypical autism who had 3p26.3 microdeletions and one intellectually disabled patient with a 3p26.3 microduplication encompassing only the CNTN6 gene. Results Two 295.1-kb microdeletions and one 766.1-kb microduplication of 3p26.3 involving a single gene, CNTN6, were identified with an Agilent 60K array. Another 271.9-kb microdeletion of 3p26.3 was detected using an Affymetrix CytoScan HD chromosome microarray platform. The CHL1 and CNTN4 genes, although adjacent to the CNTN6 gene, were not affected in either of these patients. Conclusions The protein encoded by CNTN6 is a member of the immunoglobulin superfamily and functions as a cell adhesion molecule that is involved in the formation of axon connections in the developing nervous system. Our results indicate that CNTN6 may be a candidate gene for ID. Electronic supplementary material The online version of this article (doi:10.1186/s13039-014-0097-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna A Kashevarova
- Laboratory of Cytogenetics, Institute of Medical Genetics, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Lyudmila P Nazarenko
- Laboratory of Hereditary Pathology, Institute of Medical Genetics, Tomsk, Russia ; Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | | | - Nikolay A Skryabin
- Laboratory of Cytogenetics, Institute of Medical Genetics, 10 Nab. Ushaiki, 634050 Tomsk, Russia ; Laboratory of Human Ontogenetics, Tomsk State University, Tomsk, Russia
| | - Olga A Salyukova
- Laboratory of Hereditary Pathology, Institute of Medical Genetics, Tomsk, Russia ; Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | | | - Ekaterina N Tolmacheva
- Laboratory of Cytogenetics, Institute of Medical Genetics, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Aleksey A Rudko
- Genetic Clinic, Institute of Medical Genetics, Tomsk, Russia
| | - Pamela Magini
- Unit of Medical Genetics, Department of Gynecology, Obstetrics and Pediatrics, University of Bologna, Bologna, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, Department of Gynecology, Obstetrics and Pediatrics, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Unit of Medical Genetics, Department of Gynecology, Obstetrics and Pediatrics, University of Bologna, Bologna, Italy
| | - Shelagh Joss
- Department of Clinical Genetics, Level 2, Laboratory Medicine Building, Southern General Hospital, Glasgow, G51 4TF Scotland UK
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen Denmark
| | - Igor N Lebedev
- Laboratory of Cytogenetics, Institute of Medical Genetics, 10 Nab. Ushaiki, 634050 Tomsk, Russia ; Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
37
|
Abstract
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development.
Collapse
|
38
|
Investigation of genetic factors underlying typical orofacial clefts: mutational screening and copy number variation. J Hum Genet 2014; 60:17-25. [PMID: 25391604 DOI: 10.1038/jhg.2014.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC.
Collapse
|
39
|
Glessner JT, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, Mazaika E, Vardarajan B, Italia M, Leipzig J, DePalma SR, Golhar R, Sanders SJ, Yamrom B, Ronemus M, Iossifov I, Willsey AJ, State MW, Kaltman JR, White PS, Shen Y, Warburton D, Brueckner M, Seidman C, Goldmuntz E, Gelb BD, Lifton R, Seidman J, Hakonarson H, Chung WK. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 2014; 115:884-896. [PMID: 25205790 DOI: 10.1161/circresaha.115.304458] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis. OBJECTIVE To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD. METHODS AND RESULTS We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10(-5); odds ratio, 4.6) or whole exome sequencing data (P=6×10(-4); odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions. CONCLUSIONS We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD.
Collapse
Affiliation(s)
- Joseph T Glessner
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Kaoru Ito
- Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Homsy
- Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Rodriguez-Murillo
- Mindich Child Health and Development Institute, Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Menachem Fromer
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Psychiatric Genomics in the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erica Mazaika
- Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Badri Vardarajan
- Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Italia
- Center for Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeremy Leipzig
- Center for Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Ryan Golhar
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephan J Sanders
- Genetics, Yale University, New Haven, CT 06520, USA.,Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Boris Yamrom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - A Jeremy Willsey
- Genetics, Yale University, New Haven, CT 06520, USA.,Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Genetics, Yale University, New Haven, CT 06520, USA.,Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan R Kaltman
- Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Peter S White
- Center for Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yufeng Shen
- Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dorothy Warburton
- Genetics and Development (in Medicine), Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Elizabeth Goldmuntz
- Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard Lifton
- Genetics, Yale University, New Haven, CT 06520, USA.,Medicine, Yale University, New Haven, CT 06520, USA
| | | | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wendy K Chung
- Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
40
|
Davis EE, Frangakis S, Katsanis N. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1960-1970. [PMID: 24887202 DOI: 10.1016/j.bbadis.2014.05.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 12/15/2022]
Abstract
Rapid advances and cost erosion in exome and genome analysis of patients with both rare and common genetic disorders have accelerated gene discovery and illuminated fundamental biological mechanisms. The thrill of discovery has been accompanied, however, with the sobering appreciation that human genomes are burdened with a large number of rare and ultra rare variants, thereby posing a significant challenge in dissecting both the effect of such alleles on protein function and also the biological relevance of these events to patient pathology. In an effort to develop model systems that are able to generate surrogates of human pathologies, a powerful suite of tools have been developed in zebrafish, taking advantage of the relatively small (compared to invertebrate models) evolutionary distance of that genome to humans, the orthology of several organs and signaling processes, and the suitability of this organism for medium and high throughput phenotypic screening. Here we will review the use of this model organism in dissecting human genetic disorders; we will highlight how diverse strategies have informed disease causality and genetic architecture; and we will discuss relative strengths and limitations of these approaches in the context of medical genome sequencing. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA.
| | - Stephan Frangakis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJM, Rosenfeld JA, Zeesman S, Zunich J, Beckmann JS, Hirschhorn JN, Hastings ML, Jacquemont S, Katsanis N. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am J Hum Genet 2013; 93:798-811. [PMID: 24140112 DOI: 10.1016/j.ajhg.2013.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Collapse
Affiliation(s)
- Andrew Dauber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|