1
|
Zhang Z, Dong X, Liu Z, Liu N. Social status predicts physiological and behavioral responses to chronic stress in rhesus monkeys. iScience 2024; 27:110073. [PMID: 38883834 PMCID: PMC11176666 DOI: 10.1016/j.isci.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investigating the underlying factors that cause differential individual responses to chronic stress is crucial for developing personalized therapies, especially in the face of pandemics such as COVID-19. However, this question remains elusive, particularly in primates. In the present study, we aimed to address this question by utilizing monkeys as a model to examine the impacts of social rank on stress levels and physiological and behavioral responses to chronic stress primarily caused by social isolation at both the individual and group levels. Our results showed that high-ranking animals were more susceptible to chronic stress. After exposure to chronic stress, although social hierarchies remained the same, the colonies exhibited more harmonious group relationships (e.g., more prosocial behaviors), with notable contributions from low-ranking animals. Overall, this study deepens our understanding of how social status shapes responses to chronic stress and sheds light on developing tailored and personalized therapies for coping with chronic stress.
Collapse
Affiliation(s)
- Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Moradi A, Kharrati-Koopaee H, Fardi M, Farahmandzadeh M, Nowroozi F. Novel genetic variants data for adaptation to hypoxia in native chickens. BMC Res Notes 2023; 16:225. [PMID: 37735456 PMCID: PMC10515008 DOI: 10.1186/s13104-023-06493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The genomic response and the role of genetic variants in hypoxia condition are always interesting issues about adaption pathways at genomic level. Herein, we carried out a comparative genomic study between highland and lowland native chickens, in order to identify the adaptive variants in hypoxia condition. We generated more than 20 million genetic variants in highland and lowland chickens. Finally, 3877 SNVs including the mtDNA ones, were discovered as novel adaptive genetic variants. The generated data set can provide new insight about mechanism of adaptation to hypoxia at genomic level. DATA DESCRIPTION To investigate the role of genetic variants in adaptation to hypoxia, 10 whole-genome sequencing data sets associated to highland and lowland native chickens were provided. DNA was extracted by salting-out protocol. Paired-end 125 bp short reads were sequenced by Illumina Hiseq 2000. Variants calling of highland and lowland native chickens were performed by fix ploidy algorithm in CLC Genomic Workbench. Total genetic variants of highland chickens were compared to lowland chickens in order to identify the differential genetic variants (DGVs) between highland and lowland chickens. In this way, 3877 novel SNVs (VCF format) including the mtDNA ones, were deposited at EBI database ( https://identifiers.org/ena.embl:ERZ491574 ) for the first time.
Collapse
Affiliation(s)
- Atieh Moradi
- School of Biological Science, The University of Hong Kong, Hong Kong, China
| | | | - Morteza Fardi
- North Region Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | | | | |
Collapse
|
4
|
Johnson CSC, Shively C, Michalson KT, Lea AJ, DeBo RJ, Howard TD, Hawkins GA, Appt SE, Liu Y, McCall CE, Herrington DM, Ip EH, Register TC, Snyder-Mackler N. Contrasting effects of Western vs Mediterranean diets on monocyte inflammatory gene expression and social behavior in a primate model. eLife 2021; 10:68293. [PMID: 34338633 PMCID: PMC8423447 DOI: 10.7554/elife.68293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Dietary changes associated with industrialization increase the prevalence of chronic diseases, such as obesity, type II diabetes, and cardiovascular disease. This relationship is often attributed to an 'evolutionary mismatch' between human physiology and modern nutritional environments. Western diets enriched with foods that were scarce throughout human evolutionary history (e.g. simple sugars and saturated fats) promote inflammation and disease relative to diets more akin to ancestral human hunter-gatherer diets, such as a Mediterranean diet. Peripheral blood monocytes, precursors to macrophages and important mediators of innate immunity and inflammation, are sensitive to the environment and may represent a critical intermediate in the pathway linking diet to disease. We evaluated the effects of 15 months of whole diet manipulations mimicking Western or Mediterranean diet patterns on monocyte polarization in a well-established model of human health, the cynomolgus macaque (Macaca fascicularis). Monocyte transcriptional profiles differed markedly between diets, with 40% of transcripts showing differential expression (FDR < 0.05). Monocytes from Western diet consumers were polarized toward a more proinflammatory phenotype. The Western diet shifted the co-expression of 445 gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans, and dramatically altered behavior. For example, Western-fed individuals were more anxious and less socially integrated. These behavioral changes were also associated with some of the effects of diet on gene expression, suggesting an interaction between diet, central nervous system activity, and monocyte gene expression. This study provides new molecular insights into an evolutionary mismatch and uncovers new pathways through which Western diets alter monocyte polarization toward a proinflammatory phenotype.
Collapse
Affiliation(s)
- Corbin SC Johnson
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Carol Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Kristofer T Michalson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Amanda J Lea
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States,Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Ryne J DeBo
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of MedicineWinston-SalemUnited States
| | - Gregory A Hawkins
- Department of Biochemistry, Wake Forest School of MedicineWinston-SalemUnited States
| | - Susan E Appt
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Yongmei Liu
- Division of Cardiology, Duke University School of MedicineDurhamUnited States
| | - Charles E McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - David M Herrington
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Edward H Ip
- Department of Biostatistics and Data Science, Wake Forest School of MedicineWinston-SalemUnited States
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Noah Snyder-Mackler
- Department of Psychology, University of WashingtonSeattleUnited States,Center for Studies in Demography and Ecology, University of WashingtonSeattleUnited States,Department of Biology, University of WashingtonSeattleUnited States,School of Life Sciences, Arizona State UniversityTempeUnited States,Center for Evolution & Medicine, Arizona State UniversityTempeUnited States
| |
Collapse
|
5
|
Guerrero TP, Fickel J, Benhaiem S, Weyrich A. Epigenomics and gene regulation in mammalian social systems. Curr Zool 2020; 66:307-319. [PMID: 32440291 PMCID: PMC7233906 DOI: 10.1093/cz/zoaa005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEIs, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa.
Collapse
Affiliation(s)
- Tania P Guerrero
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
- Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Tennenbacher Str. 4, Freiburg, D-79085, Germany
| | - Jörns Fickel
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Sarah Benhaiem
- Department Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
| | - Alexandra Weyrich
- Department Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, D-10315, Germany
| |
Collapse
|
6
|
Snyder-Mackler N, Burger JR, Gaydosh L, Belsky DW, Noppert GA, Campos FA, Bartolomucci A, Yang YC, Aiello AE, O'Rand A, Harris KM, Shively CA, Alberts SC, Tung J. Social determinants of health and survival in humans and other animals. Science 2020; 368:eaax9553. [PMID: 32439765 PMCID: PMC7398600 DOI: 10.1126/science.aax9553] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
The social environment, both in early life and adulthood, is one of the strongest predictors of morbidity and mortality risk in humans. Evidence from long-term studies of other social mammals indicates that this relationship is similar across many species. In addition, experimental studies show that social interactions can causally alter animal physiology, disease risk, and life span itself. These findings highlight the importance of the social environment to health and mortality as well as Darwinian fitness-outcomes of interest to social scientists and biologists alike. They thus emphasize the utility of cross-species analysis for understanding the predictors of, and mechanisms underlying, social gradients in health.
Collapse
Affiliation(s)
- Noah Snyder-Mackler
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Joseph Robert Burger
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Institute of the Environment, University of Arizona, Tucson, AZ, USA
| | - Lauren Gaydosh
- Social and Biological Determinants of Health Working Group, NC, USA
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Daniel W Belsky
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Grace A Noppert
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| | - Fernando A Campos
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Yang Claire Yang
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison E Aiello
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela O'Rand
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - Kathleen Mullan Harris
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol A Shively
- Social and Biological Determinants of Health Working Group, NC, USA
- Comparative Medicine Section, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan C Alberts
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| | - Jenny Tung
- Social and Biological Determinants of Health Working Group, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|