1
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Coulter DW, Chhonker YS, Kumar D, Kesherwani V, Aldhafiri WN, McIntyre EM, Alexander G, Ray S, Joshi SS, Li R, Murry DJ, Chaturvedi NK. Marinopyrrole derivative MP1 as a novel anti-cancer agent in group 3 MYC-amplified Medulloblastoma. J Exp Clin Cancer Res 2024; 43:18. [PMID: 38200580 PMCID: PMC10782703 DOI: 10.1186/s13046-024-02944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.
Collapse
Affiliation(s)
- Don W Coulter
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Devendra Kumar
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wafaa N Aldhafiri
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Erin M McIntyre
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gracey Alexander
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rongshi Li
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Oyarbide U, Crane GM, Corey SJ. The metabolic basis of inherited neutropenias. Br J Haematol 2024; 204:45-55. [PMID: 38049194 DOI: 10.1111/bjh.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.
Collapse
Affiliation(s)
- Usua Oyarbide
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Seth J Corey
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Song J, Li H, Liu Y, Li X, Shi Q, Lei Q, Hu W, Huang S, Chen Z, He X. Aldolase A Accelerates Cancer Progression by Modulating mRNA Translation and Protein Biosynthesis via Noncanonical Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302425. [PMID: 37431681 PMCID: PMC10502857 DOI: 10.1002/advs.202302425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Indexed: 07/12/2023]
Abstract
Aldolase A (ALDOA), a crucial glycolytic enzyme, is often aberrantly expressed in various types of cancer. Although ALDOA has been reported to play additional roles beyond its conventional enzymatic role, its nonmetabolic function and underlying mechanism in cancer progression remain elusive. Here, it is shown that ALDOA promotes liver cancer growth and metastasis by accelerating mRNA translation independent of its catalytic activity. Mechanistically, ALDOA interacted with insulin- like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to facilitate its binding to m6 A-modified eIF4G mRNA, thereby increasing eIF4G protein levels and subsequently enhancing overall protein biosynthesis in cells. Importantly, administration of GalNAc-conjugated siRNA targeting ALDOA effectively slows the tumor growth of orthotopic xenografts. Collectively, these findings uncover a previously unappreciated nonmetabolic function of ALDOA in modulating mRNA translation and highlight the potential of specifically targeting ALDOA as a prospective therapeutic strategy in liver cancer.
Collapse
Affiliation(s)
- Junjiao Song
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Qun‐Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
- Shanghai Key Laboratory of Radiation OncologyFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
- Shanghai Key Laboratory of Radiation OncologyFudan University Shanghai Cancer CenterFudan UniversityShanghai200032China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
5
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
6
|
Identification of an Individualized Prognostic Biomarker for Serous Ovarian Cancer: A Qualitative Model. Diagnostics (Basel) 2022; 12:diagnostics12123128. [PMID: 36553135 PMCID: PMC9777083 DOI: 10.3390/diagnostics12123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Serous ovarian cancer is the most common type of ovarian epithelial cancer and usually has a poor prognosis. The objective of this study was to construct an individualized prognostic model for predicting overall survival in serous ovarian cancer. Based on the relative expression orderings (Ea > Eb/Ea ≤ Eb) of gene pairs closely associated with serous ovarian prognosis, we tried constructing a potential individualized qualitative biomarker by the greedy algorithm and evaluated the performance in independent validation datasets. We constructed a prognostic biomarker consisting of 20 gene pairs (SOV-P20). The overall survival between high- and low-risk groups stratified by SOV-P20 was statistically significantly different in the training and independent validation datasets from other platforms (p < 0.05, Wilcoxon test). The average area under the curve (AUC) values of the training and three validation datasets were 0.756, 0.590, 0.630, and 0.680, respectively. The distribution of most immune cells between high- and low-risk groups was quite different (p < 0.001, Wilcoxon test). The low-risk patients tended to show significantly better tumor response to chemotherapy than the high-risk patients (p < 0.05, Fisher’s exact test). SOV-P20 achieved the highest mean index of concordance (C-index) (0.624) compared with the other seven existing prognostic signatures (ranging from 0.511 to 0.619). SOV-P20 is a promising prognostic biomarker for serous ovarian cancer, which will be applicable for clinical predictive risk assessment.
Collapse
|
7
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
8
|
Muñoz-Ayala A, Chimal-Vega B, García-González V. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:111-141. [PMID: 36088073 DOI: 10.1016/bs.apcsb.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México.
| |
Collapse
|
9
|
Scagliola A, Miluzio A, Mori G, Ricciardi S, Oliveto S, Manfrini N, Biffo S. Inhibition of eIF6 Activity Reduces Hepatocellular Carcinoma Growth: An In Vivo and In Vitro Study. Int J Mol Sci 2022; 23:ijms23147720. [PMID: 35887068 PMCID: PMC9319760 DOI: 10.3390/ijms23147720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids in the liver. Given the high prevalence of NAFLD, its evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) is of global concern. Therapies for managing NASH-driven HCC can benefit from targeting factors that play a continuous role in NAFLD evolution to HCC. Recent work has shown that postprandial liver translation exacerbates lipid accumulation through the activity of a translation factor, eukaryotic initiation factor 6 (eIF6). Here, we test the effect of eIF6 inhibition on the progression of HCC. Mice heterozygous for eIF6 express half the level of eIF6 compared to wt mice and are resistant to the formation of HCC nodules upon exposure to a high fat/high sugar diet combined with liver damage. Histology showed that nodules in eIF6 het mice were smaller with reduced proliferation compared to wt nodules. By using an in vitro model of human HCC, we confirm that eIF6 depletion reduces the growth of HCC spheroids. We also tested three pharmacological inhibitors of eIF6 activity—eIFsixty-1, eIFsixty-4, and eIFsixty-6—and all three reduced eIF6 binding to 60S ribosomes and limited the growth of HCC spheroids. Thus, inhibition of eIF6 activity is feasible and limits HCC formation.
Collapse
Affiliation(s)
- Alessandra Scagliola
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
| | - Giada Mori
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
| | - Sara Ricciardi
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
10
|
Knockdown of Lamin B1 and the Corresponding Lamin B Receptor Leads to Changes in Heterochromatin State and Senescence Induction in Malignant Melanoma. Cells 2022; 11:cells11142154. [PMID: 35883595 PMCID: PMC9321645 DOI: 10.3390/cells11142154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.
Collapse
|
11
|
De Ponte Conti B, Miluzio A, Grassi F, Abrignani S, Biffo S, Ricciardi S. mTOR-dependent translation drives tumor infiltrating CD8 + effector and CD4 + Treg cells expansion. eLife 2021; 10:69015. [PMID: 34787568 PMCID: PMC8598161 DOI: 10.7554/elife.69015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
We performed a systematic analysis of the translation rate of tumor-infiltrating lymphocytes (TILs) and the microenvironment inputs affecting it, both in humans and in mice. Measurement of puromycin incorporation, a proxy of protein synthesis, revealed an increase of translating CD4+ and CD8+ cells in tumors, compared to normal tissues. High translation levels are associated with phospho-S6 labeling downstream of mTORC1 activation, whereas low levels correlate with hypoxic areas, in agreement with data showing that T cell receptor stimulation and hypoxia act as translation stimulators and inhibitors, respectively. Additional analyses revealed the specific phenotype of translating TILs. CD8+ translating cells have enriched expression of IFN-γ and CD-39, and reduced SLAMF6, pointing to a cytotoxic phenotype. CD4+ translating cells are mostly regulatory T cells (Tregs) with enriched levels of CTLA-4 and Ki67, suggesting an expanding immunosuppressive phenotype. In conclusion, the majority of translationally active TILs is represented by cytotoxic CD8+ and suppressive CD4+ Tregs, implying that other subsets may be largely composed by inactive bystanders.
Collapse
Affiliation(s)
- Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Annarita Miluzio
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, Universita` degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Bosco B, Rossi A, Rizzotto D, Hamadou MH, Bisio A, Giorgetta S, Perzolli A, Bonollo F, Gaucherot A, Catez F, Diaz JJ, Dassi E, Inga A. DHX30 Coordinates Cytoplasmic Translation and Mitochondrial Function Contributing to Cancer Cell Survival. Cancers (Basel) 2021; 13:4412. [PMID: 34503222 PMCID: PMC8430983 DOI: 10.3390/cancers13174412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHX30 was recently implicated in the translation control of mRNAs involved in p53-dependent apoptosis. Here, we show that DHX30 exhibits a more general function by integrating the activities of its cytoplasmic isoform and of the more abundant mitochondrial one. The depletion of both DHX30 isoforms in HCT116 cells leads to constitutive changes in polysome-associated mRNAs, enhancing the translation of mRNAs coding for cytoplasmic ribosomal proteins while reducing the translational efficiency of the nuclear-encoded mitoribosome mRNAs. Furthermore, the depletion of both DHX30 isoforms leads to higher global translation but slower proliferation and lower mitochondrial energy metabolism. Isoform-specific silencing supports a role for cytoplasmic DHX30 in modulating global translation. The impact on translation and proliferation was confirmed in U2OS and MCF7 cells. Exploiting RIP, eCLIP, and gene expression data, we identified fourteen mitoribosome transcripts we propose as direct DHX30 targets that can be used to explore the prognostic value of this mechanism in cancer. We propose that DHX30 contributes to cell homeostasis by coordinating ribosome biogenesis, global translation, and mitochondrial metabolism. Targeting DHX30 could, thus, expose a vulnerability in cancer cells.
Collapse
Affiliation(s)
- Bartolomeo Bosco
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Dario Rizzotto
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Meriem Hadjer Hamadou
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Sebastiano Giorgetta
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alicia Perzolli
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Francesco Bonollo
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Angeline Gaucherot
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Frédéric Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| |
Collapse
|
13
|
Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, D'Ambrosio R, Maggioni M, Brina D, Bresciani A, Biffo S. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun 2021; 12:4878. [PMID: 34385447 PMCID: PMC8361022 DOI: 10.1038/s41467-021-25195-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPβ, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.
Collapse
Affiliation(s)
- Alessandra Scagliola
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Delia Cirino
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta D'Ambrosio
- Department of Hepatology, Fondazione IRCCS Ca' Granda Granda Ospedale Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia (Roma), Italy
| | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Vo DK, Engler A, Stoimenovski D, Hartig R, Kaehne T, Kalinski T, Naumann M, Haybaeck J, Nass N. Interactome Mapping of eIF3A in a Colon Cancer and an Immortalized Embryonic Cell Line Using Proximity-Dependent Biotin Identification. Cancers (Basel) 2021; 13:cancers13061293. [PMID: 33799492 PMCID: PMC7999522 DOI: 10.3390/cancers13061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Translation initiation comprises complex interactions of eukaryotic initiation factor (eIF) subunits and the structural elements of the mRNAs. Translation initiation is a key process for building the cell's proteome. It not only determines the total amount of protein synthesized but also controls the translation efficiency for individual transcripts, which is important for cancer or ageing. Thus, understanding protein interactions during translation initiation is one key that contributes to understanding how the eIF subunit composition influences translation or other pathways not yet attributed to eIFs. We applied the BioID technique to two rapidly dividing cell lines (the immortalized embryonic cell line HEK-293T and the colon carcinoma cell line HCT-166) in order to identify interacting proteins of eIF3A, a core subunit of the eukaryotic initiation factor 3 complex. We identified a total of 84 interacting proteins, with very few proteins being specific to one cell line. When protein biosynthesis was blocked by thapsigargin-induced endoplasmic reticulum (ER) stress, the interacting proteins were considerably smaller in number. In terms of gene ontology, although eIF3A interactors are mainly part of the translation machinery, protein folding and RNA binding were also found. Cells suffering from ER-stress show a few remaining interactors which are mainly ribosomal proteins or involved in RNA-binding.
Collapse
Affiliation(s)
- Diep-Khanh Vo
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Alexander Engler
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Darko Stoimenovski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany;
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
- Center for Biomarker Research in Medicine, A-8010 Graz, Austria
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Correspondence:
| |
Collapse
|
15
|
Xie J, Shen K, Jones AT, Yang J, Tee AR, Shen MH, Yu M, Irani S, Wong D, Merrett JE, Lenchine RV, De Poi S, Jensen KB, Trim PJ, Snel MF, Kamei M, Martin SK, Fitter S, Tian S, Wang X, Butler LM, Zannettino ACW, Proud CG. Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cell Mol Life Sci 2021; 78:249-270. [PMID: 32170339 PMCID: PMC11068017 DOI: 10.1007/s00018-020-03491-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.
Collapse
Affiliation(s)
- Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Kaikai Shen
- Medical Research Council Toxicology Unit, Leicester, UK
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ashley T Jones
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Jian Yang
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Ming Hong Shen
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Mengyuan Yu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Swati Irani
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Derick Wong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - James E Merrett
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Roman V Lenchine
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Stuart De Poi
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Kirk B Jensen
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Paul J Trim
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Marten F Snel
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Makoto Kamei
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sally Kim Martin
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Stephen Fitter
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Shuye Tian
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
16
|
Liu L, Cai L, Liu C, Yu S, Li B, Pan L, Zhao J, Zhao Y, Li W, Yan X. Construction and Validation of a Novel Glycometabolism-Related Gene Signature Predicting Survival in Patients With Ovarian Cancer. Front Genet 2020; 11:585259. [PMID: 33281878 PMCID: PMC7689371 DOI: 10.3389/fgene.2020.585259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Among all fatal gynecological malignant tumors, ovarian cancer has the highest mortality rate. The purpose of this study was to develop a stable and personalized glycometabolism-related prognostic signature to predict the overall survival of ovarian cancer patients. The gene expression profiles and clinical information of ovarian cancer patients were derived from four public GEO datasets, which were divided into training and testing cohorts. Glycometabolism-related genes significantly associated with prognosis were selected. A risk score model was established and validated to evaluate its predictive value. We found 5 genes significantly related to prognosis and established a five-mRNA signature. The five-mRNA signature significantly divided patients into a low-risk group and a high-risk group in the training set and validation set. Survival analysis showed that high risk scores obtained by the model were significantly correlated with adverse survival outcomes and could be regarded as an independent predictor for patients with ovarian cancer. In addition, the five-mRNA signature can predict the overall survival of ovarian cancer patients in different subgroups. In summary, we successfully constructed a model that can predict the prognosis of patients with ovarian cancer, which provides new insights into postoperative treatment strategies, promotes individualized therapy, and provides potential new targets for immunotherapy.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyao Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Manfrini N, Ricciardi S, Alfieri R, Ventura G, Calamita P, Favalli A, Biffo S. Ribosome profiling unveils translational regulation of metabolic enzymes in primary CD4 + Th1 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103697. [PMID: 32330465 DOI: 10.1016/j.dci.2020.103697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 05/22/2023]
Abstract
The transition from a naïve to an effector T cell is an essential event that requires metabolic reprogramming. We have recently demonstrated that the rapid metabolic changes that occur following stimulation of naïve T cells require the translation of preexisting mRNAs. Here, we provide evidence that translation regulates the metabolic asset of effector T cells. By performing ribosome profiling in human CD4+ Th1 cells, we show that the metabolism of glucose, fatty acids and pentose phosphates is regulated at the translational level. In Th1 cells, each pathway has at least one enzyme regulated at the translational level and selected enzymes have high translational efficiencies. mRNA expression does not predict protein expression. For instance, PKM2 mRNA is equally present in naïve T and Th1 cells, but the protein is abundant only in Th1. 5'-untranslated regions (UTRs) may partly account for this regulation. Overall we suggest that immunometabolism is controlled by translation.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy
| | - Gabriele Ventura
- Department of Biological Sciences, University of Milan, Milan, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy
| | - Andrea Favalli
- Department of Biological Sciences, University of Milan, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", Milano, Italy; Department of Biological Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Pesce E, Miluzio A, Turcano L, Minici C, Cirino D, Calamita P, Manfrini N, Oliveto S, Ricciardi S, Grifantini R, Degano M, Bresciani A, Biffo S. Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits. Cells 2020; 9:cells9010172. [PMID: 31936702 PMCID: PMC7017188 DOI: 10.3390/cells9010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible.
Collapse
Affiliation(s)
- Elisa Pesce
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Lorenzo Turcano
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
| | - Claudia Minici
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Delia Cirino
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Piera Calamita
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Massimo Degano
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
- Correspondence: (A.B.); (S.B.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (A.B.); (S.B.)
| |
Collapse
|
19
|
Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development. Dev Biol 2019; 455:100-111. [DOI: 10.1016/j.ydbio.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
|
20
|
Komor MA, de Wit M, van den Berg J, Martens de Kemp SR, Delis-van Diemen PM, Bolijn AS, Tijssen M, Schelfhorst T, Piersma SR, Chiasserini D, Sanders J, Rausch C, Hoogstrate Y, Stubbs AP, de Jong M, Jenster G, Carvalho B, Meijer GA, Jimenez CR, Fijneman RJA. Molecular characterization of colorectal adenomas reveals POFUT1 as a candidate driver of tumor progression. Int J Cancer 2019; 146:1979-1992. [PMID: 31411736 PMCID: PMC7027554 DOI: 10.1002/ijc.32627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. The present study aimed to characterize adenomas by in‐depth molecular profiling, to obtain insights into altered biology associated with the colorectal adenoma‐to‐carcinoma progression. We obtained low‐coverage whole genome sequencing, RNA sequencing and tandem mass spectrometry data for 30 CRCs, 30 adenomas and 18 normal adjacent colon samples. These data were used for DNA copy number aberrations profiling, differential expression, gene set enrichment and gene‐dosage effect analysis. Protein expression was independently validated by immunohistochemistry on tissue microarrays and in patient‐derived colorectal adenoma organoids. Stroma percentage was determined by digital image analysis of tissue sections. Twenty‐four out of 30 adenomas could be unambiguously classified as high risk (n = 9) or low risk (n = 15) of progressing to cancer, based on DNA copy number profiles. Biological processes more prevalent in high‐risk than low‐risk adenomas were related to proliferation, tumor microenvironment and Notch, Wnt, PI3K/AKT/mTOR and Hedgehog signaling, while metabolic processes and protein secretion were enriched in low‐risk adenomas. DNA copy number driven gene‐dosage effect in high‐risk adenomas and cancers was observed for POFUT1, RPRD1B and EIF6. Increased POFUT1 expression in high‐risk adenomas was validated in tissue samples and organoids. High POFUT1 expression was also associated with Notch signaling enrichment and with decreased goblet cells differentiation. In‐depth molecular characterization of colorectal adenomas revealed POFUT1 and Notch signaling as potential drivers of tumor progression. What's new? Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. While high‐risk adenomas, defined by specific DNA copy number aberrations, have an increased risk of progression, the mechanisms underlying colorectal adenoma‐to‐carcinoma progression remain unclear. This molecular characterization of colorectal adenomas, CRCs, and normal adjacent colon samples demonstrates that biological processes inherent to CRC are already more active in high‐risk adenomas compared to low‐risk adenomas. Moreover, the findings highlight POFUT1 and Notch signaling as potential drivers of colorectal tumor development.
Collapse
Affiliation(s)
- Malgorzata A Komor
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | - Meike de Wit
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jose van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne R Martens de Kemp
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | | | - Anne S Bolijn
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marianne Tijssen
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tim Schelfhorst
- Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | - Sander R Piersma
- Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | - Davide Chiasserini
- Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian Rausch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Guido Jenster
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Oncoproteomics Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | -
- See Appendix for consortium members
| |
Collapse
|
21
|
Follo C, Vidoni C, Morani F, Ferraresi A, Seca C, Isidoro C. Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR. Cell Commun Signal 2019; 17:39. [PMID: 31046771 PMCID: PMC6498594 DOI: 10.1186/s12964-019-0354-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the event of amino acid starvation, the cell activates two main protective pathways: Amino Acid starvation Response (AAR), to inhibit global translation, and autophagy, to recover the essential substrates from degradation of redundant self-components. Whether and how AAR and autophagy (ATG) are cross-regulated and at which point the two regulatory pathways intersect remain unknown. Here, we provide experimental evidence that the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) specifically located at the lysosome level links the AAR with the autophagy pathway. Methods As an inducer of the AAR, we used halofuginone (HF), an alkaloid that binds to the prolyl-tRNA synthetase thus mimicking the unavailability of proline (PRO). Induction of AAR was determined assessing the phosphorylation of the eukaryotic translation initiation factor (eIF) 2α. Autophagy was monitored by assessing the processing and accumulation of microtubule-associated protein 1 light chain 3 isoform B (LC3B) and sequestosome-1 (p62/SQSTM1) levels. The activity of mTORC1 was monitored through assessment of the phosphorylation of mTOR, (rp)S6 and 4E-BP1. Global protein synthesis was determined by puromycin incorporation assay. mTORC1 presence on the membrane of the lysosomes was monitored by cell fractionation and mTOR expression was determined by immunoblotting. Results In three different types of human cancer cells (thyroid cancer WRO cells, ovarian cancer OAW-42 cells, and breast cancer MCF-7 cells), HF induced both the AAR and the autophagy pathways time-dependently. In WRO cells, which showed the strongest induction of autophagy and of AAR, global protein synthesis was little if any affected. Consistently, 4E-BP1 and (rp)S6 were phosphorylated. Concomitantly, mTOR expression and activation declined along with its detachment from the lysosomes and its degradation by the proteasome, and with the nuclear translocation of transcription factor EB (TFEB), a transcription factor of many ATG genes. The extra supplementation of proline rescued all these effects. Conclusions We demonstrate that the AAR and autophagy are mechanistically linked at the level of mTORC1, and that the lysosome is the central hub of the cross-talk between these two metabolic stress responses. ![]()
Collapse
Affiliation(s)
- Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Present address: Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy. .,Dipartimento di Scienze della Salute, Università "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
22
|
Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, Jones KA. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev 2019; 33:418-435. [PMID: 30819820 PMCID: PMC6446539 DOI: 10.1101/gad.322339.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
Abstract
Here, Choi et al. show that CDK12, the RNA polymerase II C-terminal domain kinase, which regulates genome stability, expression of DNA repair genes, and cancer cell drug resistance, also phosphorylates the mRNA 5′ cap-binding repressor 4E-BP1 to promote translation of mTORC1-dependent mRNAs. Using RIP-seq and Ribo-seq, the authors found that CDK12 regulates binding of eIF4G to many mTORC1 target mRNAs, and identified specific CDK12 “translation-only” target mRNAs. The RNA polymerase II (RNAPII) C-terminal domain kinase, CDK12, regulates genome stability, expression of DNA repair genes, and cancer cell resistance to chemotherapy and immunotherapy. In addition to its role in mRNA biosynthesis of DNA repair genes, we show here that CDK12 phosphorylates the mRNA 5′ cap-binding repressor, 4E-BP1, to promote translation of mTORC1-dependent mRNAs. In particular, we found that phosphorylation of 4E-BP1 by mTORC1 (T37 and T46) facilitates subsequent CDK12 phosphorylation at two Ser–Pro sites (S65 and T70) that control the exchange of 4E-BP1 with eIF4G at the 5′ cap of CHK1 and other target mRNAs. RNA immunoprecipitation coupled with deep sequencing (RIP-seq) revealed that CDK12 regulates release of 4E-BP1, and binding of eIF4G, to many mTORC1 target mRNAs, including those needed for MYC transformation. Genome-wide ribosome profiling (Ribo-seq) further identified specific CDK12 “translation-only” target mRNAs, including many mTORC1 target mRNAs as well as many subunits of mitotic and centromere/centrosome complexes. Accordingly, confocal imaging analyses revealed severe chromosome misalignment, bridging, and segregation defects in cells deprived of CDK12 or CCNK. We conclude that the nuclear RNAPII-CTD kinase CDK12 cooperates with mTORC1, and controls a specialized translation network that is essential for mitotic chromosome stability.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Thomas F Martinez
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratory for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
23
|
Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, Cai C, Guo AY, Ling J, Diao L, Weinstein JN, Han L. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun Biol 2018; 1:234. [PMID: 30588513 PMCID: PMC6303286 DOI: 10.1038/s42003-018-0239-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
24
|
Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, Müller R, Pagani M, Abrignani S, Biffo S. The Translational Machinery of Human CD4 + T Cells Is Poised for Activation and Controls the Switch from Quiescence to Metabolic Remodeling. Cell Metab 2018; 28:895-906.e5. [PMID: 30197303 PMCID: PMC6773601 DOI: 10.1016/j.cmet.2018.08.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/24/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Naive T cells respond to T cell receptor (TCR) activation by leaving quiescence, remodeling metabolism, initiating expansion, and differentiating toward effector T cells. The molecular mechanisms coordinating the naive to effector transition are central to the functioning of the immune system, but remain elusive. Here, we discover that T cells fulfill this transitional process through translational control. Naive cells accumulate untranslated mRNAs encoding for glycolysis and fatty acid synthesis factors and possess a translational machinery poised for immediate protein synthesis. Upon TCR engagement, activation of the translational machinery leads to synthesis of GLUT1 protein to drive glucose entry. Subsequently, translation of ACC1 mRNA completes metabolic reprogramming toward an effector phenotype. Notably, inhibition of the eIF4F complex abrogates lymphocyte metabolic activation and differentiation, suggesting ACC1 to be a key regulatory node. Thus, our results demonstrate that translation is a direct mediator of T cell metabolism and indicate translation factors as targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sara Ricciardi
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Maria Cristina Crosti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Simone Gallo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University Campus, Building C2.3, Saarbrücken 66123, Germany
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
26
|
Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, Ning B, Xu H, Huang X. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800917. [PMID: 29633379 DOI: 10.1002/adma.201800917] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/02/2018] [Indexed: 06/08/2023]
Abstract
The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
Collapse
Affiliation(s)
- Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guoguang Liew
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Ya Li
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Yafeng Hao
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Huizhuo Pan
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Baoan Ning
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Hang Xu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|