1
|
Diao H, Zhao F, Wu M, Zhang Y, Tao Q, Chen S, Lin D. LncRNA Expression Profiles in C6 Ceramide Treatment Reveal lnc_025370 as a Promoter in Canine Mammary Carcinoma CHMp Cells Progression. Curr Issues Mol Biol 2024; 46:14190-14203. [PMID: 39727977 DOI: 10.3390/cimb46120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Canine mammary carcinomas (CMCs) represent the most prevalent form of cancer in female dogs, characterized by a high incidence and mortality rate. C6 ceramide is recognized for its multifaceted anti-cancer properties, yet its specific influence on CMCs remains to be elucidated. Long noncoding RNAs (lncRNAs), now recognized as functional "dark matter" in precision oncology, are particularly intriguing, with 44% of canine lncRNAs exhibiting tissue-specific expression. In this study, we performed a thorough analysis of lncRNA expression profiles to uncover the mechanisms behind C6 ceramide's anti-cancer activity in CHMp cells. Our findings reveal that C6 ceramide notably inhibits the proliferation of CHMp cells. RNA sequencing identified 4522 lncRNAs with expression changes following C6 ceramide treatment, of which 2936 were upregulated and 1586 were downregulated. Further investigation into Lnc_025370 showed that it is predominantly nuclear-localized and is significantly downregulated by C6 ceramide treatment. Functional studies discovered that overexpression of Lnc_025370 enhances the growth and metastatic capabilities of CHMp cells, which is associated with an increase in NRG1, and concurrently diminishes the anti-cancer effectiveness of C6 ceramide in vitro. Mouse xenograft models also showed that Lnc_025370 overexpression promotes tumor growth and Ki67 expression. Together, our results suggest that Lnc_025370 acts as a pivotal target mediator of C6 ceramide's anti-cancer effects, facilitating the malignant progression of CHMp cells.
Collapse
Affiliation(s)
- Hongxiu Diao
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangying Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meijin Wu
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Zhang
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianting Tao
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shichao Chen
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Degui Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
3
|
Elkahwagy DM, Kiriacos CJ, Sobeih ME, Khorshid OMR, Mansour M. The lncRNAs Gas5, MALAT1 and SNHG8 as diagnostic biomarkers for epithelial malignant pleural mesothelioma in Egyptian patients. Sci Rep 2024; 14:4823. [PMID: 38413635 PMCID: PMC10899637 DOI: 10.1038/s41598-024-55083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Long noncoding RNAs have been shown to be involved in a myriad of physiological and pathological pathways. To date, malignant pleural mesothelioma (MPM) is considered an extremely aggressive cancer. One reason for this is the late diagnosis of the disease, which can occur within 30-40 years of asbestos exposure. There is an immense need for the development of new, sensitive, inexpensive and easy methods for the early detection of this disease other than invasive methods such as biopsy. The aim of this study was to determine the expression of circulating lncRNAs in mesothelioma patient plasma to identify potential biomarkers. Ten previously identified lncRNAs that were shown to be aberrantly expressed in mesothelioma tissues were selected as candidates for subsequent validation. The expression of the ten selected candidate lncRNAs was verified via quantitative PCR (qPCR) in human plasma samples from mesothelioma patients versus healthy controls. The expression levels of circulating GAS5, SNHG8 and MALAT1 were significantly greater in plasma samples from patients than in those from controls. The ROC analysis of both MALAT1 and SNHG8 revealed 88.89% sensitivity and 66.67% specificity. The sensitivity of these markers was greater than that of GAS5 (sensitivity 72.22% and specificity 66.67%). The regression model for GAS5 was statistically significant, while that for SNHG8 and MALAT1 was not significant due to the small sample size. The area under the curve (AUC) of the three ROC curves was acceptable and significant: 0.7519 for GAS5, 0.7352 for SNHG8 and 0.7185 for MALAT1. This finding confirmed their ability to be used as markers. The three lncRNAs were not affected by age, sex or smoking status. The three lncRNAs showed great potential as independent predictive diagnostic biomarkers. Although the prediction model for MALAT1 did not significantly differ, MALAT1 was significantly expressed in patients more than in controls (p = 0.0266), and the recorded sensitivity and specificity were greater than those of GAS5.
Collapse
Affiliation(s)
- Dina Mohamed Elkahwagy
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Ola M Reda Khorshid
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Manar Mansour
- Pharmaceutical Biology and Microbiology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
4
|
Sadi Khosroshahi N, Koulaeizadeh S, Abdi A, Akbarzadeh S, Hashemi Aghdam SM, Rajabi A, Safaralizadeh R. Upregulation of Long Noncoding RNA PCAT1 in Iranian Patients with Colorectal Cancer and Its Performance as a Potential Diagnostic Biomarker. Genet Test Mol Biomarkers 2024; 28:65-69. [PMID: 38416663 DOI: 10.1089/gtmb.2023.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) as critical molecules play an essential role in the development of cancers. In colorectal cancer (CRC), various lncRNAs are related to cell proliferation, apoptosis, migration, and invasion. LncRNA prostate cancer-associated transcript 1 (PCAT-1), as an oncogenic factor, is a diagnostic biomarker that regulates cell proliferation, migration, invasion, and apoptosis. Methods: This study evaluated the relationship between PCAT-1, CRC occurrence, and pathological features of Iranian patients. The studied samples included 100 colorectal tumor tissues and 100 adjacent healthy tissues of Iranian CRC patients. RNAs were extracted from cancerous and noncancerous tissues to synthesize complementary DNA. The expression level of PCAT-1 was assessed using the real-time PCR method, and the data analysis was assessed using SPSS software. Results: In this study, expression level of PCAT-1 in tumor tissue was significantly increased in Iranian patients, and pathological studies of the patients had no significant relationship with the PCAT-1 expression profile. Conclusion: Our results suggested that the high expression of PCAT-1 resulted in the occurrence of colorectal tumor tissues in Iranian patients, which can be considered a diagnostic biomarker in CRC.
Collapse
Affiliation(s)
- Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shabnam Koulaeizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Fawzy MS, Ibrahiem AT, Osman DM, Almars AI, Alshammari MS, Almazyad LT, Almatrafi NDA, Almazyad RT, Toraih EA. Angio-Long Noncoding RNA MALAT1 (rs3200401) and MIAT (rs1061540) Gene Variants in Ovarian Cancer. EPIGENOMES 2024; 8:5. [PMID: 38390896 PMCID: PMC10885055 DOI: 10.3390/epigenomes8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The genotyping of long non-coding RNA (lncRNA)-related single-nucleotide polymorphisms (SNPs) could be associated with cancer risk and/or progression. This study aimed to analyze the angiogenesis-related lncRNAs MALAT1 (rs3200401) and MIAT (rs1061540) variants in patients with ovarian cancer (OC) using "Real-Time allelic discrimination polymerase chain reaction" in 182 formalin-fixed paraffin-embedded (FFPE) samples of benign, borderline, and primary malignant ovarian tissues. Differences in the genotype frequencies between low-grade ovarian epithelial tumors (benign/borderline) and malignant tumors and between high-grade malignant epithelial tumors and malignant epithelial tumors other than high-grade serous carcinomas were compared. Odds ratios (ORs)/95% confidence intervals were calculated as measures of the association strength. Additionally, associations of the genotypes with the available pathological data were analyzed. The heterozygosity of MALAT1 rs3200401 was the most common genotype (47.8%), followed by C/C (36.3%). Comparing the study groups, no significant differences were observed regarding this variant. In contrast, the malignant epithelial tumors had a higher frequency of the MIAT rs1061540 C/C genotype compared to the low-grade epithelial tumor cohorts (56.7% vs. 37.6, p = 0.031). The same genotype was significantly higher in high-grade serous carcinoma than its counterparts (69.4% vs. 43.8%, p = 0.038). Multivariate Cox regression analysis showed that the age at diagnosis was significantly associated with the risk of OC development. In contrast, the MIAT T/T genotype was associated with a low risk of malignant epithelial tumors under the homozygote comparison model (OR = 0.37 (0.16-0.83), p = 0.017). Also, MIAT T allele carriers were less likely to develop high-grade serous carcinoma under heterozygote (CT vs. CC; OR = 0.33 (0.12-0.88), p = 0.027) and homozygote (TT vs. CC; OR = 0.26 (0.07-0.90), p = 0.034) comparison models. In conclusion, our data provide novel evidence for a potential association between the lncRNA MIAT rs1061540 and the malignant condition of ovarian cancer, suggesting the involvement of such lncRNAs in OC development.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
- Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| | - Dalia Mohammad Osman
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | | | - Renad Tariq Almazyad
- Faculty of Applied Medical Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Yin JY, Zhou Y, Ding XM, Gong RZ, Zhou Y, Hu HY, Liu Y, Lv XB, Zhang B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Curr Cancer Drug Targets 2024; 24:204-219. [PMID: 37076962 DOI: 10.2174/1568009623666230418134253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.
Collapse
Affiliation(s)
- Jun-Yi Yin
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yao Zhou
- Department of Breast Surgery, the Third hospital of Nanchang, No. 2, Xiangshan Road, Xihu District, Nanchang, Jiangxi, 330009, China
| | - Xiao-Ming Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Run-Ze Gong
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Hai-Yan Hu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuan Liu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan N Road, Donghu District, Nanchang, Jiangxi, 330008, China
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
7
|
Singh D, Desai N, Shah V, Datta B. In Silico Identification of Potential Quadruplex Forming Sequences in LncRNAs of Cervical Cancer. Int J Mol Sci 2023; 24:12658. [PMID: 37628839 PMCID: PMC10454738 DOI: 10.3390/ijms241612658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as auxiliary regulators of gene expression influencing tumor microenvironment, metastasis and radio-resistance in cancer. The presence of lncRNA in extracellular fluids makes them promising diagnostic markers. LncRNAs deploy higher-order structures to facilitate a complex range of functions. Among such structures, G-quadruplexes (G4s) can be detected or targeted by small molecular probes to drive theranostic applications. The in vitro identification of G4 formation in lncRNAs can be a tedious and expensive proposition. Bioinformatics-driven strategies can provide comprehensive and economic alternatives in conjunction with suitable experimental validation. We propose a pipeline to identify G4-forming sequences, protein partners and biological functions associated with dysregulated lncRNAs in cervical cancer. We identified 17 lncRNA clusters which possess transcripts that can fold into a G4 structure. We confirmed in vitro G4 formation in the four biologically active isoforms of SNHG20, MEG3, CRNDE and LINP1 by Circular Dichroism spectroscopy and Thioflavin-T-assisted fluorescence spectroscopy and reverse-transcriptase stop assay. Gene expression data demonstrated that these four lncRNAs can be potential prognostic biomarkers of cervical cancer. Two approaches were employed for identifying G4 specific protein partners for these lncRNAs and FMR2 was a potential interacting partner for all four clusters. We report a detailed investigation of G4 formation in lncRNAs that are dysregulated in cervical cancer. LncRNAs MEG3, CRNDE, LINP1 and SNHG20 are shown to influence cervical cancer progression and we report G4 specific protein partners for these lncRNAs. The protein partners and G4s predicted in lncRNAs can be exploited for theranostic objectives.
Collapse
Affiliation(s)
- Deepshikha Singh
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Nakshi Desai
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Viraj Shah
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| |
Collapse
|
8
|
Pal A, Ghosh PK, Das S. The "LINC" between Δ40p53-miRNA Axis in the Regulation of Cellular Homeostasis. Mol Cell Biol 2023; 43:335-353. [PMID: 37283188 PMCID: PMC10348045 DOI: 10.1080/10985549.2023.2213147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Previous research has shown that Δ40p53, the translational isoform of p53, can inhibit cell growth independently of p53 by regulating microRNAs. Here, we explored the role of Δ40p53 in regulating the long noncoding RNA-micro-RNA-cellular process axis, specifically focusing on LINC00176. Interestingly, LINC00176 levels were predominantly affected by the overexpression/stress-mediated induction and knockdown of Δ40p53 rather than p53 levels. Additional assays revealed that Δ40p53 transactivates LINC00176 transcriptionally and could also regulate its stability. RNA immunoprecipitation experiments revealed that LINC00176 sequesters several putative microRNA targets, which could further titrate several mRNA targets involved in different cellular processes. To understand the downstream effects of this regulation, we ectopically overexpressed and knocked down LINC00176 in HCT116 p53-/- (harboring only Δ40p53) cells, which affected their proliferation, cell viability, and expression of epithelial markers. Our results provide essential insights into the pivotal role of Δ40p53 in regulating the novel LINC00176 RNA-microRNA-mRNA axis independent of FL-p53 and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pritam Kumar Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
10
|
Tong X, Yu Z, Xing J, Liu H, Zhou S, Huang Y, Lin J, Jiang W, Wang L. LncRNA HCP5-Encoded Protein Regulates Ferroptosis to Promote the Progression of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15061880. [PMID: 36980766 PMCID: PMC10046773 DOI: 10.3390/cancers15061880] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and were initially believed to lack encoding capability. However, recent research has found open reading frames (ORFs) within lncRNAs, suggesting that they may have coding capacity. Despite this discovery, the mechanisms by which lncRNA-encoded products are involved in cancer are not well understood. The current study aims to investigate whether lncRNA HCP5-encoded products promote triple-negative breast cancer (TNBC) by regulating ferroptosis. METHODS We used bioinformatics to predict the coding capacity of lncRNA HCP5 and conducted molecular biology experiments and a xenograft assay in nude mice to investigate the mechanism of its encoded products. We also evaluated the expression of the HCP5-encoded products in a breast cancer tissue microarray. RESULTS Our analysis revealed that the ORF in lncRNA HCP5 can encode a protein with 132-amino acid (aa), which we named HCP5-132aa. Further experiments showed that HCP5-132aa promotes TNBC growth by regulating GPX4 expression and lipid ROS level through the ferroptosis pathway. Additionally, we found that the breast cancer patients with high levels of HCP5-132aa have poorer prognosis. CONCLUSIONS Our study suggests that overexpression of lncRNA HCP5-encoded protein is a critical oncogenic event in TNBC, as it regulates ferroptosis. These findings could provide new therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Xiao Tong
- Department of Pathophysiology, Medical College, Southeast University, Nanjing 210009, China
| | - Zhengling Yu
- Department of Pathophysiology, Medical College, Southeast University, Nanjing 210009, China
| | - Jiani Xing
- Department of Pathophysiology, Medical College, Southeast University, Nanjing 210009, China
| | - Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yu'e Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jing Lin
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin 150081, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Lihong Wang
- Department of Pathophysiology, Medical College, Southeast University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Nanjing 210009, China
| |
Collapse
|
11
|
An B, Cai Y, Zhu J, Liu Y. Long Noncoding RNA LINC01503 Silencing Suppresses KLK4 Expression to Impede Pancreatic Cancer Development as miR-1321 Sponge. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5403344. [PMID: 36785666 PMCID: PMC9922183 DOI: 10.1155/2023/5403344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
Background Long intergenic nonprotein coding RNA 1503 (LINC01503) was reportedly oncogenic in several malignancies, whereas whether it contributed to pancreatic cancer tumorigenesis and progression requires to be verified. Methods The expression pattern of LINC01503 was monitored via qRT-PCR assay in normal cells and cancerous pancreatic cancer cells. The introduction of silencing LINC01503 was to verify the relation between LINC01503 expression and cell growth. Then, the targeting relationship of LINC01503 to miR-1321 was confirmed by bioinformatics predication and luciferase reporter assay. In addition, luciferase reporter assays evaluated the binding of miR-1321 to the 3'-untranslated region of KLK4. Overexpressing KLK4 and inhibiting LINC01503 was introduced in tumor cells to investigate the corresponding impacts on pancreatic cancer cell proliferation and migration. Results LINC01503 and KLK4 were highly abundant in pancreatic cancer cells. Mechanistically, miR-1321 bound to LINC01503 and KLK4. Downregulating LINC01503 promoted the availability of miR-1321 in pancreatic cancer cells and thus repressed KLK4 expression. KLK4 overexpression abolished the impediment of LINC01503 depletion on cell proliferation and migration. Conclusion Oncogenic function of LINC01503 was dependent on KLK4 upregulation by sponging miR-1321. Revealing the tumor-promoting property of LINC01503 in pancreatic cancer may confer new biomarkers for this malignancy.
Collapse
Affiliation(s)
- Baiping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610032, China
| | - Yi Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610032, China
| | - Jie Zhu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610032, China
| | - Yuan Liu
- Department of Interventional Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610032, China
| |
Collapse
|
12
|
Yari M, Soltani BM, Ghaemi Z, Omrani MD. EVADR ceRNA transcript variants upregulate WNT and PI3K signaling pathways in SW480 and HCT116 cells by sponging miR-7 and miR-29b. Biol Chem 2023; 404:71-83. [PMID: 36420528 DOI: 10.1515/hsz-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs are cancer regulators and EVADR-lncRNA is highly upregulated in colorectal cancer (CRC). Accordingly, we aimed to functionally characterize the EVADR in CRC-originated cells. Firstly, during the amplification of EVADR full-length cDNA (named EVADR-v1), a novel/shorter variant (EVADR-v2) was discovered. Then, RT-qPCR analysis confirmed that EVADR is upregulated in tumors, consistent with RNA-seq analysis. Interestingly, bioinformatics analysis and dual-luciferase assay verified that EVADR sponges miR-7 and miR-29b. When both EVADR-v1/-v2 variants were overexpressed in SW480/HCT116 cells, miR-7 and miR-29b target genes (involved in the WNT/PI3K signaling) were upregulated. Furthermore, EVADR-v1/-v2 overexpression resulted in elevated PI3K activity (verified by western blotting and RT-qPCR) and upregulation of WNT signaling (confirmed by western blotting, TopFlash assay, and RT-qPCR). Consistently, overexpression of EVADR-v1/-v2 variants was followed by increased cell cycle progression, viability and migration as well as reduced early/late apoptotic rate, and Bax/Bcl2 ratio of the CRC cells, detected by the cell cycle analysis, MTT, wound-healing, Annexin-V/PI, and RT-qPCR methods, respectively. Overall, we introduced two oncogenic transcript variants for EVADR that by sponging miR-7/miR-29b, upregulate WNT and PI3K signaling. Given the crucial role of these pathways in CRC, EVADR may present potential therapy use.
Collapse
Affiliation(s)
- Mohsen Yari
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box 14115-154, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box 14115-154, Tehran, Iran
| | - Zahra Ghaemi
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box 14115-154, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kuo FC, Wang YT, Liu CH, Li YF, Lu CH, Su SC, Liu JS, Li PF, Huang CL, Ho LJ, Lin CM, Lee CH. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int 2022; 22:396. [PMID: 36494673 PMCID: PMC9733112 DOI: 10.1186/s12935-022-02817-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a fast-growing incidence in recent decades. HOTAIR as a long non-coding RNA has been shown to be highly expressed in papillary thyroid cancer tissues with only a limited understanding of its functional roles and downstream regulatory mechanisms in papillary thyroid cancer cells. METHODS We applied three thyroid cancer cell lines (MDA-T32, MDA-T41 and K1) to investigate the phenotypic influence after gain or loss of HOTAIR. The Cancer Genome Atlas (TCGA) database were utilised to select candidate genes possibly regulated by HOTAIR with validation in the cellular system and immunohistochemical (IHC) staining of PTC tissues. RESULTS We observed HOTAIR was highly expressed in MDA-T32 cells but presents significantly decreased levels in MDA-T41 and K1 cells. HOTAIR knockdown in MDA-T32 cells significantly suppressed proliferation, colony formation, migration with cell cycle retardation at G1 phase. On the contrary, HOTAIR overexpression in MDA-T41 cells dramatically enhanced proliferation, colony formation, migration with cell cycle driven toward S and G2/M phases. Similar phenotypic effects were also observed as overexpressing HOTAIR in K1 cells. To explore novel HOTAIR downstream mechanisms, we analyzed TCGA transcriptome in PTC tissues and found DLX1 negatively correlated to HOTAIR, and its lower expression associated with reduced progression free survival. We further validated DLX1 gene was epigenetically suppressed by HOTAIR via performing chromatin immunoprecipitation. Moreover, IHC staining shows a significantly stepwise decrease of DLX1 protein from normal thyroid tissues to stage III PTC tissues. CONCLUSIONS Our study pointed out that HOTAIR is a key regulator of cellular malignancy and its epigenetic suppression on DLX1 serves as a novel biomarker to evaluate the PTC disease progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ting Wang
- grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hsin Liu
- grid.260565.20000 0004 0634 0356Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Feng Li
- grid.260565.20000 0004 0634 0356Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Chiang Su
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Fei Li
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ju Ho
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ming Lin
- grid.260565.20000 0004 0634 0356Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
14
|
Brooks R, Monzy J, Aaron B, Zhang X, Kossenkov A, Hayden J, Keeney F, Speicher DW, Zhang L, Dang CV. Circadian lncRNA ADIRF-AS1 binds PBAF and regulates renal clear cell tumorigenesis. Cell Rep 2022; 41:111514. [PMID: 36261012 PMCID: PMC9652615 DOI: 10.1016/j.celrep.2022.111514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
We identify ADIRF-AS1 circadian long non-coding RNA (lncRNA). Deletion of ADIRF-AS1 in U2OS cells alters rhythmicity of clock-controlled genes and expression of extracellular matrix genes. ADIRF-AS1 interacts with all components of the PBAF (PBRM1/BRG1) complex in U2OS cells. Because PBRM1 is a tumor suppressor mutated in over 40% of clear cell renal carcinoma (ccRCC) cases, we evaluate ADIRF-AS1 in ccRCC cells. Reducing ADIRF-AS1 expression in ccRCC cells decreases expression of some PBAF-suppressed genes. Expression of these genes is partially rescued by PBRM1 loss, consistent with ADIRF-AS1 acting in part to modulate PBAF. ADIRF-AS1 expression correlates with survival in human ccRCC, particularly in PBRM1 wild-type, but not mutant, tumors. Loss of ADIRF-AS1 eliminates in vivo tumorigenesis, partially rescued by concurrent loss of PBRM1 only when co-injected with Matrigel, suggesting a PBRM1-independent function of ADIRF-AS1. Our findings suggest that ADIRF-AS1 functions partly through PBAF to regulate specific genes as a BMAL1-CLOCK-regulated, oncogenic lncRNA.
Collapse
Affiliation(s)
- Rebekah Brooks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Judith Monzy
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Bailey Aaron
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Xue Zhang
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - James Hayden
- The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | | | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
15
|
LincRNAs and snoRNAs in Breast Cancer Cell Metastasis: The Unknown Players. Cancers (Basel) 2022; 14:cancers14184528. [PMID: 36139687 PMCID: PMC9496948 DOI: 10.3390/cancers14184528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in research have led to earlier diagnosis and targeted therapies against breast cancer, which has resulted in reduced breast cancer-related mortality. However, the majority of breast cancer-related deaths are due to metastasis of cancer cells to other organs, a process that has not been fully elucidated. Among the factors and genes implicated in the metastatic process regulation, non-coding RNAs have emerged as crucial players. This review focuses on the role of long intergenic noncoding RNAs (lincRNAs) and small nucleolar RNAs (snoRNAs) in breast cancer cell metastasis. LincRNAs are transcribed between two protein-coding genes and are longer than 200 nucleotides, they do not code for a specific protein but function as regulatory molecules in processes such as cell proliferation, apoptosis, epithelial-to-mesenchymal transition, migration, and invasion while most of them are highly elevated in breast cancer tissues and seem to function as competing endogenous RNAs (ceRNAs) inhibiting relevant miRNAs that specifically target vital metastasis-related genes. Similarly, snoRNAs are 60-300 nucleotides long and are found in the nucleolus being responsible for the post-transcriptional modification of ribosomal and spliceosomal RNAs. Most snoRNAs are hosted inside intron sequences of protein-coding and non-protein-coding genes, and they also regulate metastasis-related genes affecting related cellular properties.
Collapse
|
16
|
Xiang J, Gao L, Jing HY, Liu YX, Wang HF, Chang ZW, Liu SH, Yu L, Wang GY. Construction of CeRNA regulatory network based on WGCNA reveals diagnosis biomarkers for colorectal cancer. BMC Cancer 2022; 22:991. [PMID: 36115953 PMCID: PMC9482270 DOI: 10.1186/s12885-022-10054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Colorectal cancer is the third most common cause of death among cancers in the world. Although improvements in various treatments have greatly improved the survival time of colorectal cancer patients, since colorectal cancer is often at an advanced stage when diagnosed, the prognosis of patients is still very poor. Since the ceRNA regulatory network was proposed in 2011, it has greatly promoted the study of the molecular mechanism of colorectal cancer occurrence and development. Objective Exploring the new molecular mechanism of colorectal cancer occurrence and development and providing new targets for the diagnosis and treatment of colorectal cancer. Method We analyzed the RNA-seq data of CRC from TCGA, such as differential expression analysis, weighted gene co-expression network analysis (WGCNA) and construction of ceRNA regulatory network. Results We constructed a ceRNA network using RNA-seq data of CRC from TCGA. In the ceRNA regulatory network, 19 hub molecules with significant prognostic effects were ultimately identified, including 8 lncRNAs, 2 mRNAs and 9 miRNAs. These hub molecules constitute the lncRNA-miRNA, miRNA-mRNA or lncRNA-miRNA-mRNA axis. Conclusion In this article, some new ceRNA regulatory axes have been discovered, which may potentially disclose new molecular mechanisms for the occurrence and development of colorectal cancer, thereby providing an important blueprint for the treatment and prognosis assessment of CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10054-z.
Collapse
|
17
|
Changizian M, Nourisanami F, Hajpoor V, Parvaresh M, Bahri Z, Motovali-Bashi M. LINC00467: A key oncogenic long non-coding RNA. Clin Chim Acta 2022; 536:112-125. [PMID: 36122666 DOI: 10.1016/j.cca.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
The significance of long non-coding RNAs (lncRNAs) in the development and progression of human cancers has attracted increasing attention in recent years of investigations. Having versatile interactions and diverse functions, lncRNAs can act as oncogenes or tumor-suppressors to actively regulate cell proliferation, survival, stemness, drug resistance, invasion and metastasis. LINC00467, an oncogenic member of long intergenic non-coding RNAs, is upregulated in numerous malignancies and its high expression is often related to poor clinicopathological features. LINC00467 facilitates the progression of cancer via sponging tumor-suppressive microRNAs, inhibiting cell death cascade, modulating cell cycle controllers, and regulating signalling pathways including AKT, STAT3, NF-κB and Wnt/β-catenin. A growing number of studies have revealed that LINC00467 may serve as a novel prognostic biomarker and its inhibitory targeting has a valuable therapeutic potential to suppress the malignant phenotypes of cancer cells. In the present review, we discuss the importance of LINC00467 and provide a comprehensive collection of its functions and molecular mechanisms in a variety of cancer types.
Collapse
Affiliation(s)
- Mohammad Changizian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Farahdokht Nourisanami
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Vida Hajpoor
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran 14965/161, Iran
| | - Maryam Parvaresh
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Zahra Bahri
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| |
Collapse
|
18
|
Denham AN, Drake J, Gavrilov M, Taylor ZN, Bacanu SA, Vladimirov VI. Long Non-Coding RNAs: The New Frontier into Understanding the Etiology of Alcohol Use Disorder. Noncoding RNA 2022; 8:59. [PMID: 36005827 PMCID: PMC9415279 DOI: 10.3390/ncrna8040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.
Collapse
Affiliation(s)
- Allie N. Denham
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- MSCI Program, Texas A&M University, Bryan, TX 77807, USA
| | - Matthew Gavrilov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
- Texas A&M Institute for Neuroscience, College Station, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, College Station, Texas A&M University, College Station, TX 77843, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int 2022; 22:227. [PMID: 35810299 PMCID: PMC9270757 DOI: 10.1186/s12935-022-02648-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
As one of the most common malignancies worldwide, gastric cancer contributes to cancer death with a high mortality rate partly responsible for its out-of-control progression as well as limited diagnosis. DNA methylation, one of the epigenetic events, plays an essential role in the carcinogenesis of many cancers, including gastric cancer. Long non-coding RNAs have emerged as the significant factors in the cancer progression functioned as the oncogene genes, the suppressor genes and regulators of signaling pathways over the decade. Intriguingly, increasing reports, recently, have claimed that abnormal DNA methylation regulates the expression of lncRNAs as tumor suppressor genes in gastric cancer and lncRNAs as regulators could exert the critical influence on tumor progression through acting on DNA methylation of other cancer-related genes. In this review, we summarized the DNA methylation-associated lncRNAs in gastric cancer which play a large impact on tumor progression, such as proliferation, invasion, metastasis and so on. Furthermore, the underlying molecular mechanism and signaling pathway might be developed as key points of gastric cancer range from diagnosis to prognosis and treatment in the future.
Collapse
Affiliation(s)
- Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
20
|
Xiang Z, Lv Q, Zhang Y, Chen X, Guo R, Liu S, Peng X. Long non-coding RNA DDX11-AS1 promotes the proliferation and migration of glioma cells by combining with HNRNPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:601-612. [PMID: 35614994 PMCID: PMC9109126 DOI: 10.1016/j.omtn.2022.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022]
Abstract
Glioma is a malignant tumor of the central nervous system with complex pathogenesis, difficult operation, and a high postoperative recurrence rate. At present, there is still a lack of effective treatment. Long non-coding RNA DDX11 antisense RNA 1 (DDX11-AS1) has been shown to promote tumor development, such as hepatocellular carcinoma, esophageal cancer, etc. However, its molecular mechanism in glioma is poorly understood. In this study, we found that the expression of DDX11-AS1 was elevated in glioma tissues, and patients with high expression of DDX11-AS1 had poor prognosis. DDX11-AS1 was a potential prognostic marker. Functionally, DDX11-AS1 promoted glioma cell proliferation and migration. Mechanistically, DDX11-AS1 interacted with RNA-binding protein heterogeneous nuclear ribonucleoprotein C (HNRNPC) to promote Wnt/β-catenin and AKT pathways and the epithelial-mesenchymal transition process. In summary, our study manifests that the DDX11-AS1/HNRNPC axis may play a vital part in the occurrence and development of glioma, which provides new ideas and therapeutic targets for the diagnosis, treatment, and prognosis of glioma.
Collapse
Affiliation(s)
- Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yujun Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shikun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
21
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
22
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
23
|
Liu K, Chen H, Wang Y, Jiang L, Li Y. Evolving Insights Into the Biological Function and Clinical Significance of Long Noncoding RNA in Glioblastoma. Front Cell Dev Biol 2022; 10:846864. [PMID: 35531099 PMCID: PMC9068894 DOI: 10.3389/fcell.2022.846864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive cancers worldwide. The overall survival period of GBM patients is only 15 months even with standard combination therapy. The absence of validated biomarkers for early diagnosis mainly accounts for worse clinical outcomes of GBM patients. Thus, there is an urgent requirement to characterize more biomarkers for the early diagnosis of GBM patients. In addition, the detailed molecular basis during GBM pathogenesis and oncogenesis is not fully understood, highlighting that it is of great significance to elucidate the molecular mechanisms of GBM initiation and development. Recently, accumulated pieces of evidence have revealed the central roles of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of GBM by binding with DNA, RNA, or protein. Targeting those oncogenic lncRNAs in GBM may be promising to develop more effective therapeutics. Furthermore, a better understanding of the biological function and underlying molecular basis of dysregulated lncRNAs in GBM initiation and development will offer new insights into GBM early diagnosis and develop novel treatments for GBM patients. Herein, this review builds on previous studies to summarize the dysregulated lncRNAs in GBM and their unique biological functions during GBM tumorigenesis and progression. In addition, new insights and challenges of lncRNA-based diagnostic and therapeutic potentials for GBM patients were also introduced.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yi Li, ; Liping Jiang,
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi Li, ; Liping Jiang,
| |
Collapse
|
24
|
Hu Y, Wang X, Ding F, Liu C, Wang S, Feng T, Meng S. Periostin renders cardiomyocytes vulnerable to acute myocardial infarction via pro-apoptosis. ESC Heart Fail 2022; 9:977-987. [PMID: 35104050 PMCID: PMC8934967 DOI: 10.1002/ehf2.13675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
AIMS As a severe cardiovascular disease, acute myocardial infarction (AMI) could trigger congestive heart failure. Periostin (Postn) has been elucidated to be dramatically up-regulated in myocardial infarction. Abundant expression of Postn was also observed in the infarct border of human and mouse hearts with AMI. This work is dedicated to explore the mechanism through which Postn exerts its functions on AMI. METHODS AND RESULTS The expression of Postn in AMI mice and hypoxia-treated neonatal mouse cardiomyocytes (NMCMs) was quantified by qRT-PCR. The biological functions of Postn in AMI were explored by trypan blue, TUNEL, flow cytometry analysis, and JC-1 assays. Luciferase activity or MS2-RIP or RNA pull-down assay was performed to study the interaction between genes. Postn exhibited up-regulated expression in AMI mice and hypoxia-treated NMCMs. Functional assays indicated that cell apoptosis in NMCMs was promoted via the treatment of hypoxia. And Postn shortage could alleviate cell apoptosis in hypoxia-induced NMCMs. Postn was verified to bind to mmu-miR-203-3p and be down-regulated by miR-203-3p overexpression. Postn and miR-203-3p were spotted to coexist with small nucleolar RNA host gene 8 (Snhg8) in RNA-induced silencing complex. The affinity between Snhg8 and miR-203-3p was confirmed. Afterwards, Snhg8 was validated to promote cell apoptosis in hypoxia-induced NMCMs partially dependent on Postn. Furthermore, vascular endothelial growth factor A (Vegfa) was revealed to bind to miR-203-3p and be implicated in the Snhg8-mediated AML cell apoptosis and angiogenesis. CONCLUSIONS miR-203-3p availability is antagonized by Snhg8 for Postn and Vegfa-induced AMI progression.
Collapse
Affiliation(s)
- Yanlei Hu
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Xiaohang Wang
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Fuyan Ding
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Chao Liu
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Shupeng Wang
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Tao Feng
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Shuping Meng
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| |
Collapse
|
25
|
Yu T, Lin K, Pan H, Sun L, Zhu Y. MetaLnc9-Antisense RNA Contributes to Lung Cancer Metastasis via Modulating RNA-RNA Duplex with MetaLnc9. DNA Cell Biol 2022; 41:390-399. [PMID: 35333617 DOI: 10.1089/dna.2021.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lung cancer is a common life-threatening tumor with high malignancy and high invasiveness. Long non-coding RNAs (lncRNAs) are involved in almost every stage of tumor initiation and progression. Here, we identified an antisense lncRNA, MetaLnc9 antisense (Metalnc9-AS), which arises from the antisense strand of Metalnc9, located on chr9q34.11, while its biological function and mechanism are not clear in lung cancer. In this study, we demonstrated that the expression of Metalnc9-AS was upregulated in non-small cell lung cancer (NSCLC) tissues compared with corresponding non-tumorous tissues. The gain of MetaLnc9-AS was highly associated with the malignant features of NSCLC. Overexpression of MetaLnc9-AS enhanced tumor metastasis in vitro and in vivo. Mechanically, MetaLnc9-AS could form an RNA-RNA hybrid with its cognate sense counterpart, MetaLnc9, to regulate its expression in NSCLC cells, and that such complexes were protected from ribonuclease degradation. Thus, Metalnc9-AS might be a potential and effective treatment for NSCLC.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Genetic Engineering, Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kailin Lin
- State Key Laboratory of Genetic Engineering, Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Pan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Sun
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyao Zhu
- Department of Pathology, The Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
26
|
Association between long noncoding RNA rs944289 and rs7990916 polymorphisms and the risk of colorectal cancer in a Chinese population. Sci Rep 2022; 12:2495. [PMID: 35169218 PMCID: PMC8847648 DOI: 10.1038/s41598-022-06474-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) play vital roles in the tumorigenesis of many cancers. Single nucleotide polymorphisms (SNPs) of the lncRNA also play vital roles in tumorigenesis. We explored lncRNA rs944289 and rs7990916 polymorphisms and analyzed the relationship between these lncRNA polymorphisms with the colorectal cancer (CRC) risk in a Chinese population. We recruited 1003 CRC patients from the Affiliated People’s Hospital of Jiangsu University and the Fujian Medical University Union Hospital from October 2014 to August 2017. Genomic DNA was extracted using a DNA Kit from lymphocytes of peripheral blood and the genotyping was performed with a SNPscan method. We found that the rs944289 TT homozygote was associated with the decreased CRC risk in the overall population. LncRNA rs944289 TT decreased the CRC risk in the subgroup of female, male, age ≥ 61, without alcohol intake, smoking and BMI ≥ 24 by logistic regression. The subgroup analysis revealed that lncRNA rs7990916 was not associated with CRC risk except for age < 61. Logistic regression analysis revealed that lncRNA rs944289 TT homozygote was associated with the increased risk of rectum cancer (TT vs. CC + CT: adjusted OR = 1.29, 95% CI 1.10–1.66, P = 0.041) or colon cancer. In summary, we proved that lncRNA rs944289 might be significantly related to the decreased CRC risk in the Chinese Han populations and lncRNA rs7990916 was not associated with the CRC risk except for patients of age < 61. In the future, studies with larger samples should be conducted to validate our results.
Collapse
|
27
|
Huang S, Zhang J, Lai X, Zhuang L, Wu J. Identification of Novel Tumor Microenvironment-Related Long Noncoding RNAs to Determine the Prognosis and Response to Immunotherapy of Hepatocellular Carcinoma Patients. Front Mol Biosci 2022; 8:781307. [PMID: 35004851 PMCID: PMC8739902 DOI: 10.3389/fmolb.2021.781307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. The tumor microenvironment (TME) plays a vital role in HCC progression. Thus, this research was designed to analyze the correlation between the TME and the prognosis of HCC patients and to construct a TME-related long noncoding RNA (lncRNA) signature to determine HCC patients’ prognosis and response to immunotherapy. Methods: We assessed the stromal–immune–estimate scores within the HCC microenvironment using the ESTIMATE (Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data) algorithm based on The Cancer Genome Atlas database, and their associations with survival and clinicopathological parameters were also analyzed. Thereafter, differentially expressed lncRNAs were filtered out according to the immune and stromal scores. Cox regression analysis was performed to build a TME-related lncRNA risk signature. Kaplan–Meier analysis was used to explore the prognostic value of the risk signature. Furthermore, we explored the biological functions and immune microenvironment features in the high- and low-risk groups. Lastly, we probed the association of the risk model with treatment responses to immune checkpoint inhibitors (ICIs) in HCC. Results: The stromal, immune, and estimate scores were obtained utilizing the ESTIMATE algorithm for patients with HCC. Kaplan–Meier analysis showed that high scores were significantly correlated with better prognosis in HCC patients. Six TME-related lncRNAs were screened to construct the prognostic model. The Kaplan–Meier curves suggested that HCC patients with low risk had better prognosis than those with high risk. Receiver operating characteristic (ROC) curve and Cox regression analyses indicated that the risk model could predict HCC survival exactly and independently. Functional enrichment analysis revealed that some tumor- and immune-related pathways were activated in the high-risk group. We also revealed that some immune cells, which were important in enhancing immune responses toward cancer, were significantly increased in the low-risk group. In addition, there was a close correlation between ICIs and the risk signature, which can be used to predict the treatment responses of HCC patients. Conclusion: We analyzed the influence of the stromal, immune, and estimate scores on the prognosis of HCC patients. A novel TME-related lncRNA risk model was established, which could be effectively applied as an independent prognostic biomarker and predictor of ICIs for HCC patients.
Collapse
Affiliation(s)
- Shenglan Huang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jian Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Xiaolan Lai
- Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, China
| | - Lingling Zhuang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
28
|
Wang XX, Wu LH, Ai L, Pan W, Ren JY, Zhang Q, Zhang HM. Construction of an HCC recurrence model based on the investigation of immune-related lncRNAs and related mechanisms. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1387-1400. [PMID: 34900397 PMCID: PMC8626812 DOI: 10.1016/j.omtn.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in immune regulation. Growing evidence suggests that immune-related genes and lncRNAs can serve as markers to predict the prognosis of patients with cancers, including hepatocellular carcinoma (HCC). This study aimed to contract an immune-related lncRNA (IR-lncRNA) signature for prospective assessment to predict early recurrence of HCC. A total of 319 HCC samples under radical resection were randomly divided into a training cohort (161 samples) and a testing cohort (158 samples). In the training dataset, univariate, lasso, and multivariate Cox regression analyses identified a 9-IR-lncRNA signature closely related to disease-free survival. Kaplan-Meier analysis, principal component analysis, gene set enrichment analysis, and nomogram were used to evaluate the risk model. The results were further confirmed in the testing cohort. Furthermore, we constructed a competitive endogenous RNA regulatory network. The results of the present study indicated that this 9-IR-lncRNA signature has important clinical implications for improving predictive outcomes and guiding individualized treatment in HCC patients. These IR-lncRNAs and regulated genes may be potential biomarkers associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Hong Wu
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liping Ai
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Pan
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Yi Ren
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Corresponding author: Hong-Mei Zhang, Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
29
|
Zhao H, Zhang M, Yang X, Song D. Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. J Microbiol Biotechnol 2021; 31:1331-1342. [PMID: 34373436 PMCID: PMC9705835 DOI: 10.4014/jmb.2106.06028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.
Collapse
Affiliation(s)
- Haoliang Zhao
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Ming Zhang
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Xuejing Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Dong Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China,Corresponding author Phone: +86-0351-8368114 E-mail:
| |
Collapse
|
30
|
lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2021; 10:415-429. [DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
|
31
|
Guo Y, Sun Z, Chen M, Lun J. LncRNA TUG1 Regulates Proliferation of Cardiac Fibroblast via the miR-29b-3p/TGF-β1 Axis. Front Cardiovasc Med 2021; 8:646806. [PMID: 34540908 PMCID: PMC8446361 DOI: 10.3389/fcvm.2021.646806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Atrial fibrillation (AF) is a very common clinical arrhythmia, accompanied by the overproliferation of cardiac fibroblasts (CFs). This study aimed to investigate the role of the long non-coding RNA(lncRNA) taurine upregulated gene 1 (TUG1) in the proliferation of CFs and further investigated its underlying mechanism. Methods: One hundred four paroxysmal AF patients and 94 healthy controls were recruited. Human cardiac fibroblasts (HCFs) were applied to establish an AF cell model through treatment with angiotensin II (AngII). qRT-PCR was used for the measurement of gene levels. The cell proliferation was detected by cell counting kit-8 (CCK-8). Luciferase reporter assay was performed for target gene analysis. Results: Elevated levels of TUG1 and low expression of miR-29b-3p were detected in the serum of AF patients compared with the healthy controls. Pearson's correlation analysis exhibited an inverse relationship between TUG1 and miR-29b-3p expression in AF patients (r = −7.106, p < 0.001). Knockdown of TUG1 inhibited AngII-induced CF proliferation. Taurine upregulated gene 1 (TUG1) functions as a competing endogenous RNA (ceRNA) for miR-29b-3p, and downregulation of miR-29b-3p reversed the role of TUG1 in CF proliferation. TGF-β1 is a direct target gene of miR-29b-3p. Conclusions: Long non-coding RNA taurine upregulated gene 1 is a key regulator in the occurrence of AF. Slicing TUG1 inhibits CF proliferation by regulating the miR-29b-3p/TGF-β1 axis.
Collapse
Affiliation(s)
- Yini Guo
- First Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Zongli Sun
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Minghe Chen
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Junjie Lun
- Department of Oncology, Changle People's Hospital, Weifang, China
| |
Collapse
|
32
|
Nie H, Liao Z, Wang Y, Zhou J, He X, Ou C. Exosomal long non-coding RNAs: Emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology. Genes Dis 2021; 8:769-780. [PMID: 34522707 PMCID: PMC8427254 DOI: 10.1016/j.gendis.2020.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a major challenge in the treatment of cancer. Exosomes are a class of small extracellular vesicles (EVs) that play critical roles in several human diseases, especially cancer, by transferring information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Numerous recent studies have shown that exosomal long non-coding RNAs (lncRNAs) play crucial regulatory roles in cancer metastasis in the tumor microenvironment by altering the expression of several key signaling pathways and molecules. Due to their specificity and sensitivity, exosomal lncRNAs have potential as novel tumor markers and therapeutic targets in the treatment of cancer metastasis. In this review, we aim to summarize the roles of exosomal lncRNAs in cancer metastasis, the mechanisms underlying their roles, and their potential clinical applications.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Zhujun Liao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| |
Collapse
|
33
|
Jianfeng W, Yutao W, Jianbin B. Long non-coding RNAs correlate with genomic stability in prostate cancer: A clinical outcome and survival analysis. Genomics 2021; 113:3141-3151. [PMID: 34174340 DOI: 10.1016/j.ygeno.2021.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) participate in the regulation of genomic stability. Understanding their biological functions can help us identify the mechanisms of the occurrence and progression of cancers and can provide theoretical guidance and the basis for treatment. RESULTS Based on the mutation hypothesis, we proposed a computational framework to identify genomic instability-related lncRNAs. Based on the differentially-expressed lncRNAs (DElncRNAs), we constructed a genomic instability-derived lncRNA signature (GILncSig) to calculate and stratify outcomes in patients with prostate cancer. It is an independent predictor of overall survival. The area under the curve = 0.805. This value may be more significant than the classic prognostic markers TP53 and Speckle-type POZ protein (SPOP) in terms of outcome prediction. CONCLUSIONS In summary, we conducted a computation approach and resource for mining genome instability-related lncRNAs. It may turn out to be highly significant for genomic instability and customized decision-making for patients with prostate cancer. It also may lead to effective methods and resources to study the molecular mechanism of genomic instability-related lncRNAs.
Collapse
Affiliation(s)
- Wang Jianfeng
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wang Yutao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Bi Jianbin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
34
|
Wang BG, Ding HX, Lv Z, Xu Q, Yuan Y. Interaction of HULC polymorphisms with Helicobacter pylori infection plays a strong role for the prediction of gastric cancer risk. Future Oncol 2021; 16:1997-2006. [PMID: 32941073 DOI: 10.2217/fon-2020-0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Gene-environment interactions have better efficacy in predicting cancer susceptibility than a single gene. Materials & methods: Eight tag single nucleotide polymorphisms encompassing the whole HULC gene were detected by KASP platform (LGC Genomics, Hoddesdon, UK) in 631 gastric cancer (GC) cases and 953 controls. Results: The HULC gene rs7770772 polymorphism could increase GC risk (recessive model: odds ratio = 1.95). The multifactor dimensionality reduction (MDR) analysis suggested that the 2D model HULC rs7770772-Helicobacter pylori had better effect on GC risk prediction (maximum testing accuracy = 0.7005). No significant result was observed in our experimental expression quantitative trait loci analysis. Conclusion: 2D model HULC rs7770772-H. pylori might have superior efficacy for GC risk than a single factor.
Collapse
Affiliation(s)
- Ben-Gang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, & Key Laboratory of Cancer Etiology & Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, PR China.,Hepatobiliary Surgery Department of General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, & Key Laboratory of Cancer Etiology & Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, PR China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, & Key Laboratory of Cancer Etiology & Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, PR China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, & Key Laboratory of Cancer Etiology & Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, PR China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, & Key Laboratory of Cancer Etiology & Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, PR China
| |
Collapse
|
35
|
Liang J, Zhi Y, Deng W, Zhou W, Li X, Cai Z, Zhu Z, Zeng J, Wu W, Dong Y, Huang J, Zhang Y, Xu S, Feng Y, Ding F, Zhang J. Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma. PeerJ 2021; 9:e11627. [PMID: 34178478 PMCID: PMC8202323 DOI: 10.7717/peerj.11627] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors throughout the world. However, there is no research to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to predict the survival of patients with HCC. Method The expression profiles of lncRNAs were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-expressed with ferroptosis-related genes were utilized to establish a signature. Cox regression was used to construct a novel three FRlncRNAs signature in the TCGA cohort, which was verified in the GEO validation cohort. Results Three differently expressed FRlncRNAs significantly associated with prognosis of HCC were identified, which composed a novel FRlncRNAs signature. According to the FRlncRNAs signature, the patients with HCC could be divided into low- and high-risk groups. Patients with HCC in the high-risk group displayed shorter overall survival (OS) contrasted with those in the low-risk group (P < 0.001 in TCGA cohort and P = 0.045 in GEO cohort). This signature could serve as a significantly independent predictor in Cox regression (multivariate HR > 1, P < 0.001), which was verified to a certain extent in the GEO cohort (univariate HR > 1, P < 0.05). Meanwhile, it was also a useful tool in predicting survival among each stratum of gender, age, grade, stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e., Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint blockade targets (PD-1, CTLA-4, and TIM-3). Conclusion The three FRlncRNAs might be potential therapeutic targets for patients, and their signature could be utilized for prognostic prediction in HCC.
Collapse
Affiliation(s)
- Jiaying Liang
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Yaofeng Zhi
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Wenhui Deng
- Guangzhou University of Chinese Medicine, The fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Weige Zhou
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Xuejun Li
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Zheyou Cai
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Zhijian Zhu
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Jinxiang Zeng
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Wanlan Wu
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Ying Dong
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Jin Huang
- Guangzhou University of Chinese Medicine, Clinic of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuzhuo Zhang
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Shichao Xu
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Yixin Feng
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| | - Fuping Ding
- Guangzhou University of Chinese Medicine, School of Nursing, Guangzhou, China
| | - Jin Zhang
- Guangzhou University of Chinese Medicine, School of Basic Medical Sciences, Guangzhou, China.,Guangzhou University of Chinese Medicine, Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou, China
| |
Collapse
|
36
|
Zheng X, Tang Q, Ren L, Liu J, Li W, Fu W, Wang J, Du G. A narrative review of research progress on drug therapies for glioblastoma multiforme. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:943. [PMID: 34350258 PMCID: PMC8263870 DOI: 10.21037/atm-20-8017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive, common, and lethal subtype of malignant gliomas originating from the central nervous system. Currently, the standard therapy for GBM is surgical resection combined with radiation and temozolomide (TMZ). However, the treatment only improves the 2-year survival rate from 10% to 26%, accompanied by more than 90% recurrence of GBM tumors at the original site. Low survival rate, serious side effects, and poor prognosis force people to find new therapies. Recent years, the combination of clinical drugs improves the survival rate of GBM patients, but new therapeutic drugs with high-efficiency and low-toxicity are still needed to be discovered. The successful use of immunotherapy in tumor brings hope for people to explore new methods in treating GBM. While the inability to cross the blood-brain barrier (BBB), loss of lymphatic tissue drainage, and antigen-presenting cells in the central nervous system are major reasons for the failure of immunotherapy in the treatment of GBM. Glioma stem cells (GSCs) is a subtype of tumorigenic stem cells which has more specific tumorigenic potential indicating targeting GSCs may be expected to improve therapeutic efficacy. In this review, we discuss clinical drugs that have benefited patients with GBM, cancer immunotherapy for GBM, summarize new drug targets of GBM, and review strategies for increasing the passage of drugs through the BBB.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Tang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Hennig EE, Kluska A, Piątkowska M, Kulecka M, Bałabas A, Zeber-Lubecka N, Goryca K, Ambrożkiewicz F, Karczmarski J, Olesiński T, Zyskowski Ł, Ostrowski J. GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility. BIOLOGY 2021; 10:biology10060465. [PMID: 34070617 PMCID: PMC8229782 DOI: 10.3390/biology10060465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary Identifying risk factors for cancer development can allow for appropriate stratification and surveillance of individuals at risk, increasing their chances of benefiting from early disease detection; however, most of the genetic factors contributing to the risk of colorectal cancer (CRC) remain undetermined. Here, we adopted a new approach for selecting index polymorphism for further validation in combination with a genome-wide association study of pooled DNA samples for CRC susceptibility variants in the Polish population. This study, including 2013 patients and controls, uncovered five susceptibility loci not previously reported for CRC. Four of identified variants were located within genes likely involved in tumor invasiveness and metastasis, suggesting that they could be markers of poor prognosis in CRC patients. Our results provide evidence that conducting association studies on small but homogenous populations can help us discover new common risk variants specific to the studied population. Abstract Despite great efforts, most of the genetic factors contributing to the risk of colorectal cancer (CRC) remain undetermined. Including small but homogenous populations in genome-wide association studies (GWAS) can help us discover new common risk variants specific to the studied population. In this study, including 465 CRC patients and 1548 controls, a pooled DNA samples-based GWAS was conducted in search of genetic variants associated with CRC in a Polish population. Combined with a new method of selecting single-nucleotide polymorphisms (SNPs) for verification in individual DNA samples, this approach allowed the detection of five new susceptibility loci not previously reported for CRC. The discovered loci were found to explain 10% of the overall risk of developing CRC. The strongest association was observed for rs10935945 in long non-coding RNA LINC02006 (3q25.2). Three other SNPs were also located within genes (rs17575184 in NEGR1, rs11060839 in PIWIL1, rs12935896 in BCAS3), while one was intergenic (rs9927668 at 16p13.2). An expression quantitative trait locus (eQTL) bioinformatic analysis suggested that these polymorphisms may affect transcription factor binding sites. In conclusion, four of the identified variants were located within genes likely involved in tumor invasiveness and metastasis. Therefore, they could possibly be markers of poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
- Correspondence:
| | - Anna Kluska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Magdalena Piątkowska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Aneta Bałabas
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Jakub Karczmarski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| | - Tomasz Olesiński
- Department of Gastroenterological Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (T.O.); (Ł.Z.)
| | - Łukasz Zyskowski
- Department of Gastroenterological Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (T.O.); (Ł.Z.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (M.K.); (N.Z.-L.); (J.O.)
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.K.); (M.P.); (A.B.); (K.G.); (F.A.); (J.K.)
| |
Collapse
|
38
|
Dai J, Zhou N, Wu R, Du J, Miao S, Gong K, Yang L, Chen W, Li X, Li C, Wu Y. LncRNA MALAT1 Regulating Lung Carcinoma Progression via the miR-491-5p/UBE2C Axis. Pathol Oncol Res 2021; 27:610159. [PMID: 34257576 PMCID: PMC8262150 DOI: 10.3389/pore.2021.610159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/26/2021] [Indexed: 01/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a critical role in the development of lung carcinoma. The mechanism of MALAT1 in lung carcinoma development is not understood very well. This study aimed to investigate the role of MALAT1 in lung carcinoma progression and the mechanism underlying the role of miR-491-5p in the MALAT1 mediated regulation of UBE2C expression. The results indicated that the expression of MALAT1 was often augmented in lung carcinoma cells. Suppression of MALAT1 blocked the proliferation, invasion and migration ability of cancer cells and inhibited the expression of UBE2C. UBE2C restoration attenuated the MALAT1 knockdown-induced anti-cancer effects. Moreover, UBE2C and MALAT1 were indicated as targets of miR-491-5p and inhibition of miR-491-5p restored the MALAT1 knockdown-induced inhibition of the progression of lung carcinoma. Furthermore, MALAT1 sponged miR-491-5p to upregulate UBE2C expression, causing it to act as a competing endogenous RNA. Collectively, MALAT1 downregulation suppressed lung carcinoma progression by regulating the miR-491-5p/UBE2C axis. These results indicate that MALAT1 could be a molecular target for lung carcinoma treatment and prognosis.
Collapse
Affiliation(s)
- Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Ning Zhou
- Department of Otolaryngology Head and Neck Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Rui Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Du
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yang
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Weiwei Chen
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Xuelin Li
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - Chen Li
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
39
|
Izadirad M, Jafari L, James AR, Unfried JP, Wu ZX, Chen ZS. Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia. Drug Discov Today 2021; 26:1735-1743. [PMID: 33781951 DOI: 10.1016/j.drudis.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Many patients with acute myeloid leukemia (AML) experience poor outcomes following traditional high-dose chemotherapies and complete remission rates remain suboptimal. Chemoresistance is an obstacle to effective chemotherapy and the precise mechanisms involved remain to be determined. Recently, long noncoding RNAs (lncRNAs) have been identified as relevant factors in the development of drug resistance in patients with AML. Furthermore, accumulating data support the importance of lncRNAs as potentially useful novel therapeutic targets in many cancers. Here, we review the role of lncRNAs in the development and induction of the chemoresistance in AML, and suggest lncRNAs as novel molecular markers for diagnosis, prediction of patient response to chemotherapy, and novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alva Rani James
- Digital Health & Machine Learning, Hasso Plattner Institute, University of Potsdam, Germany
| | - Juan Pablo Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA.
| |
Collapse
|
40
|
Hull R, Mbita Z, Dlamini Z. Long non-coding RNAs (LncRNAs), viral oncogenomics, and aberrant splicing events: therapeutics implications. Am J Cancer Res 2021; 11:866-883. [PMID: 33791160 PMCID: PMC7994164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023] Open
Abstract
It has been estimated that worldwide up to 10% of all human cancers are the result of viral infection, with 7.2% of all cancers in the developed world have a viral aetiology. In contrast, 22.9% of infections in the developing world are the result of viral infections. This number increases to 30% in Sub-Saharan Africa. The ability of viral infections to induce the transformation of normal cells into cancerous cells is well documented. These viruses are mainly Hepatitis B and C viruses, Epstein Barr virus, Human papillomavirus and Human Cytomegalovirus. They can induce the transformation of normal cells into cancer cells and this may be the underlying cause of carcinogenesis in many different types of cancer. These include liver cancer, lymphoma, nasopharyngeal cancer, cervical cancer, gastric cancer and even glioblastoma. Long non-coding RNAs (LncRNAs) can function by regulating the expression of their target genes by controlling the stability of the target mRNAs or by blocking translation of the target mRNA. They can control transcription by regulating the recruitment of transcription factors or chromatin modification complexes. Finally, lncRNAs can control the phosphorylation, acetylation, and ubiquitination of proteins at the post-translation level. Thus, altering protein localisation, function, folding, stability and ultimately expression. In addition to these functions, lncRNA also regulate alternate pre-mRNA splicing in ways that contribute to the formation of tumours. This mainly involves the interaction of lncRNAs with splicing factors, which alters their activity and function. The ability of lncRNAs to regulate the stability, expression and function of tumour suppressor proteins is important in the development and progression of cancers. LncRNAs also regulate viral replication and latency, leading to carcinogenesis. These factors all make lncRNAs ideal targets for the development of biomarker arrays that can be based on secreted lncRNAs leading to the development of affordable non-invasive biomarker tests for the stage specific diagnosis of tumours. These lncRNAs can also serve as targets for the development of new anticancer drug treatments.
Collapse
Affiliation(s)
- Rodney Hull
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria Hatfield0028, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biochemistry, University of LimpopoSovenga 0727, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria Hatfield0028, South Africa
| |
Collapse
|
41
|
Identification and Construction of a Long Noncoding RNA Prognostic Risk Model for Stomach Adenocarcinoma Patients. DISEASE MARKERS 2021; 2021:8895723. [PMID: 33680217 PMCID: PMC7929674 DOI: 10.1155/2021/8895723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Background Long noncoding RNA-based prognostic biomarkers have demonstrated great potential in the diagnosis and prognosis of cancer patients. However, systematic assessment of a multiple lncRNA-composed prognostic risk model is lacking in stomach adenocarcinoma (STAD). This study is aimed at constructing a lncRNA-based prognostic risk model for STAD patients. Methods RNA sequencing data and clinical information of STAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs (DElncRNAs) were identified using the R software. Univariate and multivariate Cox regression analyses were performed to construct a prognostic risk model. The survival analysis, C-index, and receiver operating characteristic (ROC) curve were employed to assess the sensitivity and specificity of the model. The results were verified using the GEPIA online tool and our clinical samples. Pearson correlation coefficient analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to indicate the potential biological functions of the selected lncRNA. Results A total of 1917 DElncRNAs were identified from 343 cases of STAD tissues and 30 cases of noncancerous tissues. According to univariate and multivariable Cox regression analyses, four DElncRNAs (AC129507.1, LINC02407, AL022316.1, and AP000695.2) were selected to establish a prognostic risk model. There was a significant difference in the overall survival between high-risk patients and low-risk patients based on this risk model. The C-index of the model was 0.652. The area under the curve (AUC) for the ROC curve was 0.769. GEPIA results confirmed the expression and prognostic significance of AP000695.2 in STAD. Our clinical data confirmed that upregulated expression of AP000695.2 was correlated with the T stage, distant metastasis, and TNM stage in STAD. GO and KEGG analyses demonstrated that AP000695.2 was closely related to the tumorigenesis process. Conclusions In this study, we constructed a lncRNA-based prognostic risk model for STAD patients. Our study will provide novel insight into the diagnosis and prognosis of STAD patients.
Collapse
|
42
|
The role of long noncoding RNAs in regulating invasion and metastasis of malignant tumors. Anticancer Drugs 2021; 31:319-325. [PMID: 32011368 DOI: 10.1097/cad.0000000000000899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts exceeding 200 nucleotides in length, which are emerging as key players in various fundamental biological processes. Furthermore, it is increasingly recognized that mutation and dysregulation of lncRNAs contribute importantly to a variety of human diseases, particularly human cancers. Previous studies have revealed that altered lncRNAs have a close association with tumorigenesis, metastasis, prognosis and diagnosis of cancers. The present review aims to exhibit a brief overview of the associated reports of lncRNAs in cancers, including colorectal cancer, gastric cancer, lung adenocarcinoma, nasopharyngeal carcinoma, cervical cancer and esophageal cancer. Altogether, we argue that lncRNAs have potential as new biomarkers in cancer prognosis and diagnosis, and as promising therapeutic targets for the prevention and treatment of human cancers.
Collapse
|
43
|
Erady C, Boxall A, Puntambekar S, Suhas Jagannathan N, Chauhan R, Chong D, Meena N, Kulkarni A, Kasabe B, Prathivadi Bhayankaram K, Umrania Y, Andreani A, Nel J, Wayland MT, Pina C, Lilley KS, Prabakaran S. Pan-cancer analysis of transcripts encoding novel open-reading frames (nORFs) and their potential biological functions. NPJ Genom Med 2021; 6:4. [PMID: 33495453 PMCID: PMC7835362 DOI: 10.1038/s41525-020-00167-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Uncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has been performed. We use our curated nORFs database (nORFs.org), together with RNA-Seq data from The Cancer Genome Atlas (TCGA) and Genotype-Expression (GTEx) consortiums, to identify transcripts containing nORFs that are expressed frequently in cancer or matched normal tissue across 22 cancer types. We show nORFs are subject to extensive dysregulation at the transcript level in cancer tissue and that a small subset of nORFs are associated with overall patient survival, suggesting that nORFs may have prognostic value. We also show that nORF products can form protein-like structures with post-translational modifications. Finally, we perform in silico screening for inhibitors against nORF-encoded proteins that are disrupted in stomach and esophageal cancer, showing that they can potentially be targeted by inhibitors. We hope this work will guide and motivate future studies that perform in-depth characterization of nORF functions in cancer and other diseases.
Collapse
Affiliation(s)
- Chaitanya Erady
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Adam Boxall
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Shraddha Puntambekar
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - N Suhas Jagannathan
- Cancer and Stem Cell Biology Programme, and Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - David Chong
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Narendra Meena
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Apurv Kulkarni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Bhagyashri Kasabe
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | | | - Yagnesh Umrania
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Adam Andreani
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jean Nel
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Matthew T Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Cristina Pina
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Sudhakaran Prabakaran
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
44
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
45
|
Seifuddin F, Pirooznia M. Bioinformatics Approaches for Functional Prediction of Long Noncoding RNAs. Methods Mol Biol 2021; 2254:1-13. [PMID: 33326066 DOI: 10.1007/978-1-0716-1158-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is accumulating evidence that long noncoding RNAs (lncRNAs) play crucial roles in biological processes and diseases. In recent years, computational models have been widely used to predict potential lncRNA-disease relations. In this chapter, we systematically describe various computational algorithms and prediction tools that have been developed to elucidate the roles of lncRNAs in diseases, coding potential/functional characterization, or ascertaining their involvement in critical biological processes as well as provide a comprehensive summary of these applications.
Collapse
Affiliation(s)
- Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Tan B, Li F, Chen Z, Li Y. Research Progress and Application Prospects of Long Noncoding RNAs in Gastric Neoplasms. Technol Cancer Res Treat 2021; 20:15330338211004940. [PMID: 33769145 PMCID: PMC8010804 DOI: 10.1177/15330338211004940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nt that have almost no function for encoding proteins. As an important regulatory molecule of the human genome, lncRNAs play a regulatory role in the human body. LncRNAs have a variety of functions, such as signaling, guiding, baiting or scaffolding of functional proteins, and are closely related to tumor development. Gastric cancer is one of the most common malignant tumors. It has a high incidence, a low early diagnosis rate, and a poor prognosis, and it seriously threatens human health. Abnormal expression of lncRNAs can affect the occurrence, development, invasion and metastasis of gastric cancer. Therefore, lncRNAs are expected to become important biomarkers and new targets for the diagnosis and treatment of gastric cancer. LncRNAs have a significant potential to guide the diagnosis, treatment and prognosis of gastric cancer. This article reviews lncRNAs and the mechanisms that have been discovered in recent years related to gastrointestinal tumors.
Collapse
Affiliation(s)
- Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zihao Chen
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
47
|
Qin C, Jin L, Li J, Zha W, Ding H, Liu X, Zhu X. Long Noncoding RNA LINC02163 Accelerates Malignant Tumor Behaviors in Breast Cancer by Regulating the MicroRNA-511-3p/HMGA2 Axis. Oncol Res 2020; 28:483-495. [PMID: 32571448 PMCID: PMC7751230 DOI: 10.3727/096504020x15928179818438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long intergenic nonprotein-coding RNA 02163 (LINC02163) has been reported to be upregulated and work as an oncogene in gastric cancer. The aims of the present study were to determine the expression profile and clinical value of LINC02163 in breast cancer. Additionally, the detailed functions of LINC02163 in breast cancer were explored, and relevant molecular events were elucidated. In this study, LINC02163 was upregulated in breast cancer, and its expression level was closely associated with tumor size, lymph node metastasis, and TNM stage. Patients with breast cancer presenting high LINC02163 expression exhibited shorter overall survival than those presenting low LINC02163 expression. Knockdown of LINC02163 resulted in a decrease in breast cancer cell proliferation, migration, and invasion and an increase in cell apoptosis in vitro. In addition, silencing of LINC02163 impeded breast cancer tumor growth in vivo. Mechanistic investigation revealed that LINC02163 served as a competing endogenous RNA for microRNA-511-3p (miR-511-3p) and consequently upregulated the expression of the high-mobility group A2 (HMGA2), a downstream target of miR-511-3p. Intriguingly, miR-511-3p inhibition and HMGA2 restoration counteracted the effects of LINC02163 deficiency on the malignant properties of breast cancer cells. LINC02163 exerts cancer-promoting effects during the initiation and progression of breast cancer via regulation of the miR-511-3p/HMGA2 axis. Our findings add to our understanding of the roles of the LINC02163/miR-511-3p/HMGA2 pathway as a regulator of breast cancer pathogenesis and may be useful in the development of lncRNA-directed cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Chenglin Qin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Linfang Jin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ‡Department of Pathology, Affiliated Hospital of Jiangnan University (Wuxi Fourth People’s Hospital), Wuxi, Jiangsu, P.R. China
| | - Jia Li
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- §Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Wenzhang Zha
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Huiming Ding
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Xiaorong Liu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ¶Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, P.R. China
| | - Xun Zhu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
48
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
49
|
Napoli M, Li X, Ackerman HD, Deshpande AA, Barannikov I, Pisegna MA, Bedrosian I, Mitsch J, Quinlan P, Thompson A, Rajapakshe K, Coarfa C, Gunaratne PH, Marchion DC, Magliocco AM, Tsai KY, Flores ER. Pan-cancer analysis reveals TAp63-regulated oncogenic lncRNAs that promote cancer progression through AKT activation. Nat Commun 2020; 11:5156. [PMID: 33056990 PMCID: PMC7561725 DOI: 10.1038/s41467-020-18973-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The most frequent genetic alterations across multiple human cancers are mutations in TP53 and the activation of the PI3K/AKT pathway, two events crucial for cancer progression. Mutations in TP53 lead to the inhibition of the tumour and metastasis suppressor TAp63, a p53 family member. By performing a mouse-human cross species analysis between the TAp63 metastatic mammary adenocarcinoma mouse model and models of human breast cancer progression, we identified two TAp63-regulated oncogenic lncRNAs, TROLL-2 and TROLL-3. Further, using a pan-cancer analysis of human cancers and multiple mouse models of tumour progression, we revealed that these two lncRNAs induce the activation of AKT to promote cancer progression by regulating the nuclear to cytoplasmic translocation of their effector, WDR26, via the shuttling protein NOLC1. Our data provide preclinical rationale for the implementation of these lncRNAs and WDR26 as therapeutic targets for the treatment of human tumours dependent upon mutant TP53 and/or the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Xiaobo Li
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hayley D Ackerman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Avani A Deshpande
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ivan Barannikov
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Marlese A Pisegna
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Isabelle Bedrosian
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jürgen Mitsch
- Advanced Data Analysis Centre, Nottingham, NG7 2RD, UK.,School of Computer Sciences University of Nottingham, Nottingham, NG7 2RD, UK
| | - Philip Quinlan
- Advanced Data Analysis Centre, Nottingham, NG7 2RD, UK.,School of Computer Sciences University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Douglas C Marchion
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anthony M Magliocco
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
50
|
Calanca N, Abildgaard C, Rainho CA, Rogatto SR. The Interplay between Long Noncoding RNAs and Proteins of the Epigenetic Machinery in Ovarian Cancer. Cancers (Basel) 2020; 12:E2701. [PMID: 32967233 PMCID: PMC7563210 DOI: 10.3390/cancers12092701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Comprehensive large-scale sequencing and bioinformatics analyses have uncovered a myriad of cancer-associated long noncoding RNAs (lncRNAs). Aberrant expression of lncRNAs is associated with epigenetic reprogramming during tumor development and progression, mainly due to their ability to interact with DNA, RNA, or proteins to regulate gene expression. LncRNAs participate in the control of gene expression patterns during development and cell differentiation and can be cell and cancer type specific. In this review, we described the potential of lncRNAs for clinical applications in ovarian cancer (OC). OC is a complex and heterogeneous disease characterized by relapse, chemoresistance, and high mortality rates. Despite advances in diagnosis and treatment, no significant improvements in long-term survival were observed in OC patients. A set of lncRNAs was associated with survival and response to therapy in this malignancy. We manually curated databases and used bioinformatics tools to identify lncRNAs implicated in the epigenetic regulation, along with examples of direct interactions between the lncRNAs and proteins of the epigenetic machinery in OC. The resources and mechanisms presented herein can improve the understanding of OC biology and provide the basis for further investigations regarding the selection of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.C.); (C.A.R.)
| | - Cecilie Abildgaard
- Department of Oncology, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.C.); (C.A.R.)
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|