1
|
Krasnanska G, Blandova G, Baldovic M, Andrejkova M, Konecny M. Novel Missense DNA Variants in the IL2RG Gene Identified in Slovak X-linked Severe Combined Immunodeficiency Disease Patients: A Case Report. Cureus 2024; 16:e75872. [PMID: 39822469 PMCID: PMC11737466 DOI: 10.7759/cureus.75872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the IL2RG gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population. Proband A was primarily hospitalized at the age of three months because of recurrent fever, vomiting, and lethargy, and the atypical immunophenotype was determined to be T-B-NK-. For proband B, the first hospitalization occurred at the age of eight months because of generalized impetiginized dermatitis. Whole exome sequencing (WES) was performed via a comprehensive approach in patients with undefined IEI, and causal DNA variants were confirmed by Sanger sequencing. WES analysis in probands identified the currently undescribed hemizygous variants p.Asn84Thr and p.Val213Ala in the IL2RG gene. Segregation analysis of p.Asn84Thr indicated a de novo origin, and p.Val213Ala was detected only in the asymptomatic proband's mother. We comprehensively reconsidered and scored both variants based on biological and clinical aspects. Finally, taking all the information into account, we classified p.Asn84Thr as likely pathogenic and p.Val213Ala as likely pathogenic with mild penetrance based on the fulfilled ACMG (American College of Medical Genetics and Genomics) criteria for computational predictions, clinical correlations, localization at functional site, and de novo status. With the WES approach, we identified two novel, not yet reported, IL2RG variants in the Slovak population of X-SCID patients. These findings strengthen the fact that rapid and comprehensive molecular-genetic diagnostics of IEI is necessary for the early definition of precise diagnosis, which further enables appropriate treatment and patient management.
Collapse
Affiliation(s)
- Gabriela Krasnanska
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, SVK
| | - Gabriela Blandova
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| | - Marian Baldovic
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| | - Maria Andrejkova
- Department of Paediatrics, Faculty of Medicine, Pavol Jozef Safarik University and Children's Faculty Hospital, Centre for Inborn Errors of Immunity and Clinical Genomics, Kosice, SVK
| | - Michal Konecny
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| |
Collapse
|
2
|
Ha TC, Morgan MA, Thrasher AJ, Schambach A. Alpharetroviral Vector-Mediated Gene Therapy for IL7RA-Deficient Severe Combined Immunodeficiency. Hum Gene Ther 2024; 35:669-679. [PMID: 39150017 DOI: 10.1089/hum.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized IL7RA cDNA to restore T-cell development in Il7r-knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis in vitro and in vivo. Conversely, though effective in vitro, the Lck promoter failed to produce viable T-cell populations in vivo. Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Adrian J Thrasher
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Justiz-Vaillant A, Gopaul D, Soodeen S, Unakal C, Thompson R, Pooransingh S, Arozarena-Fundora R, Asin-Milan O, Akpaka PE. Advancements in Immunology and Microbiology Research: A Comprehensive Exploration of Key Areas. Microorganisms 2024; 12:1672. [PMID: 39203514 PMCID: PMC11357253 DOI: 10.3390/microorganisms12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Immunology and microbiology research has witnessed remarkable growth and innovation globally, playing a pivotal role in advancing our understanding of immune mechanisms, disease pathogenesis, and therapeutic interventions. This manuscript presents a comprehensive exploration of the key areas in immunology research, spanning from the utilisation of bacterial proteins as antibody reagents to the intricate realms of clinical immunology and disease management. The utilisation of bacterial immunoglobulin-binding proteins (IBPs), including protein A (SpA), protein G (SpG), and protein L (SpL), has revolutionised serological diagnostics, showing promise in early disease detection and precision medicine. Microbiological studies have shed light on antimicrobial resistance patterns, particularly the emergence of extended-spectrum beta-lactamases (ESBLs), guiding antimicrobial stewardship programmes and informing therapeutic strategies. Clinical immunology research has elucidated the molecular pathways underlying immune-mediated disorders, resulting in tailored management strategies for conditions such as severe combined immunodeficiency (SCID), neuropsychiatric systemic lupus erythematosus (NPSLE), etc. Additionally, significant efforts in vaccine development against tuberculosis and HIV are highlighted, underscoring the ongoing global pursuit of effective preventive measures against these infectious diseases. In summary, immunology and microbiology research have provided significant contributions to global healthcare, fostering collaboration, innovation, and improved patient outcomes.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Shalini Pooransingh
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | | | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
| |
Collapse
|
4
|
Marakhonov AV, Efimova IY, Mukhina AA, Zinchenko RA, Balinova NV, Rodina Y, Pershin D, Ryzhkova OP, Orlova AA, Zabnenkova VV, Cherevatova TB, Beskorovainaya TS, Shchagina OA, Polyakov AV, Markova ZG, Minzhenkova ME, Shilova NV, Larin SS, Khadzhieva MB, Dudina ES, Kalinina EV, Mudaeva DA, Saydaeva DH, Matulevich SA, Belyashova EY, Yakubovskiy GI, Tebieva IS, Gabisova YV, Irinina NA, Nurgalieva LR, Saifullina EV, Belyaeva TI, Romanova OS, Voronin SV, Shcherbina A, Kutsev SI. Newborn Screening for Severe T and B Cell Lymphopenia Using TREC/KREC Detection: A Large-Scale Pilot Study of 202,908 Newborns. J Clin Immunol 2024; 44:93. [PMID: 38578360 DOI: 10.1007/s10875-024-01691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.
Collapse
Affiliation(s)
| | | | - Anna A Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Anna A Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Sergey S Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maryam B Khadzhieva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina S Dudina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina V Kalinina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Djamila H Saydaeva
- State Budgetary Institution "Maternity Hospital" of the Ministry of Healthcare of the Chechen Republic, Grozny, Russia
| | | | | | | | - Inna S Tebieva
- North-Ossetian State Medical Academy, Vladikavkaz, Russia
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Yulia V Gabisova
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Nataliya A Irinina
- State Budgetary Healthcare Institution of the Vladimir Region "Regional Clinical Hospital", Vladimir, Russia
| | | | | | - Tatiana I Belyaeva
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | - Olga S Romanova
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | | | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | |
Collapse
|
5
|
Fayyaz H, Zaman A, Shabbir S, Khan ZK, Haider N, Saleem AF, Ahamad W, Ullah I. Mutational analysis in different genes underlying severe combined immunodeficiency in seven consanguineous Pakistani families. Mol Biol Rep 2024; 51:302. [PMID: 38355773 DOI: 10.1007/s11033-024-09222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Severe Combined Immunodeficiency (SCID) is an autosomal recessive inborn error of immunity (IEI) characterized by recurrent chest and gastrointestinal (GI) infections and in some cases associated with life-threatening disorders. METHODOLOGY AND RESULTS This current study aims to unwind the molecular etiology of SCID and also extended the patients' phenotype associated with identified particular variants. Herein, we present 06 disease-causing variants identified in 07 SCID-patients in three different SCID related genes. Whole Exome Sequencing (WES) followed by Sanger Sequencing was employed to explore genetic variations. The results included identification of two previously reported heterozygous variants in homozygous form for the first time in RAG1gene [(p.Arg410Gln);(p.Arg737His)], followed by a recurrent variant (p.Trp959*) in RAG1, a novel variant in IL2RG (p.Asp48Lfs*24), a recurrent variant in IL2RG (p.Gly271Glu) and a recurrent variant in DCLRE1C (p.Arg191*) gene. CONCLUSION To conclude, the immune-profiling and WES revealed two novel, two as homozygous state for the first time, and two recurrent disease causing variants contributing valuably to our existing knowledge of SCID.
Collapse
Affiliation(s)
- Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atteaya Zaman
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Biochemistry, Federal Medical & Dental College, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheeba Shabbir
- Forensic Medicine & Toxicology, School of Health Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zara Khalid Khan
- Department of Biochemistry, HBS Medical & Dental College, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Nighat Haider
- Department of Pediatrics, Pakistan Institute of Medical Sciences Islamabad, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Ali Faisal Saleem
- Department of Paediatrics & Paediatrics Infections Disease, Agha Khan University Hospital, Karachi, Pakistan
| | - Wasim Ahamad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Bin Y, Wei S, Chen R, Zhang H, Ren J, Liu P, Xin Z, Zhang T, Yang H, Wang K, Feng Z, Sun X, Chen Z, Zhang H. Dclre1c-Mutation-Induced Immunocompromised Mice Are a Novel Model for Human Xenograft Research. Biomolecules 2024; 14:180. [PMID: 38397417 PMCID: PMC10887050 DOI: 10.3390/biom14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.
Collapse
Affiliation(s)
- Yixiao Bin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Sanhua Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Tang Du Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an 710032, China;
| | - Jing Ren
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
7
|
Ahmad Azahari AHS, Hakim Zada F, Ismail IH, Abd Hamid IJ, Lim BWD, Ismail NAS, Ali A. Knowledge, awareness, and perception on genetic testing for primary immunodeficiency disease among parents in Malaysia: a qualitative study. Front Immunol 2024; 14:1308305. [PMID: 38283358 PMCID: PMC10811462 DOI: 10.3389/fimmu.2023.1308305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Background Primary Immunodeficiency Disease (PID), also known as Inborn Errors of Immunity (IEI), comprises a group of rare genetic disorders that impair the body's immune responses. These conditions result from monogenic germline mutations that affect the function of genes governing the innate and adaptive immune system. Therefore, individuals with PID are more susceptible to infectious diseases, allergies, and autoimmune and autoinflammatory conditions. The prevalence of PID has been on the rise, with the number of classified diseases reaching 404, and 430 genetic defects reported to cause these conditions. However, in Malaysia, genetic testing for PID is currently limited and needs to be outsourced to overseas laboratories, posing financial challenges for families. Moreover, limited research has focused on the knowledge and awareness of genetic testing among parents of children with PID in Malaysia. This study aims to address this gap and provide valuable insights into the knowledge, awareness, and perception of genetic testing among this specific population. Method This qualitative cross-sectional study utilised online open-ended, semi-structured focus group interviews to explore the perceptions and experiences of parents of children with Primary Immunodeficiency (PID). Participants were recruited through convenience sampling from the Malaysian Patient Organisation for Primary Immunodeficiencies (MyPOPI), a non-governmental organisation dedicated to providing support and raising awareness about PID. The study spanned from May 2023 to July 2023 and included participants from diverse regions of Malaysia who had undergone different diagnostic journeys in various hospitals. Result The focus group discussions yielded 11 sub-themes that highlighted the experiences, understanding and challenges of the participants regarding genetic testing based on the semi-structured questions. These sub-themes were then grouped into four main themes that are awareness and understanding of genetic testing, the journey towards diagnosis and treatment, emotional impact and psychological factors, and the importance of medical experts in diagnosing and managing PID, as well as public perception and awareness. Conclusion In conclusion, this study highlights the diverse knowledge, awareness, and perception surrounding genetic testing for PID. Factors such as access to services, family history, and personal circumstances shape individuals' understanding of genetic testing. The importance of healthcare professionals, along with the need for improved accessibility and targeted communication strategies, is underscored to enhance understanding and reduce stigma surrounding genetic testing for rare diseases like PID.
Collapse
Affiliation(s)
| | - Farheen Hakim Zada
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Intan Hakimah Ismail
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan Juliana Abd Hamid
- Primary Immunodeficiency Diseases Group, Department of Clinical Medicine, Institut Perubatan dan Pergigian Termaju, Universiti Sains Malaysia, Bertam, Pulau Pinang, Malaysia
| | - Bruce Wee Diong Lim
- Malaysian Patient Organisation for Primary Immunodeficiencies (MyPOPI), Kuala Lumpur, Malaysia
| | - Noor Akmal Shareela Ismail
- Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adli Ali
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Zou TT, Liao Q, Liu Y, Guo Q, Zhu Y, Wan CM. Rapid Diagnosis of Hemophagocytic Lymphohistiocytosis Triggered by Disseminated BCG Infection in Infants With Severe Combined Immunodeficiency: Case Report. Open Forum Infect Dis 2023; 10:ofad548. [PMID: 38023550 PMCID: PMC10644825 DOI: 10.1093/ofid/ofad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis triggered by disseminated Bacillus Calmette-Guerin infection is rare. Targeted next-generation sequencing for tuberculosis can rapidly identify different strains of Mycobacterium tuberculosis complex as well as drug resistance genes. Herein we report 2 cases of hemophagocytic lymphohistiocytosis in whom targeted next-generation sequencing rapidly identified Bacillus Calmette-Guerin as the infectious trigger.
Collapse
Affiliation(s)
- Ting-Ting Zou
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Liao
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yang Liu
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qin Guo
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yu Zhu
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chao-min Wan
- Department of Pediatric Infectious Diseases, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
10
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
11
|
Justiz-Vaillant AA, Gopaul D, Akpaka PE, Soodeen S, Arozarena Fundora R. Severe Combined Immunodeficiency-Classification, Microbiology Association and Treatment. Microorganisms 2023; 11:1589. [PMID: 37375091 DOI: 10.3390/microorganisms11061589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is a primary inherited immunodeficiency disease that presents before the age of three months and can be fatal. It is usually due to opportunistic infections caused by bacteria, viruses, fungi, and protozoa resulting in a decrease in number and impairment in the function of T and B cells. Autosomal, X-linked, and sporadic forms exist. Evidence of recurrent opportunistic infections and lymphopenia very early in life should prompt immunological investigation and suspicion of this rare disorder. Adequate stem cell transplantation is the treatment of choice. This review aimed to provide a comprehensive approach to the microorganisms associated with severe combined immunodeficiency (SCID) and its management. We describe SCID as a syndrome and summarize the different microorganisms that affect children and how they can be investigated and treated.
Collapse
Affiliation(s)
- Angel A Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rodolfo Arozarena Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
12
|
Sharma M, Dhaliwal M, Tyagi R, Goyal T, Sharma S, Rawat A. Microbiome and Its Dysbiosis in Inborn Errors of Immunity. Pathogens 2023; 12:pathogens12040518. [PMID: 37111404 PMCID: PMC10145396 DOI: 10.3390/pathogens12040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Inborn errors of immunity (IEI) can present with infections, autoimmunity, lymphoproliferation, granulomas, and malignancy. IEIs are due to genetic abnormalities that disrupt normal host-immune response or immune regulation. The microbiome appears essential for maintaining host immunity, especially in patients with a defective immune system. Altered gut microbiota in patients with IEI can lead to clinical symptoms. Microbial dysbiosis is the consequence of an increase in pro-inflammatory bacteria or a reduction in anti-inflammatory bacteria. However, functional and compositional differences in microbiota are also involved. Dysbiosis and a reduced alpha-diversity are well documented, particularly in conditions like common variable immunodeficiency. Deranged microbiota is also seen in Wiskott–Aldrich syndrome, severe combined immunodeficiency, chronic granulomatous disease, selective immunoglobulin-A deficiency, Hyper IgE syndrome (HIGES), X-linked lymphoproliferative disease-2, immunodysregulation, polyendocrinopathy, enteropathy, x-linked syndrome, and defects of IL10 signalling. Distinct gastrointestinal, respiratory, and cutaneous symptoms linked to dysbiosis are seen in several IEIs, emphasizing the importance of microbiome identification. In this study, we discuss the processes that maintain immunological homeostasis between commensals and the host and the disruptions thereof in patients with IEIs. As the connection between microbiota, host immunity, and infectious illnesses is better understood, microbiota manipulation as a treatment strategy or infection prevention method would be more readily employed. Therefore, optimal prebiotics, probiotics, postbiotics, and fecal microbial transplantation can be promising strategies to restore the microbiota and decrease disease pathology in patients with IEIs.
Collapse
|
13
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
14
|
Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022; 13:genes13122348. [PMID: 36553615 PMCID: PMC9777626 DOI: 10.3390/genes13122348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.
Collapse
|
15
|
Muacevic A, Adler JR. FOXN1 Gene Considerations in Severe Combined Immunodeficiency Treatment in Children. Cureus 2022; 14:e32040. [PMID: 36600823 PMCID: PMC9800850 DOI: 10.7759/cureus.32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Forkheadbox N1 (FOXN1) gene mutation in humans is a rare cause of thymic hypoplasia and T cell immunodeficiency. This gene is the master transcriptional regulator of thymic epithelial cells and disruptions have been described in consequence to a variety of antepartum complications. FOXN1 mutation-mediated immune deficiency is typically associated with severe combined immunodeficiency and alopecia universalis (SCID/NUDE phenotypes) with homozygous alterations in human animal models. Less common, however, FOXN1 alterations can occur in a heterozygous form and provide a distinct phenotype of severe combined immunodeficiency (SCID) without alopecia. Here, we present one such case of a Caucasian child born with heterozygous FOXN1 mutation, first presenting with undetectable T cell levels at newborn screen. He was confirmed to have FOXN1 immunodeficiency in the heterozygous form through genetic testing. Early identification and initiation of appropriate interventions are crucial to reduce mortality from opportunistic pathogens associated with immunodeficiency. Furthermore, we need to appreciate the less common presentations of established diseases among young patients.
Collapse
|
16
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhan Y, Wu X. An in silico Modeling for the Prediction of Metformin Interaction with Gadolinium-Based MR Contrast Agent. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1353.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
IL-7/IL7R axis dysfunction in adults with severe community-acquired pneumonia (CAP): a cross-sectional study. Sci Rep 2022; 12:13145. [PMID: 35907923 PMCID: PMC9339003 DOI: 10.1038/s41598-022-13063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Community-acquired pneumonia (CAP) is a worldwide leading cause of death. Recognized risk factors in some severe cases have not been identified. Lymphocytopenia has been frequently described in CAP. Since IL-7, membrane-bound receptor (IL7Rα;CD127) and soluble IL7Rα (sIL7R) are critical in lymphocytes homeostasis, in this work we aimed to evaluate the involvement of the IL-7/IL7Rα axis in the severity of adult CAP, since it has not been explored. The IL7Rα SNPs rs6897932, rs987106, and rs3194051 SNPs in IL7α were genotyped, the systemic expression of the IL7R gene, sIL7R, IL-7, and levels of peripheral IL7Rα+ T lymphocytes were quantified in 202 hospitalized CAP cases. rs3194051GG was more frequent in non-survivors than in survivors; rs987106TT was more frequent and rs3194051AA less frequent in patients at intensive care unit (ICU) than in those not admitted to ICU. IL7Rα gene expression was lower in non-survivors than in survivors, and in severe than in mild cases. CD3+CD127+ lymphocytes were lower in severe than in mild cases; in non-survivors than in survivors and in ICU than in non- ICU admitted cases. sIL7Rα plasmatic levels were higher in non-survivors than in survivors, and in severe than in mild cases. rs6897932CC, rs987106AA and rs3194051GG carriers showed the highest while rs6897932TT showed the lowest sIL7Rα levels. The AUC of sIL7Rα levels predicting 30-day mortality was 0.71. Plasma IL-7 levels were lower in ICU-admitted than in not ICU-admitted and in non-survivors than in survivors. No additional association was detected. In conclusion, rs3194051GG and rs987106TT IL7R genotypes were associated with a poorer prognosis. A significant association between sIL7R levels and SNPs of the IL7R gene is described for the first time in adult CAP. Increased plasmatic sIL7R could contribute to identifying adult CAP cases at risk of death.
Collapse
|
19
|
Hartog N, Hershfield M, Michniacki T, Moloney S, Holsworth A, Hurden I, Fredrickson M, Kleyn M, Walkovich K, Secord E. Newborn Tandem Mass Spectroscopy Screening for Adenosine Deaminase Deficiency-First Two Years' Experience. Ann Allergy Asthma Immunol 2022; 129:776-783.e2. [PMID: 35914665 DOI: 10.1016/j.anai.2022.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Newborn screening (NBS) via T-cell receptor excision circles (TREC) is now universal in the United States, Puerto Rico, and the Navajo Nation as a strategy to identify severe combined immunodeficiency (SCID) in newborns. Due to the characteristics of adenosine deaminase (ADA) deficiency, small but significant number of cases can be missed by this screening. OBJECTIVE To evaluate the results of the first year of statewide NBS for ADA via dried blood spot newborn screening. METHODS On October 7, 2019, the state of Michigan began screening newborn dried blood spots for ADA deficiency via the Neobase-2 tandem mass spectroscopy (TMS) kit. We report one known case of ADA deficiency in the 18 months prior to screening. We then reviewed the results of the first two years of TMS ADA screening in Michigan. RESULTS There was one ADA deficient patient known to our centers in the 18 months before initiation of TMS ADA screening, this patient died of complications of their disease. In the first two years of TMS ADA NBS, 206,321 infants were screened, and two patients had positive ADA screens. Both patients had ADA deficiency confirmed through biochemical and genetic testing. One patient identified also had a positive TREC screen and was confirmed to have ADA SCID. CONCLUSION In our first two years, TMS NBS for ADA deficiency identified two patients with ADA deficiency at negligible cost; including one patient who would not have been identified by TREC NBS. This report provides initial evidence of the value of specific NBS for ADA deficiency.
Collapse
Affiliation(s)
- Nicholas Hartog
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine.
| | - Michael Hershfield
- Department of Medicine, Duke University School of Medicine; Department of Biochemistry, Duke University School of Medicine
| | - Thomas Michniacki
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | | | - Amanda Holsworth
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine
| | | | - Mary Fredrickson
- Division of Allergy and Immunology, Children's Hospital of Michigan
| | - Mary Kleyn
- Michigan Department of Health and Human Services
| | - Kelly Walkovich
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | - Elizabeth Secord
- Wayne State University School of Medicine, Department of Pediatrics, Division of Allergy and Immunology
| |
Collapse
|
20
|
Vignesh P, Anjani G, Kumrah R, Singh A, Mondal S, Nameirakpam J, Jindal A, Suri D, Sharma M, Kaur G, Sharma S, Gupta K, Sreedharanunni S, Rawat A, Singh S. Features of Hemophagocytic Lymphohistiocytosis in Infants With Severe Combined Immunodeficiency: Our Experience From Chandigarh, North India. Front Immunol 2022; 13:867753. [PMID: 35812426 PMCID: PMC9260510 DOI: 10.3389/fimmu.2022.867753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is characterized by uncontrolled and excessive inflammation leading to high mortality. Aetiology of HLH can be primarily due to genetic causes or secondarily due to infections or rheumatological illness. However, rarely T-cell deficiencies like severe combined immunodeficiency (SCID) can develop HLH. Objective To describe clinical and laboratory features of SCID cases who developed HLH. Methods We collected clinical, laboratory, and molecular details of patients with SCID who developed HLH at our center at Chandigarh, North India. Results Of the 94 cases with SCID, 6 were noted to have developed HLH-like manifestations. Male-female ratio was 5:1. Median (inter-quartile range) age of onset of clinical symptoms was 4.25 months (2-5 months). Median (inter-quartile range) delay in diagnosis was 1 month (1-3.5 months). Family history of deaths was seen in 4 cases. Molecular defects in IL2RG were seen in 5 out of 6 cases. Documented infections include disseminated bacillus calmette-guerin (BCG) infection (n=2), blood stream infections (n=3) with Staphylococcal aureus (n=1), Klebsiella pneumonia (n=1), and Pseudomonas aeruginosa (n=1), pneumonia (influenza H1N1 strain, and K. pneumoniae (n=1). Conclusion Children with SCID can present with HLH-like manifestations secondary to fulminant infections. A high index of suspicion of SCID is needed in infants who present with HLH who have an associated infection or a suggestive family history. Occurrence of HLH-like manifestations in SCID suggests that T-lymphocytes may not have a significant role in immunopathogenesis of HLH.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjib Mondal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sathish Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Aykut A, Durmaz A, Karaca N, Gülez N, Genel F, Celmeli F, Ozturk G, Atay D, Aydogmus C, Kiykim A, Aksu G, Kutukculer N. Severe Combined immunodeficiencies: Expanding the mutation spectrum in Turkey and identification of 12 novel variants. Scand J Immunol 2022; 95:e13163. [PMID: 35303369 DOI: 10.1111/sji.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human Inborn Errors of Immunity (IEIs) are clinically and genetically heterogeneous group of diseases, with relatively mild clinical course or severe types that can be life-threatening. Severe combined immunodeficiency (SCID) is the most severe form of IEIs, which is caused by monogenic defects that impair the proliferation and function of T, B, and NK cells. According to the most recent report by the International Union of Immunological Societies (IUIS), SCID caused by mutations in IL2RG, JAK3, FOXN1, CORO1A, PTPRC, CD3D, CD3E, CD247, ADA, AK2, NHEJ1, LIG4, PRKDC, DCLRE1C, RAG1 and RAG2 genes. METHODS The targeted next-generation sequencing (TNGS) workflow based on Ion AmpliSeq™ Primary Immune Deficiency Research Panel was designed for sequencing 264 IEI related genes on Ion S5™ Sequencer. RESULTS Herein, we present 21 disease-causing variants (12 novel) which were identified in 22 patients in 8 different SCID genes. CONCLUSION Next generation sequencing allowed a rapid and an accurate diagnosis SCID patients.
Collapse
Affiliation(s)
- Ayca Aykut
- Ege University, Faculty of Medicine Department of Medical Genetics
| | - Asude Durmaz
- Ege University, Faculty of Medicine Department of Medical Genetics
| | - Neslihan Karaca
- Ege University, Faculty of Medicine, Department of Pediatric Health and Diseases, Department of Pediatric Immunology
| | - Nesrin Gülez
- Saglık Bilimleri University Dr. Behcet Uz Pediatric Diseases and Surgery Training and Research Hospital Pediatric Immunology and Allergy Diseases
| | - Ferah Genel
- Saglık Bilimleri University Dr. Behcet Uz Pediatric Diseases and Surgery Training and Research Hospital Pediatric Immunology and Allergy Diseases
| | - Fatih Celmeli
- Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Turkey
| | - Gulyuz Ozturk
- Acıbadem Mehmet Ali Aydınlar University, Department of Pediatric Hematology /Oncology/BMT unit
| | - Didem Atay
- Acıbadem Mehmet Ali Aydınlar University, Department of Pediatric Hematology /Oncology/BMT unit
| | - Cigdem Aydogmus
- Saglık Bilimleri University Basaksehir Cam and Sakura City Hospital Pediatric Immunology
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Department of Pediatrics, Division of Pediatric Allergy and Immunology
| | - Guzide Aksu
- Ege University, Faculty of Medicine, Department of Pediatric Health and Diseases, Department of Pediatric Immunology
| | - Necil Kutukculer
- Ege University, Faculty of Medicine, Department of Pediatric Health and Diseases, Department of Pediatric Immunology
| |
Collapse
|
22
|
El Allam A, El Fakihi S, Tahoune H, Sahmoudi K, Bousserhane H, Bakri Y, El Hafidi N, Seghrouchni F. Cytometric analysis and clinical features in a Moroccan cohort with severe combined immunodeficiency. Hum Antibodies 2022; 30:67-77. [PMID: 35094990 DOI: 10.3233/hab-211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Severe combined immunodeficiency (SCID) is a form of primary immunodeficiency disease (PID). It is characterized by a serious abnormality of the cellular and sometimes humoral system due to a deficiency in development of T cells, B cells and/or NK cells. The early diagnosis of SCID improves the prognosis. Typically, the initial consideration of SCID is made based on low lymphocyte counts. Notwithstanding, the heterogeneity of lymphocyte count presentation makes the diagnosis of SCID a significant challenge. The objective of this cross-sectional retrospective study was to analyze the lymphocyte subpopulation counts along with clinical manifestations within a Moroccan cohort diagnosed as SCID compared to children diagnosed with non-PID diseases. Thirty-five SCID confirmed patients were selected in the period between 2008 and 2018 and compared with non-PID patients. Results of peripheral blood T, B, and NK lymphocyte subpopulation counts were measured by flow cytometry for each SCID subtype. As expected, T cell count was less than 300 cells/μL in most patients with SCID (85.5%). Unexpectedly, significantly higher T cell counts were detected in some patients with a confirmed clinical diagnosis and family history of SCID. 5.7% of our SCID Moroccan cohort had T cell numbers in the range between 300 and 500 cells/μL. 8.7% of our SCID Moroccan cohort had T cell numbers higher than 500 cells/μL. Of the SCID subtypes, the proportion of SCID with B cell deficiencies was highly represented in our cohort. 71.4% of Moroccan SCID patients (25 out of 35 patients) were of T-B-subtype. Furthermore, 40% of the patients (14 out of 35 patients) had a T-B-NK+ profile and 31.4% had a T-B-NK- profile (11 out of 35 patients). The most common clinical manifestations observed in our SCID cohort were pneumonia, failure to thrive, candidiasis, diarrhea, bronchitis and urinary tract infections. Our results not only highlight the relatively frequent presence of atypical SCID in the Moroccan population with unexpectedly high T cell numbers, but also describes the incidence pattern of common SCID subtypes in Morocco. Physicians in Morocco may find this local region-specific difference in SCID important for making improved early diagnosis of this disease.
Collapse
Affiliation(s)
- Aicha El Allam
- Laboratory of Cellular Immunology, National Institute of Hygiene, Rabat, Morocco
- Laboratory of Biology and Human Pathology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Sara El Fakihi
- Laboratory of Cellular Immunology, National Institute of Hygiene, Rabat, Morocco
- Med Biotech Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hicham Tahoune
- Department of Biology, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco
| | - Karima Sahmoudi
- Laboratory of Cellular Immunology, National Institute of Hygiene, Rabat, Morocco
- Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Houria Bousserhane
- Laboratory of Cellular Immunology, National Institute of Hygiene, Rabat, Morocco
- Med Biotech Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Youssef Bakri
- Laboratory of Biology and Human Pathology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
- Centre of Human Pathology Genomic, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Naima El Hafidi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Immunology, Allergic and Respiratory Diseases Unit, Children's Hospital of Rabat, Ibn Sina University Hospital Centre, Rabat, Morocco
| | - Fouad Seghrouchni
- Laboratory of Cellular Immunology, National Institute of Hygiene, Rabat, Morocco
- Med Biotech Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
23
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|
24
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
25
|
Abstract
Primary immunodeficiencies (PIDs) have become a prime target for gene therapy given the morbidity, mortality, and the single gene etiology. Given that outcomes are better the earlier gene therapy is implemented, it is possible that fetal gene therapy may be an important future direction for the treatment of PIDs. In this chapter, the current treatments available for several PIDs will be reviewed, as well as the history and current status of gene therapy for PIDs. The possibility of in utero gene therapy as a possibility will then be discussed.
Collapse
Affiliation(s)
- Anne H Mardy
- Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Francisco, California
| | | |
Collapse
|
26
|
Poyraz A, Cansever M, Muderris I, Patiroglu T. Neonatal Lymphopenia Screening Is Important For Early Diagnosis of Severe Combined Immunodeficiency. Am J Perinatol 2021; 40:748-752. [PMID: 34116583 DOI: 10.1055/s-0041-1731044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE T-cell receptor excision circles are expensive for neonatal severe combined immunodeficiency screening in developing countries. We aimed to detect immunodeficiencies presenting with lymphopenia to enable screening in the general population and to improve awareness regarding lymphopenia among clinicians. STUDY DESIGN This study was conducted prospectively. In all newborns included, complete blood count from umbilical cord blood samples was recorded. Absolute lymphopenia was defined as absolute lymphocyte count <3,000/mm3 in umbilical cord blood sample. Complete blood count was repeated at month 1 in cases found to have lymphopenia. RESULTS Overall, 2,000 newborns were included in the study. Absolute lymphopenia was detected in 42 newborns (2.1%), while lymphocyte count was >3,000/mm3 in 1,958 newborns (97.9%). Two infants with persisted lymphopenia at the end of the first month; therefore, further evaluations such as lymphocyte subsets for severe combined immunodeficiency (SCID) were done. In the first infant, the lymphocyte subgroups were detected as compatible with T (-), B (-), natural killer cells (NK) (+) SCID phenotype RAG defect. Sanger sequencing revealed that NM_000448 c.2209C > T (p.R737C) homozygous mutation of RAG1 gene. In the other infant, the lymphocyte subgroups were found as considered with T (-), B (+) NK (-) SCID phenotype JAK3 defect. Both patients underwent hematopoietic stem cell transplantation from human leukocyte antigen-matched family member. CONCLUSION Absolute lymphopenia by complete blood count is a more simpler, relatively noninvasive and inexpensive screening methodfor detection of SCID in newborns compared with T-cell receptor excision circles technique. KEY POINTS · Our study was conducted with a much smaller number of study groups compared with the previous ones.. · However, SCID was found at a higher rate compared with other studies.. · Our study for this disease that is common in our country where consanguineous marriages are common.
Collapse
Affiliation(s)
- Aykut Poyraz
- Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Murat Cansever
- Division of Allergy and Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ipek Muderris
- Department of Gynecology and Obstetrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Hematology and Oncology, Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
27
|
Babushkina NP, Postrigan AE, Kucher AN. Involvement of Variants in the Genes Encoding BRCA1-Associated Genome Surveillance Complex (BASC) in the Development of Human Common Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
29
|
Pan CH, Lo HJ, Yan JY, Hsiao YJ, Hsueh JW, Lin DW, Lin TH, Wu SH, Chen YC. Candida albicans Colonizes and Disseminates to the Gastrointestinal Tract in the Presence of the Microbiota in a Severe Combined Immunodeficient Mouse Model. Front Microbiol 2021; 11:619878. [PMID: 33488563 PMCID: PMC7819875 DOI: 10.3389/fmicb.2020.619878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is the leading cause of candidemia or other invasive candidiasis. Gastrointestinal colonization has been considered as the primary source of candidemia. However, few established mouse models that mimic this infection route are available. In the present study, we established a mouse model of disseminated candidiasis developed through the translocation of Candida from the gut. In this study, we developed a novel C. albicans GI colonization and dissemination animal model by using severe combined immunodeficient Rag2–/–IL2γc–/– (Rag2γc) mice, which lack functional T, B, NK cells, and IL2γc-dependent signaling. Rag2γc mice were highly susceptible to C. albicans gastrointestinal infection even in the presence of the gut microbiota. Within 4 weeks post infection, Rag2γc mice showed dose-dependent weight loss and disseminated candidiasis in more than 58% (7/12) of moribund mice. Histological analysis demonstrated abundant hyphae penetrating the mucosa, with significant neutrophilic infiltration in mice infected with wild-type C. albicans but not a filamentation-defective mutant. In moribund Rag2γc mice, the necrotic lesions and disrupted epithelial cells were associated with C. albicans hyphae. Notably, removal of the gut microbiota by antibiotics exacerbated the severity of fungal infection in Rag2γc mice, as demonstrated by elevated fungal burdens and accelerated weight loss and death. Furthermore, higher fungal burden and IL-1β expression were prominently noted in the stomach of Rag2γc mice. In fact, a significant increase in circulating proinflammatory cytokines, including IL-6, TNF-α, and IL-10, indicative of a septic response, was evident in infected Rag2γc mice. Additionally, Rag2γc mice exhibited significantly lower levels of IL-22 but not IFN-γ or IL-17A than wild-type B6 mice, suggesting that IL-22 plays a role in C. albicans gastrointestinal infection. Collectively, our analysis of the Rag2γc mouse model revealed features of C. albicans gastrointestinal colonization and dissemination without the interference from antibiotics or chemotherapeutic agents, thus offering a new investigative tool for delineating the pathogenesis of C. albicans and its cross-talk with the gut microbiota.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ju Hsiao
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Di-Wei Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Department of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Al Sukaiti N, Ahmed K, Alshekaili J, Al Kindi M, Cook MC, Farsi TA. A Decade Experience on Severe Combined Immunodeficiency Phenotype in Oman, Bridging to Newborn Screening. Front Immunol 2021; 11:623199. [PMID: 33519828 PMCID: PMC7844122 DOI: 10.3389/fimmu.2020.623199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Severe combined immunodeficiency (SCID) results from various monogenic defects that impair immune function and brings on early severe and life-threatening infections. The main stay of treatment for SCID is hematopoietic stem cell transplant (HSCT) with near normal survival at 5 years for an early transplant done at or before the age of 3.5 months of life and the patient is maintained free of infections. Although overall rare, it constitutes a major burden on affected children, their families and on the health system especially in communities with a high rate of consanguinity where incidence and prevalence of recessive inborn errors of immunity (IEI) are expected to be high. Method Here, we report the clinical, immunological, and molecular findings in 36 children diagnosed with SCID from a single tertiary center in Oman for the last decade. Results We observed a median annual incidence rate of 4.5 per 100,000 Omani live births, and 91.7% of affected children were born to consanguineous parents. Twenty-three children (63.9%) fulfilled the criteria for typical SCID. The median age at onset, diagnosis and diagnostic delay were 54, 135, and 68 days, respectively. The most common clinical manifestations were pneumonia, septicemia, and chronic diarrhea. Eleven children (30.6%) have received hematopoietic stem cell transplant (HSCT) with a survival rate of 73%. The most frequent genetic cause of SCID in this cohort (n = 36) was (RAG-1), encoding for recombination activating gene (n = 5, 13.9%). Similarly, Major histocompatibility complex type II deficiency accounted for (n = 5, 13.9%) of our cohort. Conclusion Our report broadens the knowledge of clinical and molecular manifestations in children with SCID in the region and highlights the need to initiate newborn based screening program (NBS) program.
Collapse
Affiliation(s)
- Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Khwater Ahmed
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Matthew C. Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia
- Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, NSW, Australia
- Centre for Personalized Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| |
Collapse
|
31
|
Thorsen J, Kolbert K, Joshi A, Baker M, Seroogy CM. Newborn Screening for Severe Combined Immunodeficiency: 10-Year Experience at a Single Referral Center (2009-2018). J Clin Immunol 2021; 41:595-602. [PMID: 33409868 DOI: 10.1007/s10875-020-00956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
In 2008, newborn screening (NBS) for severe combined immunodeficiency (SCID) began as a pilot study in Wisconsin and has recently been added to every state's newborn screen panel. The incidence of SCID is estimated at 1 per 58,000 births which may suggest infrequent NBS SCID screen positive results in states with low annual birth rates. In this study, we report our center's experience with NBS positive SCID screen referrals over a 10-year period. A total of 68 full-term newborns were referred to our center for confirmatory testing. Of these referrals, 50% were false positives, 12% were SCID diagnoses, 20% syndromic T cell lymphopenia (TCL) disorders, and 18% non-SCID, non-syndromic TCL. Through collaboration with our newborn screening lab, second-tier targeted gene sequencing was performed for newborns with SCID screen positive results from communities with known founder pathogenic variants and provided rapid genetic confirmation of SCID and non-SCID TCL disorders. Despite extensive genetic testing, two of the eight (25%) identified newborns with SCID diagnoses lacked a definable genetic defect. Additionally, our referrals included ten newborns who were otherwise healthy newborns with idiopathic TCL and varied CD3+ T cell number longitudinal trajectories. Collectively, referrals to our single site over a 10-year period describe a broad spectrum of medically actionable and idiopathic TCL disorders which highlight the importance of clinical immunology expertise in all states, demonstrate efficiencies and challenges for second-tier genetic testing, and further emphasize the need to development standardized evaluation algorithms for non-SCID TCL.
Collapse
Affiliation(s)
- Julia Thorsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
| | - Kayla Kolbert
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
| | - Avni Joshi
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Rochester, MN, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4139 WIMR, Madison, WI, 53705-2275, USA.
| |
Collapse
|
32
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
33
|
Chidambaram AC, Maulik K, Ramamoorthy JG, Parameswaran N. A novel mutation of adenosine deaminase causing SCID presenting as hemophagocytic lymphohistiocytosis with acute kidney injury. Br J Haematol 2020; 191:509-512. [PMID: 33174709 DOI: 10.1111/bjh.17058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aakash C Chidambaram
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kaushik Maulik
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Jaikumar G Ramamoorthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Narayanan Parameswaran
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
34
|
Singh S, Zhao X, Zhang H. Primary Immune Deficiencies - A rapidly emerging area of basic and clinical research. Genes Dis 2020; 7:1-2. [PMID: 32181270 PMCID: PMC7063438 DOI: 10.1016/j.gendis.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.,The Editorial Office of Genes & Diseases, Periodical Press of Chongqing Medical University, Chongqing, 401331, PR China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.,The Editorial Office of Genes & Diseases, Periodical Press of Chongqing Medical University, Chongqing, 401331, PR China
| | - Huijie Zhang
- The Editorial Office of Genes & Diseases, Periodical Press of Chongqing Medical University, Chongqing, 401331, PR China
| |
Collapse
|
35
|
Thom CS, Chou ST, French DL. Mechanistic and Translational Advances Using iPSC-Derived Blood Cells. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:36-44. [PMID: 33768218 PMCID: PMC7990314 DOI: 10.33696/pathology.1.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-based model systems can be used to produce blood cells for the study of both hematologic and non-hematologic disorders. This commentary discusses recent advances that have utilized iPSC-derived red blood cells, megakaryocytes, myeloid cells, and lymphoid cells to model hematopoietic disorders. In addition, we review recent studies that have defined how microglial cells differentiated from iPSC-derived monocytes impact neurodegenerative disease. Related translational insights highlight the utility of iPSC models for studying pathologic anemia, bleeding, thrombosis, autoimmunity, immunodeficiency, blood cancers, and neurodegenerative disease such as Alzheimer's.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|