1
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Urbut SM, Koyama S, Hornsby W, Bhukar R, Kheterpal S, Truong B, Selvaraj MS, Neale B, O’Donnell CJ, Peloso GM, Natarajan P. Bayesian multivariate genetic analysis improves translational insights. iScience 2023; 26:107854. [PMID: 37766997 PMCID: PMC10520309 DOI: 10.1016/j.isci.2023.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While lipid traits are known essential mediators of cardiovascular disease, few approaches have taken advantage of their shared genetic effects. We apply a Bayesian multivariate size estimator, mash, to GWAS of four lipid traits in the Million Veterans Program (MVP) and provide posterior mean and local false sign rates for all effects. These estimates borrow information across traits to improve effect size accuracy. We show that controlling local false sign rates accurately and powerfully identifies replicable genetic associations and that multivariate control furthers the ability to explain complex diseases. Our application yields high concordance between independent datasets, more accurately prioritizes causal genes, and significantly improves polygenic prediction beyond state-of-the-art methods by up to 59% for lipid traits. The use of Bayesian multivariate genetic shrinkage has yet to be applied to human quantitative trait GWAS results, and we present a staged approach to prediction on a polygenic scale.
Collapse
Affiliation(s)
- Sarah M. Urbut
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Whitney Hornsby
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Rohan Bhukar
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Sumeet Kheterpal
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Buu Truong
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Margaret S. Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Neale
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- Analytic Translational and Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher J. O’Donnell
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- VA Boston Department of Veterans Affairs, Boston, MA 02130, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02218, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Integrating polygenic and clinical risks to improve stroke risk stratification in prospective Chinese cohorts. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2280-3. [PMID: 36881318 DOI: 10.1007/s11427-022-2280-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/13/2023] [Indexed: 03/08/2023]
Abstract
The utility of the polygenic risk score (PRS) to identify individuals at higher risk of stroke beyond clinical risk remains unclear, and we clarified this using Chinese population-based prospective cohorts. Cox proportional hazards models were used to estimate the 10-year risk, and Fine and Gray's models were used for hazard ratios (HRs), their 95% confidence intervals (CIs), and the lifetime risk according to PRS and clinical risk categories. A total of 41,006 individuals aged 30-75 years with a mean follow-up of 9.0 years were included. Comparing the top versus bottom 5% of the PRS, the HR was 3.01 (95%CI 2.03-4.45) in the total population, and similar findings were observed within clinical risk strata. Marked gradients in the 10-year and lifetime risk across PRS categories were also found within clinical risk categories. Notably, among individuals with intermediate clinical risk, the 10-year risk for those in the top 5% of the PRS (7.3%, 95%CI 7.1%-7.5%) reached the threshold of high clinical risk (⩾7.0%) for initiating preventive treatment, and this effect of the PRS on refining risk stratification was evident for ischemic stroke. Even among those in the top 10% and 20% of the PRS, the 10-year risk would also exceed this level when aged ⩾50 and ⩾60 years, respectively. Overall, the combination of the PRS with the clinical risk score improved the risk stratification within clinical risk strata and distinguished actual high-risk individuals with intermediate clinical risk.
Collapse
|
4
|
Selvaraj MS, Li X, Li Z, Pampana A, Zhang DY, Park J, Aslibekyan S, Bis JC, Brody JA, Cade BE, Chuang LM, Chung RH, Curran JE, de las Fuentes L, de Vries PS, Duggirala R, Freedman BI, Graff M, Guo X, Heard-Costa N, Hidalgo B, Hwu CM, Irvin MR, Kelly TN, Kral BG, Lange L, Li X, Lisa M, Lubitz SA, Manichaikul AW, Michael P, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Reupena MS, Smith JA, Sun X, Taylor KD, Tracy RP, Tsai MY, Wang Z, Wang Y, Bao W, Wilkins JT, Yanek LR, Zhao W, Arnett DK, Blangero J, Boerwinkle E, Bowden DW, Chen YDI, Correa A, Cupples LA, Dutcher SK, Ellinor PT, Fornage M, Gabriel S, Germer S, Gibbs R, He J, Kaplan RC, Kardia SLR, Kim R, Kooperberg C, Loos RJF, Viaud-Martinez KA, Mathias RA, McGarvey ST, Mitchell BD, Nickerson D, North KE, Psaty BM, Redline S, Reiner AP, Vasan RS, Rich SS, Willer C, Rotter JI, Rader DJ, Lin X, Peloso GM, Natarajan P. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat Commun 2022; 13:5995. [PMID: 36220816 PMCID: PMC9553944 DOI: 10.1038/s41467-022-33510-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/21/2022] [Indexed: 01/05/2023] Open
Abstract
Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.
Collapse
Affiliation(s)
- Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Akhil Pampana
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - David Y Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Lisa de las Fuentes
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston university School of Medicine, Boston, MA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Tulane University Translational Science Institute, New Orleans, LA, 70112, USA
| | - Brian G Kral
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Martin Lisa
- Department of Medicine, George Washington University, Washingron, DC, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Ani W Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Preuss Michael
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Samoa, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minneosta, Minneapolis, MN, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Wei Bao
- Institute of Public Health, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - John T Wilkins
- Department of Medicine (Cardiology) and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yii-Der Ida Chen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Adolfo Correa
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Susan K Dutcher
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 7722, USA
| | | | - Soren Germer
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Gibbs
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, 77030, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Tulane University Translational Science Institute, New Orleans, LA, 70112, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Kim
- Psomagen, Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- NNF Center for Basic Metabolic Research, University of Copenhagen, Cophenhagen, Denmark
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen T McGarvey
- Department of Epidemiology, International Health Institute, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah Nickerson
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Kari E North
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Ramachandran S Vasan
- Sections of Preventive medicine and Epidemiology, Cardiovascular medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Cristen Willer
- University of Michigan, Internal Medicine, Ann Arbor, MI, 48109, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xihong Lin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Statistics, Harvard University, Cambridge, MA, 02138, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Natarajan P, Pampana A, Graham SE, Ruotsalainen SE, Perry JA, de Vries PS, Broome JG, Pirruccello JP, Honigberg MC, Aragam K, Wolford B, Brody JA, Antonacci-Fulton L, Arden M, Aslibekyan S, Assimes TL, Ballantyne CM, Bielak LF, Bis JC, Cade BE, Do R, Doddapaneni H, Emery LS, Hung YJ, Irvin MR, Khan AT, Lange L, Lee J, Lemaitre RN, Martin LW, Metcalf G, Montasser ME, Moon JY, Muzny D, O'Connell JR, Palmer ND, Peralta JM, Peyser PA, Stilp AM, Tsai M, Wang FF, Weeks DE, Yanek LR, Wilson JG, Abecasis G, Arnett DK, Becker LC, Blangero J, Boerwinkle E, Bowden DW, Chang YC, Chen YDI, Choi WJ, Correa A, Curran JE, Daly MJ, Dutcher SK, Ellinor PT, Fornage M, Freedman BI, Gabriel S, Germer S, Gibbs RA, He J, Hveem K, Jarvik GP, Kaplan RC, Kardia SLR, Kenny E, Kim RW, Kooperberg C, Laurie CC, Lee S, Lloyd-Jones DM, Loos RJF, Lubitz SA, Mathias RA, Martinez KAV, McGarvey ST, Mitchell BD, Nickerson DA, North KE, Palotie A, Park CJ, Psaty BM, Rao DC, Redline S, Reiner AP, Seo D, Seo JS, Smith AV, Tracy RP, Vasan RS, Kathiresan S, Cupples LA, Rotter JI, Morrison AC, Rich SS, Ripatti S, Willer C, Peloso GM. Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices. Nat Commun 2021; 12:2182. [PMID: 33846329 PMCID: PMC8042019 DOI: 10.1038/s41467-021-22339-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Sarah E Graham
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - James A Perry
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - James P Pirruccello
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael C Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Krishna Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brooke Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucinda Antonacci-Fulton
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Moscati Arden
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan branch, Taipei, Taiwan
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa W Martin
- Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - May E Montasser
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R O'Connell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Daniel E Weeks
- Departments of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, Pittsburgh, PA, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Donna K Arnett
- Deans office, School of Public Health, University of Kentucky, Lexington, KY, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Won Jung Choi
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-, Salem, NC, USA
| | - Stacey Gabriel
- Genomics Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, and Tulane University Translational Science Institute, Tulane University, New Orleans, LA, USA
| | - Kristian Hveem
- Department of Public Health and General Practice, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eimear Kenny
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan W Kim
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Seonwook Lee
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Don M Lloyd-Jones
- Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center Massachusetts General Hospital, Boston, MA, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheol Joo Park
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daekwan Seo
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Jeong-Sun Seo
- Psomagen. Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- The Icelandic Heart Association, Kopavogur, Iceland
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, VT, USA
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Samuli Ripatti
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Cristen Willer
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Emmer BT, Sherman EJ, Lascuna PJ, Graham SE, Willer CJ, Ginsburg D. Genome-scale CRISPR screening for modifiers of cellular LDL uptake. PLoS Genet 2021; 17:e1009285. [PMID: 33513160 PMCID: PMC7875399 DOI: 10.1371/journal.pgen.1009285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/10/2021] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hypercholesterolemia is a causal and modifiable risk factor for atherosclerotic cardiovascular disease. A critical pathway regulating cholesterol homeostasis involves the receptor-mediated endocytosis of low-density lipoproteins into hepatocytes, mediated by the LDL receptor. We applied genome-scale CRISPR screening to query the genetic determinants of cellular LDL uptake in HuH7 cells cultured under either lipoprotein-rich or lipoprotein-starved conditions. Candidate LDL uptake regulators were validated through the synthesis and secondary screening of a customized library of gRNA at greater depth of coverage. This secondary screen yielded significantly improved performance relative to the primary genome-wide screen, with better discrimination of internal positive controls, no identification of negative controls, and improved concordance between screen hits at both the gene and gRNA level. We then applied our customized gRNA library to orthogonal screens that tested for the specificity of each candidate regulator for LDL versus transferrin endocytosis, the presence or absence of genetic epistasis with LDLR deletion, the impact of each perturbation on LDLR expression and trafficking, and the generalizability of LDL uptake modifiers across multiple cell types. These findings identified several previously unrecognized genes with putative roles in LDL uptake and suggest mechanisms for their functional interaction with LDLR.
Collapse
Affiliation(s)
- Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily J. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul J. Lascuna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah E. Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|