1
|
Gonzalez Ramirez C, Salvador SG, Patel RKR, Clark S, Miller NW, James LM, Ringelberg NW, Simon JM, Bennett J, Amaral DG, Burette AC, Philpot BD. Regional and cellular organization of the autism-associated protein UBE3A/E6AP and its antisense transcript in the brain of the developing rhesus monkey. Front Neuroanat 2024; 18:1410791. [PMID: 38873093 PMCID: PMC11169893 DOI: 10.3389/fnana.2024.1410791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited UBE3A allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited UBE3A allele is epigenetically silenced in neurons during development by a noncoding transcript (UBE3A-ATS). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function-either by gene addition or by targeting UBE3A-ATS-are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and UBE3A-ATS biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and UBE3A-ATS expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and in situ hybridization, we mapped UBE3A and UBE3A-ATS regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal UBE3A silencing in neurons-but not glial cells-in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of UBE3A linked to AS.
Collapse
Affiliation(s)
- Chavely Gonzalez Ramirez
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah G. Salvador
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ridthi Kartik Rekha Patel
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah Clark
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Noah W. Miller
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas M. James
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas W. Ringelberg
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M. Simon
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, MIND Institute, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, CA, United States
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, CA, United States
| | - Alain C. Burette
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. Philpot
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
4
|
del Rosario RC, Krienen FM, Zhang Q, Goldman M, Mello C, Lutservitz A, Ichihara K, Wysoker A, Nemesh J, Feng G, McCarroll SA. Sibling chimerism among microglia in marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562516. [PMID: 37904944 PMCID: PMC10614798 DOI: 10.1101/2023.10.16.562516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chimerism happens rarely among most mammals but is common in marmosets and tamarins, a result of fraternal twin or triplet birth patterns in which in utero connected circulatory systems (through which stem cells transit) lead to persistent blood chimerism (12-80%) throughout life. The presence of Y-chromosome DNA sequences in other organs of female marmosets has long suggested that chimerism might also affect these organs. However, a longstanding question is whether this chimerism is driven by blood-derived cells or involves contributions from other cell types. To address this question, we analyzed single-cell RNA-seq data from blood, liver, kidney and multiple brain regions across a number of marmosets, using transcribed single nucleotide polymorphisms (SNPs) to identify cells with the sibling's genome in various cell types within these tissues. Sibling-derived chimerism in all tissues arose entirely from cells of hematopoietic origin (i.e., myeloid and lymphoid lineages). In brain tissue this was reflected as sibling-derived chimerism among microglia (20-52%) and macrophages (18-64%) but not among other resident cell types (i.e., neurons, glia or ependymal cells). The percentage of microglia that were sibling-derived showed significant variation across brain regions, even within individual animals, likely reflecting distinct responses by siblings' microglia to local recruitment or proliferation cues or, potentially, distinct clonal expansion histories in different brain areas. In the animals and tissues we analyzed, microglial gene expression profiles bore a much stronger relationship to local/host context than to sibling genetic differences. Naturally occurring marmoset chimerism will provide new ways to understand the effects of genes, mutations and brain contexts on microglial biology and to distinguish between effects of microglia and other cell types on brain phenotypes.
Collapse
Affiliation(s)
- Ricardo C.H. del Rosario
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- current address: Princeton Neuroscience Institute
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Curtis Mello
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiku Ichihara
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alec Wysoker
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- current address: Princeton Neuroscience Institute
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Anwer DM, Gubinelli F, Kurt YA, Sarauskyte L, Jacobs F, Venuti C, Sandoval IM, Yang Y, Stancati J, Mazzocchi M, Brandi E, O’Keeffe G, Steece-Collier K, Li JY, Deierborg T, Manfredsson FP, Davidsson M, Heuer A. A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates. PLoS One 2023; 18:e0284480. [PMID: 37126506 PMCID: PMC10150977 DOI: 10.1371/journal.pone.0284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Collapse
Affiliation(s)
- Danish M. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Yunus A. Kurt
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Livija Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Febe Jacobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Chiara Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jennifer Stancati
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Martina Mazzocchi
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Edoardo Brandi
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gerard O’Keeffe
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Kathy Steece-Collier
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Marcus Davidsson
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| |
Collapse
|
6
|
Petroff RL, Grant KS, Burbacher TM. The Role of Nonhuman Primates in Neurotoxicology Research: Preclinical Models and Experimental Methods. Curr Protoc 2023; 3:e698. [PMID: 36912610 PMCID: PMC10084743 DOI: 10.1002/cpz1.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Kimberly S Grant
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Thomas M Burbacher
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
9
|
Ausderau KK, Colman RJ, Kabakov S, Schultz-Darken N, Emborg ME. Evaluating depression- and anxiety-like behaviors in non-human primates. Front Behav Neurosci 2023; 16:1006065. [PMID: 36744101 PMCID: PMC9892652 DOI: 10.3389/fnbeh.2022.1006065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Depression and anxiety are some of the most prevalent and debilitating mental health conditions in humans. They can present on their own or as co-morbidities with other disorders. Like humans, non-human primates (NHPs) can develop depression- and anxiety-like signs. Here, we first define human depression and anxiety, examine equivalent species-specific behaviors in NHPs, and consider models and current methods to identify and evaluate these behaviors. We also discuss knowledge gaps, as well as the importance of evaluating the co-occurrence of depression- and anxiety-like behaviors in animal models of human disease. Lastly, we consider ethical challenges in depression and anxiety research on NHPs in order to ultimately advance the understanding and the personalized treatment of these disorders.
Collapse
Affiliation(s)
- Karla K. Ausderau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
10
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
11
|
Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet 2023; 24:314-331. [PMID: 36599936 DOI: 10.1038/s41576-022-00554-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Collapse
|
12
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells 2022; 11:cells11030460. [PMID: 35159270 PMCID: PMC8833927 DOI: 10.3390/cells11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where “cause and effect” can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD). Intuitively, abnormal cardiac function or surgical intervention may stunt the developing brain, leading to neurodevelopmental disorders (NDD). However, recent work has uncovered several genetic variants within genes associated with the development of both the heart and brain that could also explain this co-occurrence. Given the scalability of hPSCs, straightforward genetic modification, and established differentiation strategies, it is now possible to investigate both CHD and NDD as independent events. We will first overview the potential for shared genetics in both heart and brain development. We will then summarize methods to differentiate both cardiac & neural cells and organoids from hPSCs that represent the developmental process of the heart and forebrain. Finally, we will highlight strategies to rapidly screen several genetic variants together to uncover potential phenotypes and how therapeutic advances could be achieved by hPSC-based models.
Collapse
|
14
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
15
|
Park J, Khan S, Yun DH, Ku T, Villa KL, Lee JE, Zhang Q, Park J, Feng G, Nedivi E, Chung K. Epitope-preserving magnified analysis of proteome (eMAP). SCIENCE ADVANCES 2021; 7:eabf6589. [PMID: 34767453 PMCID: PMC8589305 DOI: 10.1126/sciadv.abf6589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Synthetic tissue-hydrogel methods have enabled superresolution investigation of biological systems using diffraction-limited microscopy. However, chemical modification by fixatives can cause loss of antigenicity, limiting molecular interrogation of the tissue gel. Here, we present epitope-preserving magnified analysis of proteome (eMAP) that uses purely physical tissue-gel hybridization to minimize the loss of antigenicity while allowing permanent anchoring of biomolecules. We achieved success rates of 96% and 94% with synaptic antibodies for mouse and marmoset brains, respectively. Maximal preservation of antigenicity allows imaging of nanoscopic architectures in 1000-fold expanded tissues without additional signal amplification. eMAP-processed tissue gel can endure repeated staining and destaining without epitope loss or structural damage, enabling highly multiplexed proteomic analysis. We demonstrated the utility of eMAP as a nanoscopic proteomic interrogation tool by investigating molecular heterogeneity in inhibitory synapses in the mouse brain neocortex and characterizing the spatial distributions of synaptic proteins within synapses in mouse and marmoset brains.
Collapse
Affiliation(s)
- Joha Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Sarim Khan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Roorkee, Uttarakhand 247667, India
| | - Dae Hee Yun
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Katherine L. Villa
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Jiachen E. Lee
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Juhyuk Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Elly Nedivi
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Hyman SE. Use of mouse models to investigate the contributions of CNVs associated with schizophrenia and autism to disease mechanisms. Curr Opin Genet Dev 2021; 68:99-105. [PMID: 33957550 DOI: 10.1016/j.gde.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Human genetics is providing much needed clues to mechanisms underlying neuropsychiatric disorders. Highly penetrant copy number variants (CNVs) were among the first genetic variants confidently associated with schizophrenia and autism spectrum disorders (ASDs). Despite their structural complexity, the high penetrance of CNVs associated with neuropsychiatric disorders suggested utility for construction of cellular and animal models. Human cellular models that carry disease associated alleles have the advantage of human genetic backgrounds against which to study the effects of CNVs. However, investigation of the effects of disease-associated alleles on the structure and function of living brains requires genome engineering of model organisms or introduction of genetic material into their brains by viral vectors. Here I focus on the translational utility of transgenic mice that carry models of human neuropsychiatric CNVs, while recognizing their limitations as veridical models of complex human brain disorders. In order to improve translational utility and avoid the intellectual cul-de-sacs that often bedevil interpretation of neuropsychiatric disease models, I conclude with a 'draft' proposal to replace current concepts of construct and face validity with more nuanced and contextually relevant judgments.
Collapse
Affiliation(s)
- Steven E Hyman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|