1
|
Kozhukhar N, Alexeyev MF. Efficient Elimination of mtDNA from Mammalian Cells with 2',3'-Dideoxycytidine. DNA 2024; 4:201-211. [PMID: 39035221 PMCID: PMC11259038 DOI: 10.3390/dna4030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Mammalian cell lines devoid of mitochondrial DNA (mtDNA) are indispensable in studies aimed at elucidating the contribution of mtDNA to various cellular processes or interactions between nuclear and mitochondrial genomes. However, the repertoire of tools for generating such cells (also known as rho-0 or ρ0 cells) remains limited, and approaches remain time- and labor-intensive, ultimately limiting their availability. Ethidium bromide (EtBr), which is most commonly used to induce mtDNA loss in mammalian cells, is cytostatic and mutagenic as it affects both nuclear and mitochondrial genomes. Therefore, there is growing interest in new tools for generating ρ0 cell lines. Here, we examined the utility of 2',3'-dideoxycytidine (ddC, zalcitabine) alone or in combination with EtBr for generating ρ0 cell lines of mouse and human origin as well as inducing the ρ0 state in mouse/human somatic cell hybrids. We report that ddC is superior to EtBr in both immortalized mouse fibroblasts and human 143B cells. Also, unlike EtBr, ddC exhibits no cytostatic effects at the highest concentration tested (200 μM), making it more suitable for general use. We conclude that ddC is a promising new tool for generating mammalian ρ0 cell lines.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
2
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
5
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
6
|
Kuang S, Wei F, Karges J, Ke L, Xiong K, Liao X, Gasser G, Ji L, Chao H. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J Am Chem Soc 2022; 144:4091-4101. [PMID: 35171598 DOI: 10.1021/jacs.1c13137] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the clinical success of photodynamic therapy (PDT), the application of this medical technique is intrinsically limited by the low oxygen concentrations found in cancer tumors, hampering the production of therapeutically necessary singlet oxygen (1O2). To overcome this limitation, we report on a novel mitochondria-localized iridium(III) endoperoxide prodrug (2-O-IrAn), which, upon two-photon irradiation in NIR, synergistically releases a highly cytotoxic iridium(III) complex (2-IrAn), singlet oxygen, and an alkoxy radical. 2-O-IrAn was found to be highly (photo-)toxic in hypoxic tumor cells and multicellular tumor spheroids (MCTS) in the nanomolar range. To provide cancer selectivity and improve the pharmacological properties of 2-O-IrAn, it was encapsulated into a biotin-functionalized polymer. The generated nanoparticles were found to nearly fully eradicate the tumor inside a mouse model within a single treatment. This study presents, to the best of our knowledge, the first example of an iridium(III)-based endoperoxide prodrug for synergistic photodynamic therapy/photoactivated chemotherapy, opening up new avenues for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, United States
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
7
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Zaidieh T, Smith JR, Ball KE, An Q. Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. BMC Cancer 2021; 21:427. [PMID: 33865346 PMCID: PMC8053302 DOI: 10.1186/s12885-021-08155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells’ response to ROS-stimulating therapy. Methods Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. Results Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. Conclusions Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08155-2.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK. .,Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
9
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Xie R, Lian S, Peng H, OuYang C, Li S, Lu Y, Cao X, Zhang C, Xu J, Jia L. Mitochondria and Nuclei Dual-Targeted Hollow Carbon Nanospheres for Cancer Chemophotodynamic Synergistic Therapy. Mol Pharm 2019; 16:2235-2248. [PMID: 30896172 DOI: 10.1021/acs.molpharmaceut.9b00259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dual-targeted nanoparticles are gaining increasing importance as a more effective anticancer strategy by attacking double key sites of tumor cells, especially in chemophotodynamic therapy. To retain the nuclei inhibition effect and enhance doxorubicin (DOX)-induced apoptosis by mitochondrial pathways simultaneously, we synthesized the novel nanocarrier (HKH) based on hollow carbon nitride nanosphere (HCNS) modified with hyaluronic acid (HA) and the mitochondrial localizing peptide D[KLAKLAK]2 (KLA). DOX-loaded HKH nanoparticles (HKHDs) showed satisfactory drug-loading efficiency, excellent solubility, and very low hemolytic effect. HA/CD44 binding and electrostatic attraction between positively charged KLA and A549 cells facilitated HKHD uptake via the endocytosis mechanism. Acidic microenvironment, hyaluronidase, and KLA targeting together facilitate doxorubicin toward the mitochondria and nuclei, resulting in apoptosis, DNA intercalation, cell-cycle arrest at the S phase, and light-induced reactive oxygen species production. Intravascular HKHD inhibited tumor growth in A549-implanted mice with good safety. The present study, for the first time, systemically reveals biostability, targetability, chemophotodynamics, and safety of the functionalized novel HKHD.
Collapse
Affiliation(s)
- Ruizhi Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huayi Peng
- College of Pharmacy , Fujian Medical University , Fuzhou 350116 , China
| | - Changhe OuYang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Shuhui Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Xuning Cao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Chen Zhang
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Jianhua Xu
- College of Pharmacy , Fujian Medical University , Fuzhou 350116 , China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| |
Collapse
|
11
|
Smieszek S, Jia P, Samuels DC, Zhao Z, Barnholtz-Sloan J, Kaur H, Letendre S, Ellis R, Franklin DR, Hulgan T, Kallianpur A, Bush WS. Nuclear-Mitochondrial interactions influence susceptibility to HIV-associated neurocognitive impairment. Mitochondrion 2019; 46:247-255. [PMID: 30026132 PMCID: PMC6336535 DOI: 10.1016/j.mito.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022]
Abstract
HIV-associated neurocognitive impairment (NCI) is a term established to capture a wide spectrum of HIV related neurocognitive deficits ranging in severity from asymptomatic to dementia. The genetic underpinnings of this complex phenotype are incompletely understood. Mitochondrial function has long been thought to play a role in neurodegeneration, along with iron metabolism and transport. In this work, we aimed to characterize the interplay of mitochondrial DNA (mtDNA) haplogroup and nuclear genetic associations to NCI phenotypes in the CHARTER cohort, encompassing 1025 individuals of European-descent, African-descent, or admixed Hispanic. We first employed a polygenic modeling approach to investigate the global effect of previous marginally associated nuclear SNPs, and to examine how the polygenic effect of these SNPs is influenced by mtDNA haplogroups. We see evidence of a significant interaction between nuclear SNPs en masse and mtDNA haplogroups within European-descent and African-descent individuals. Subsequently, we performed an analysis of each SNP by mtDNA haplogroup, and detected significant interactions between two nuclear SNPs (rs17160128 and rs12460243) and European haplogroups. These findings, which require validation in larger cohorts, indicate a potential new role for nuclear-mitochondrial DNA interactions in susceptibility to NCI and shed light onto the pathophysiology of this neurocognitive phenotype.
Collapse
Affiliation(s)
- S Smieszek
- Department of Population and Quantitative Health Sciences, and Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States.
| | - P Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - D C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Z Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - J Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, and Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
| | - H Kaur
- Department of Genomic Medicine, Lerner Research Institute and Department of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - S Letendre
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - R Ellis
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - D R Franklin
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - T Hulgan
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - A Kallianpur
- Department of Genomic Medicine, Lerner Research Institute and Department of Medicine, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - W S Bush
- Department of Population and Quantitative Health Sciences, and Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States; Department of Genomic Medicine, Lerner Research Institute and Department of Medicine, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
12
|
Triska P, Kaneva K, Merkurjev D, Sohail N, Falk MJ, Triche TJ, Biegel JA, Gai X. Landscape of Germline and Somatic Mitochondrial DNA Mutations in Pediatric Malignancies. Cancer Res 2019; 79:1318-1330. [PMID: 30709931 PMCID: PMC6445760 DOI: 10.1158/0008-5472.can-18-2220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/15/2018] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Little is known about the spectrum of mitochondrial DNA (mtDNA) mutations across pediatric malignancies. In this study, we analyzed matched tumor and normal whole genome sequencing data from 616 pediatric patients with hematopoietic malignancies, solid tumors, and brain tumors. We identified 391 mtDNA mutations in 284 tumors including 45 loss-of-function mutations, which clustered at four statistically significant hotspots in MT-COX3, MT-ND4, and MT-ND5, and at a mutation hotspot in MT-tRNA-MET. A skewed ratio (4.83) of nonsynonymous versus synonymous (dN/dS) mtDNA mutations with high statistical significance was identified on the basis of Monte Carlo simulations in the tumors. In comparison, opposite ratios of 0.44 and 0.93 were observed in 616 matched normal tissues and in 249 blood samples from children without cancer, respectively. mtDNA mutations varied by cancer type and mtDNA haplogroup. Collectively, these results suggest that deleterious mtDNA mutations play a role in the development and progression of pediatric cancers. SIGNIFICANCE: This pan-cancer mtDNA study establishes the landscape of germline and tumor mtDNA mutations and identifies hotspots of tumor mtDNA mutations to pinpoint key mitochondrial functions in pediatric malignancies.
Collapse
Affiliation(s)
- Petr Triska
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kristiyana Kaneva
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
- Division of Hematology, Oncology, and Blood and Marrow Transplant Program, Children's Center for Cancer and Blood Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Noor Sohail
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Marni J Falk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy J Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Weerts MJA, Sleijfer S, Martens JWM. The role of mitochondrial DNA in breast tumors. Drug Discov Today 2019; 24:1202-1208. [PMID: 30910739 DOI: 10.1016/j.drudis.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
Somatic variation in mitochondrial DNA (mtDNA) has been described in primary breast tumors, including single-nucleotide variants and variation in the number of mtDNA molecules per cell (mtDNA content). However, there is currently a gap in the knowledge on the link between mitochondrial variation in breast cancer cells and their phenotypic behavior (i.e., tumorigenesis) or outcome. This review focuses on recent findings on mtDNA content and mtDNA somatic mutations in breast cancer and the potential biological impact and clinical relevance.
Collapse
Affiliation(s)
- Marjolein J A Weerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Stefan Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Mou JJ, Peng J, Shi YY, Li N, Wang Y, Ke Y, Zhou YF, Zhou FX. Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Biomed Pharmacother 2018; 103:729-737. [PMID: 29684851 DOI: 10.1016/j.biopha.2018.04.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/15/2023] Open
Abstract
Mutations and reductions in mitochondrial DNA (mtDNA), which are frequent in human tumors, may contribute to enhancing their malignant phenotypes. However, the effects of mtDNA abnormalities in colorectal cancer remain largely unknown. In this study, mtDNA-reduced cell model was established by partial depletion of mtDNA in SW480 cells and the effects of mtDNA reduction in colorectal cancer cells were investigated. We found that mtDNA-reduced cells had enhanced glucose uptake and generated markedly higher level of lactate. These changes were accompanied by only a slight reduction in ATP production compared with the parent cells. Furthermore, the activity of the glycolytic enzymes, hexokinase (HK) and phosphofructokinase (PFK), was increased in mtDNA-reduced cells. These results suggested a switch to aerobic glycolysis in mtDNA-reduced cells, which helped the cells to gain a survival advantage. Notably, when mtDNA content was restored, metabolism returned to normal. In addition, the mtDNA-reduced cells were highly resistant to 5-fluorouracil- and oxaliplatin-induced apoptosis and this drug resistance was reversible following recovery of the mtDNA content. We also found that the Akt/mTOR pathway was activated in the mtDNA-reduced cells. This pathway might play a significant role in drug resistance in the mtDNA-reduced cells as drug susceptibility was restored when this pathway was inhibited. Taken together, our results supported the notion that mtDNA reduction induced aerobic glycolysis and a reversible apoptosis-resistant phenotype in SW480 cells, and that the Akt/mTOR pathway might be involved in the drugs-induced apoptosis resistance.
Collapse
Affiliation(s)
- Jing-Jing Mou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Ying-Ying Shi
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Na Li
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - You Wang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Yuan Ke
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Yun-Feng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
15
|
Mitochondrial DNA content in breast cancer: Impact on in vitro and in vivo phenotype and patient prognosis. Oncotarget 2018; 7:29166-76. [PMID: 27081694 PMCID: PMC5045386 DOI: 10.18632/oncotarget.8688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
Reduced mitochondrial DNA (mtDNA) content in breast cancer cell lines has been associated with transition towards a mesenchymal phenotype, but its clinical consequences concerning breast cancer dissemination remain unidentified. Here, we aimed to clarify the link between mtDNA content and a mesenchymal phenotype and its relation to prognosis of breast cancer patients. We analyzed mtDNA content in 42 breast cancer cell lines and 207 primary breast tumor specimens using a combination of quantitative PCR and array-based copy number analysis. By associating mtDNA content with expression levels of genes involved in epithelial-to-mesenchymal transition (EMT) and with the intrinsic breast cancer subtypes, we could not identify a relation between low mtDNA content and mesenchymal properties in the breast cancer cell lines or in the primary breast tumors. In addition, we explored the relation between mtDNA content and prognosis in our cohort of primary breast tumor specimens that originated from patients with lymph node-negative disease who did not receive any (neo)adjuvant systemic therapy. When patients were divided based on the tumor quartile levels of mtDNA content, those in the lowest quarter (≤ 350 mtDNA molecules per cell) showed a poorer 10-year distant metastasis-free survival than patients with > 350 mtDNA molecules per cell (HR 0.50 [95% CI 0.29-0.87], P = 0.015). The poor prognosis was independent of established clinicopathological markers (HR 0.54 [95% CI 0.30-0.97], P = 0.038). We conclude that, despite a lack of evidence between mtDNA content and EMT, low mtDNA content might provide meaningful prognostic value for distant metastasis in breast cancer.
Collapse
|
16
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
18
|
Kalen AL, Ahmad IM, Abdalla MY, O'Malley YQ, Goswami PC, Sarsour EH. MnSOD and Cyclin B1 Coordinate a Mito-Checkpoint during Cell Cycle Response to Oxidative Stress. Antioxidants (Basel) 2017; 6:E92. [PMID: 29149089 PMCID: PMC5745502 DOI: 10.3390/antiox6040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022] Open
Abstract
Communication between the nucleus and mitochondrion could coordinate many cellular processes. While the mechanisms regulating this communication are not completely understood, we hypothesize that cell cycle checkpoint proteins coordinate the cross-talk between nuclear and mitochondrial functions following oxidative stress. Human normal skin fibroblasts, representative of the G₂-phase, were irradiated with 6 Gy of ionizing radiation and assayed for cyclin B1 translocation, mitochondrial function, reactive oxygen species (ROS) levels, and cytotoxicity. In un-irradiated controls, cyclin B1 was found primarily in the nucleus of G₂-cells. However, following irradiation, cyclin B1 was excluded from the nucleus and translocated to the cytoplasm and mitochondria. These observations were confirmed further by performing transmission electron microscopy and cell fractionation assays. Cyclin B1 was absent in mitochondria isolated from un-irradiated G₂-cells and present in irradiated G₂-cells. Radiation-induced translocation of cyclin B1 from the nucleus to the mitochondrion preceded changes in the activities of mitochondrial proteins, that included decreases in the activities of aconitase and the mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), and increases in complex II activity. Changes in the activities of mito-proteins were followed by an increase in dihydroethidium (DHE) oxidation (indicative of increased superoxide levels) and loss of the mitochondrial membrane potential, events that preceded the restart of the stalled cell cycle and subsequently the loss in cell viability. Comparable results were also observed in un-irradiated control cells overexpressing mitochondria-targeted cyclin B1. These results indicate that MnSOD and cyclin B1 coordinate a cross-talk between nuclear and mitochondrial functions, to regulate a mito-checkpoint during the cell cycle response to oxidative stress.
Collapse
Affiliation(s)
- Amanda L Kalen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Iman M Ahmad
- Department of Medical Imaging and Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yunxia Q O'Malley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem 2017; 292:20694-20706. [PMID: 29066618 DOI: 10.1074/jbc.m117.797001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The normal cellular function requires communication between mitochondria and the nucleus, termed mitochondria-to-nucleus retrograde signaling. Disruption of this mechanism has been implicated in the development of cancers. Many proteins are known modulators of retrograde signaling, but whether microRNAs (miRNAs) are also involved is unknown. We conducted an miRNA microarray analysis using RNA from a parental cell line, a Rho0 line lacking mitochondrial DNA (mtDNA) and a Rho0 line with restored mtDNA. We found that miR-663 was down-regulated in the mtDNA-depleted Rho0 line. mtDNA restoration reversed this miRNA to parental level, suggesting that miR-663 may be epigenetically regulated by retrograde signaling. By using methylation-specific PCR and bisulfite sequencing we demonstrate that miR-663 promoter is epigenetically regulated not only by genetic but also by pharmacological disruption of oxidative phosphorylation (OXPHOS). Restoration of OXPHOS Complex I inhibitor-induced miR-663 expression by N-acetylcysteine suggested that reactive oxygen species (ROS) play a key role in epigenetic regulation of miR-663. We determined that miR-663 regulates the expression of nuclear-encoded respiratory chain subunits involved in Complexes I, II, III, and IV. miR-663 also controlled the expression of the Complexes I (NDUFAF1), II (SDHAF2), III (UQCC2), and IV (SCO1) assembly factors and was required for stability of respiratory supercomplexes. Furthermore, using luciferase assays, we found that miR-663 directly regulates UQCC2. The anti-miR-663 reduced OXPHOS complex activity and increased in vitro cellular proliferation and promoted tumor development in vivo in mice. We also found that increased miR-663 expression in breast tumors consistently correlates with increased patient survival. We provide the first evidence for miRNA controlling retrograde signaling, demonstrating its epigenetic regulation and its role in breast tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Keshav K Singh
- From the Departments of Genetics, .,Pathology, and.,Environmental Health Sciences.,Center for Free Radical Biology.,Center for Aging, and.,UAB Comprehensive Cancer Center, University of Alabama at Birmingham and.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
20
|
Strickertsson JAB, Desler C, Rasmussen LJ. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol 2017; 47:95-100. [PMID: 28754330 DOI: 10.1016/j.semcancer.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023]
Abstract
As up to a fifth of all cancers worldwide, have now been linked to microbial infections, it is essential to understand the carcinogenic nature of the bacterial/host interaction. This paper reviews the bacterial targeting of mediators of mitochondrial genomic fidelity and of mitochondrial apoptotic pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis.
Collapse
Affiliation(s)
| | - Claus Desler
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
21
|
Errichiello E, Venesio T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers? J Cancer Res Clin Oncol 2017; 143:1905-1914. [PMID: 28393270 DOI: 10.1007/s00432-017-2418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype. FINDINGS Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy). CONCLUSIONS In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy.
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy.
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy
| |
Collapse
|
22
|
Srinivasainagendra V, Sandel MW, Singh B, Sundaresan A, Mooga VP, Bajpai P, Tiwari HK, Singh KK. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med 2017; 9:31. [PMID: 28356157 PMCID: PMC5370490 DOI: 10.1186/s13073-017-0420-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Methods Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Results Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Conclusions Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0420-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinodh Srinivasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Michael W Sandel
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Present address: Department of Biological and Environmental Sciences, School of Natural Sciences and Mathematics, University of West Alabama, Livingston, Alabama, USA
| | - Bhupendra Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Aishwarya Sundaresan
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Ved P Mooga
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Prachi Bajpai
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| | - Keshav K Singh
- Departments of Genetics, Environmental Health, Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA. .,Departments of Pathology, Environmental Health, Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA. .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, 35294, USA. .,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Kaul Genetics Building, Suite 620, 720 20th St. South, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
24
|
Song Z, Laleve A, Vallières C, McGeehan JE, Lloyd RE, Meunier B. Human Mitochondrial Cytochrome b Variants Studied in Yeast: Not All Are Silent Polymorphisms. Hum Mutat 2016; 37:933-41. [PMID: 27291790 PMCID: PMC5094555 DOI: 10.1002/humu.23024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/12/2022]
Abstract
Variations in mitochondrial DNA (mtDNA) cytochrome b (mt‐cyb) are frequently found within the healthy population, but also occur within a spectrum of mitochondrial and common diseases. mt‐cyb encodes the core subunit (MT‐CYB) of complex III, a central component of the oxidative phosphorylation system that drives cellular energy production and homeostasis. Despite significant efforts, most mt‐cyb variations identified are not matched with corresponding biochemical data, so their functional and pathogenic consequences in humans remain elusive. While human mtDNA is recalcitrant to genetic manipulation, it is possible to introduce human‐associated point mutations into yeast mtDNA. Using this system, we reveal direct links between human mt‐cyb variations in key catalytic domains of MT‐CYB and significant changes to complex III activity or drug sensitivity. Strikingly, m.15257G>A (p.Asp171Asn) increased the sensitivity of yeast to the antimalarial drug atovaquone, and m.14798T>C (p.Phe18Leu) enhanced the sensitivity of yeast to the antidepressant drug clomipramine. We demonstrate that while a small number of mt‐cyb variations had no functional effect, others have the capacity to alter complex III properties, suggesting they could play a wider role in human health and disease than previously thought. This compendium of new mt‐cyb‐biochemical relationships in yeast provides a resource for future investigations in humans.
Collapse
Affiliation(s)
- Zehua Song
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Anaïs Laleve
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Cindy Vallières
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - John E McGeehan
- Molecular Biophysics Laboratories, Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Rhiannon E Lloyd
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Science, School of Pharmacy and Biomedicine, University of Portsmouth, Portsmouth, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| |
Collapse
|
25
|
Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget 2016; 6:13628-43. [PMID: 25909222 PMCID: PMC4537038 DOI: 10.18632/oncotarget.3698] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
To understand how mitochondria are involved in malignant transformation we have generated a collection of transmitochondrial cybrid cell lines on the same nuclear background (143B) but with mutant mitochondrial DNA (mtDNA) variants with different degrees of pathogenicity. These include the severe mutation in the tRNALys gene, m.8363G>A, and the three milder yet prevalent Leber's hereditary optic neuropathy (LHON) mutations in the MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) and MT-ND6 (m.14484T>C) mitochondrial genes. We found that 143B ρ0 cells devoid of mtDNA and cybrids harboring wild type mtDNA or that causing severe mitochondrial dysfunction do not produce tumors when injected in nude mice. By contrast cybrids containing mild mutant mtDNAs exhibit different tumorigenic capacities, depending on OXPHOS dysfunction. The differences in tumorigenicity correlate with an enhanced resistance to apoptosis and high levels of NOX expression. However, the final capacity of the different cybrid cell lines to generate tumors is most likely a consequence of a complex array of pro-oncogenic and anti-oncogenic factors associated with mitochondrial dysfunction. Our results demonstrate the essential role of mtDNA in tumorigenesis and explain the numerous and varied mtDNA mutations found in human tumors, most of which give rise to mild mitochondrial dysfunction.
Collapse
|
26
|
Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015; 42:841-51. [PMID: 25689954 DOI: 10.1007/s11033-015-3858-x] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.
Collapse
Affiliation(s)
- Rupert Courtnay
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Singh B, Owens KM, Bajpai P, Desouki MM, Srinivasasainagendra V, Tiwari HK, Singh KK. Mitochondrial DNA Polymerase POLG1 Disease Mutations and Germline Variants Promote Tumorigenic Properties. PLoS One 2015; 10:e0139846. [PMID: 26468652 PMCID: PMC4607296 DOI: 10.1371/journal.pone.0139846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 02/04/2023] Open
Abstract
Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2'-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic properties.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kjerstin M. Owens
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Prachi Bajpai
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mohamed Mokhtar Desouki
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States of America
| | - Vinodh Srinivasasainagendra
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hemant K. Tiwari
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Keshav K. Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Environmental Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Aging, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease.
Collapse
|
29
|
Madamba SM, Damri KN, Dejean LM, Peixoto PM. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol 2015; 5:120. [PMID: 26090338 PMCID: PMC4455240 DOI: 10.3389/fonc.2015.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process.
Collapse
Affiliation(s)
- Stephen M. Madamba
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
| | - Kevin N. Damri
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Laurent M. Dejean
- Department of Chemistry, College of Science and Mathematics, California State University Fresno, Fresno, CA, USA
| | - Pablo M. Peixoto
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
- Department of Basic Sciences, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
30
|
Wojewoda M, Walczak J, Duszyński J, Szczepanowska J. Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction. Biochem Pharmacol 2015; 95:170-6. [DOI: 10.1016/j.bcp.2015.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
|
31
|
Mallick A, More P, Ghosh S, Chippalkatti R, Chopade BA, Lahiri M, Basu S. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7584-98. [PMID: 25811662 DOI: 10.1021/am5090226] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus. Hence, simultaneous targeting of mitochondria and nucleus could lead to more effective anticancer strategy. To achieve this goal, we have developed sub 200 nm particles from dual drug conjugates derived from direct tethering of mitochondria damaging drug (α- tocopheryl succinate) and nucleus damaging drugs (cisplatin, doxorubicin and paclitaxel). These dual drug conjugated nanoparticles were internalized into the acidic lysosomal compartments of the HeLa cervical cancer cells through endocytosis and induced apoptosis through cell cycle arrest. These nanoparticles damaged mitochondrial morphology and triggered the release of cytochrome c. Furthermore, these nanoparticles target nucleus to induce DNA damage, fragment the nuclear morphology and damage the cytoskeletal protein tubulin. Therefore, these dual drug conjugated nanoparticles can be successfully used as a platform technology for simultaneous targeting of multiple subcellular organelles in cancer cells to improve the therapeutic efficacy of the free drugs.
Collapse
Affiliation(s)
- Abhik Mallick
- †Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, 411021, Maharashtra India
| | - Piyush More
- †Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, 411021, Maharashtra India
- §Institute of Bioinformatics and Biotechnology (IBB), University of Pune, Pune, 411007, Maharashtra India
| | - Sougata Ghosh
- §Institute of Bioinformatics and Biotechnology (IBB), University of Pune, Pune, 411007, Maharashtra India
| | - Rohan Chippalkatti
- §Institute of Bioinformatics and Biotechnology (IBB), University of Pune, Pune, 411007, Maharashtra India
- ΦDepartment of Biology, Indian Institute of Science Education and Research (IISER)-Pune, Pune, 411021, Maharashtra India
| | - Balu A Chopade
- ⊥Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra India
| | - Mayurika Lahiri
- ΦDepartment of Biology, Indian Institute of Science Education and Research (IISER)-Pune, Pune, 411021, Maharashtra India
| | - Sudipta Basu
- †Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Pune, 411021, Maharashtra India
| |
Collapse
|
32
|
Klement RJ. Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer Biol Med 2014; 11:145-61. [PMID: 25364576 PMCID: PMC4197426 DOI: 10.7497/j.issn.2095-3941.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/13/2014] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers (HNCs) are aggressive tumors that typically demonstrate a high glycolytic rate, which results in resistance to cytotoxic therapy and poor prognosis. Due to their location these tumors specifically impair food intake and quality of life, so that prevention of weight loss through nutrition support becomes an important treatment goal. Dietary restriction of carbohydrates (CHOs) and their replacement with fat, mostly in form of a ketogenic diet (KD), have been suggested to accommodate for both the altered tumor cell metabolism and cancer-associated weight loss. In this review, I present three specific rationales for CHO restriction and nutritional ketosis as supportive treatment options for the HNC patient. These are (1) targeting the origin and specific aspects of tumor glycolysis; (2) protecting normal tissue from but sensitizing tumor tissue to radiation- and chemotherapy induced cell kill; (3) supporting body and muscle mass maintenance. While most of these benefits of CHO restriction apply to cancer in general, specific aspects of implementation are discussed in relation to HNC patients. While CHO restriction seems feasible in HNC patients the available evidence indicates that its role may extend beyond fighting malnutrition to fighting HNC itself.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt 97421, Germany
| |
Collapse
|
33
|
Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 2014; 92:62-72. [DOI: 10.1016/j.bcp.2014.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
|
34
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
35
|
Ma J, Zheng J, Li Y, Zhang S, Bai D, Zou H, Han C. CXCL12 induces lung cancer cell migration by polarized mtDNA redistribution. Hum Cell 2014; 27:22-8. [PMID: 24022841 DOI: 10.1007/s13577-013-0077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Instability of mitochondrial DNA (mtDNA) has been associated with the initiation and development of cancer, but the specific role of mtDNA in the invasiveness and migration of cancer cells remains unclear. In this study, we investigated whether the chemokine CXCL12 causes intact mitochondria to redistribute in cancer cells and, in this way, to increase cell invasiveness and migration. A549 lung cancer cells with intact mtDNA (mtDNA+) and ρ(0)A549 cells depleted of mtDNA (mtDNA-) by long-term ethidium bromide incubation were examined for their responses to CXCL12 in a transwell migration assay and for mitochondrial distribution by fluorescence microscopy. Intact A549 cells showed significantly increased migration and increased polar distribution of mitochondria (asymmetry)in response to CXCL12. However, ρ(0)A549 cells showed no changes in mitochondrial distribution in response to CXCL12, and only a few ρ(0)A549 cells migrated across the transwell membrane after CXCL12 treatment. These results demonstrate that, in A549 lung cancer cells, intact mitochondrial DNA is necessary for mitochondrial redistribution and a chemotactic response to CXCL12.
Collapse
|
36
|
Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int J Radiat Biol 2014; 91:1-12. [DOI: 10.3109/09553002.2014.934929] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Pacini N, Borziani F. Cancer stem cell theory and the warburg effect, two sides of the same coin? Int J Mol Sci 2014; 15:8893-930. [PMID: 24857919 PMCID: PMC4057766 DOI: 10.3390/ijms15058893] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
38
|
Mitochondrial D-loop and cytochrome oxidase C subunit I polymorphisms among the breast cancer patients of Mizoram, Northeast India. Curr Genet 2014; 60:201-12. [PMID: 24719079 DOI: 10.1007/s00294-014-0425-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations as it is prone to oxidative stress. The aim of the present study is to assess the novel mutations in mitochondrial genes from blood samples among the breast cancer patients from a less studied Northeast Indian population. D, B, L haplogroups were observed in the cancer samples and a total of 44 mtDNA D-loop sequence variations at 42 distinct nucleotide positions were found. All the sequence variations were transitional substitutions and 6 were heteroplasmic states, except for a cytosine copy number change (9C/8C) at np 303e309 in three samples examined. A total of 88 Cytochrome Oxidase C subunit I (COXI) sequence differences with respect to the Revised Cambridge Reference Sequence (rCRS) were identified including 20 missense variants with 100 % sample mutation frequency. All 20 missense mutations are highly conserved with a Cumulate Index of 100 %. Among 88 COXI mutations, 24 (13 were Non-Synonymous and 11 were Synonymous) were not previously reported (novel mutation) in the literature or the public mtDNA mutation databases. Analysis of three-dimensional structure of COXI open reading frame (ORF) predicted the effect of one single codon (96R > C, 217T > I, 224-225GG > EE and 227D > T) mutations located in the signal peptide binding position. Analysis of mitochondrial DNA mutations, as a viable alternative, has the advantage of being capable of detecting inherent risk factors for breast cancer development.
Collapse
|
39
|
Yan H, Zhao Y, Jiang L. The putative transcription factor CaRtg3 is involved in tolerance to cations and antifungal drugs as well as serum-induced filamentation in Candida albicans. FEMS Yeast Res 2014; 14:614-23. [PMID: 24606409 DOI: 10.1111/1567-1364.12148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/23/2014] [Indexed: 11/28/2022] Open
Abstract
The activated retrograde (RTG) pathway controls transcription of target genes through a heterodimer of transcription factors, Rtg1 and Rtg3, in Saccharomyces cerevisiae. Here, we have identified the sole homologous gene CaRTG3 that encodes a protein of 520 amino acids with characteristics of the basic helix-loop-helix/leucine zipper (bHLH/Zip) family in Candida albicans. Deletion of CaRTG3 results in C. albicans cells being sensitive to high concentrations of calcium and lithium cations as well as sodium dodecyl sulfate and activates the calcium/calcineurin signaling pathway in C. albicans cells. CaRTG3 is also involved in the tolerance of C. albicans cells to the antifungal drugs azoles and terbinafine, but not to the antifungal drugs casponfungin and amphotericin B as well as the cell-wall-damaging reagents Calcoflour White and Congo red. In contrast to ScRtg3, CaRtg3 is not involved in the osmolar response and is constitutively localized in the nucleus. However, deletion of CaRTG3 results in a delay in serum-induced filamentation of C. albicans cells. Therefore, CaRtg3 plays a role in tolerance to cations and antifungal drugs as well as serum-induced filamentation in C. albicans.
Collapse
Affiliation(s)
- Hongbo Yan
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
40
|
Xun J, Li Z, Feng J, Gao S, Yang H, Song X. Single nucleotide polymorphisms in the mitochondrial displacement loop region and outcome of malignant fibrous histiocytoma. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:177-81. [PMID: 24491095 DOI: 10.3109/19401736.2013.879650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Single nucleotide polymorphisms (SNPs) in the mitochondrial DNA displacement-loop (D-loop) region have been reported to be associated with cancer risk and disease outcome in several types of cancer. In this study, we investigated whether the SNPs in mitochondrial D-loop were associated with the outcome of malignant fibrous histiocytoma (MFH). EXPERIMENTAL DESIGN The D-loop region of mtDNA was sequenced for 80 MFH patients. The 3 years survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. RESULTS The SNP sites of nucleotides 152T/C, 16,390G/A, 16,290C/T, 16,304T/C and the AC deletion at sites 523 and 524 were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16,290 and 16,390 alleles were identified as independent predictors of MFH outcome. The length of survival for patients with the rare allele 16,390A genotype was significantly shorter than that for patients with the frequent allele 16,390Gat the site 16,390. The same was seen for the rare allele 16,290T genotype when compared with matched allele 16,290C at the site 16,290 in MFH patients. CONCLUSIONS These results suggested that SNPs in the D-loop are independent prognostic markers for patients with MFH. The analysis of genetic polymorphisms in the D-loop can help identify patient subgroups at higher risk of a poor disease outcome.
Collapse
Affiliation(s)
| | | | | | - Shejun Gao
- b Department of Clinical Laboratory , and
| | - Huichai Yang
- c Department of Pathology , The Fourth Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | | |
Collapse
|
41
|
Arbini AA, Guerra F, Greco M, Marra E, Gandee L, Xiao G, Lotan Y, Gasparre G, Hsieh JT, Moro L. Mitochondrial DNA depletion sensitizes cancer cells to PARP inhibitors by translational and post-translational repression of BRCA2. Oncogenesis 2013; 2:e82. [PMID: 24336406 PMCID: PMC3940862 DOI: 10.1038/oncsis.2013.45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that pharmacologic inhibition of poly (ADP-ribose) polymerase (PARP), a nuclear protein that is crucial in signaling single-strand DNA breaks, is synthetically lethal to cancer cells from patients with genetic deficiency in the DNA repair proteins BRCA1 and BRCA2. Herein, we demonstrate that depletion of the mitochondrial genome (mtDNA) in breast, prostate and thyroid transformed cells resulted in elevated steady-state cytosolic calcium concentration and activation of calcineurin/PI3-kinase/AKT signaling leading to upregulation of miR-1245 and the ubiquitin ligase Skp2, two potent negative regulators of the tumor suppressor protein BRCA2, thus resulting in BRCA2 protein depletion, severe reduction in homologous recombination (HR) and increased sensitivity to the PARP inhibitor rucaparib. Treatment of mtDNA-depleted cells with the PI3-kinase inhibitor LY294002, the calmodulin antagonist W-7, the calcineurin inhibitor FK506, the calcium chelator BAPTA-AM, or suppression of AKT activity by AKT small-interfering RNA (siRNA) enhanced BRCA2 protein levels as well as HR. Decreasing the intracellular calcium levels using BAPTA, or direct reconstitution of BRCA2 protein levels either by recombinant expression or by small molecule inhibition of both Skp2 and miR-1245 restored sensitivity to rucaparib to wild-type levels. Furthermore, by studying prostate tissue specimens from prostate carcinoma patients we found a direct correlation between the presence of mtDNA large deletions and loss of BRCA2 protein in vivo, suggesting that mtDNA status may serve as a marker to predict therapeutic efficacy to PARP inhibitors. In summary, our results uncover a novel mechanism by which mtDNA depletion restrains HR, and highlight the role of mtDNA in regulating sensitivity to PARP inhibitors in transformed cells.
Collapse
Affiliation(s)
- A A Arbini
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - F Guerra
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Greco
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - E Marra
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - L Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - J-T Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Moro
- 1] Department of Pathology, New York University Medical Center, New York, NY, USA [2] Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy [3] Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2013; 35:515-27. [PMID: 24343361 PMCID: PMC3941741 DOI: 10.1093/carcin/bgt480] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual’s unique physiology.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA and
| | | | | | | |
Collapse
|
43
|
Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:336-44. [PMID: 24140413 DOI: 10.1016/j.bbcan.2013.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 12/15/2022]
Abstract
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.
Collapse
|
44
|
Xun J, Li Z, Song X, Wang X. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as risk biomarkers for malignant fibrous histiocytoma. ACTA ACUST UNITED AC 2013; 26:380-3. [PMID: 24083973 DOI: 10.3109/19401736.2013.836510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the mitochondrial DNA Displacement-loop (D-loop) region particularly in a highly polymorphic homopolymeric C stretch named D310 have been reported to be associated with cancer risk in several types of cancer. In order to evaluate the frequency of D-loop SNPs in a large series of malignant fibrous histiocytoma (MFH) and establish correlations with cancer risk, we sequenced the D-loop of 92 MFH patients and analyzed their use as predictive biomarkers for MFH risk. The minor alleles of nucleotides 73G, 151T were associated with an increased risk for MFH patients, whereas the alleles of nucleotides 16,298C, 152C, and insertion of C at the site 315 (located within the D310) were associated with a decreased risk for MFH patients. These results suggest that SNPs in the mitochondrial D-loop should be considered as a biomarker which may be useful for the early detection of MFH in individuals at risk of this cancer.
Collapse
Affiliation(s)
- Jianjun Xun
- Department of Osteology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | | | | | | |
Collapse
|
45
|
Machado AMD, Desler C, Bøggild S, Strickertsson JAB, Friis-Hansen L, Figueiredo C, Seruca R, Rasmussen LJ. Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev 2013; 134:460-6. [PMID: 24012633 DOI: 10.1016/j.mad.2013.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/19/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is an important factor for the development of atrophic gastritis and gastric carcinogenesis. However, the mechanisms explaining the effects of H. pylori infection are not fully elucidated. H. pylori infection is known to induce genetic instability in both nuclear and mitochondrial DNA of gastric epithelial cells. The mutagenic effect of H. pylori infection on nuclear DNA is known to be a consequence, in part, of a down-regulation of expression and activity of major DNA repair pathways. In this study, we demonstrate that H. pylori infection of gastric adenocarcinoma cells causes mtDNA mutations and a decrease of mtDNA content. Consequently, we show a decrease of respiration coupled ATP turnover and respiratory capacity and accordingly a lower level and activity of complex I of the electron transport chain. We wanted to investigate if the increased mutational load in the mitochondrial genome was caused by down-regulation of mitochondrial DNA repair pathways. We lowered the expression of APE-1 and YB-1, which are believed to be involved in mitochondrial base excision repair and mismatch repair. Our results suggest that both APE-1 and YB-1 are involved in mtDNA repair during H. pylori infection, furthermore, the results demonstrate that multiple DNA repair activities are involved in protecting mtDNA during infection.
Collapse
Affiliation(s)
- Ana Manuel Dantas Machado
- Department of Science, Systems and Models, University of Roskilde, Denmark; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Silkjaer T, Nørgaard JM, Aggerholm A, Ebbesen LH, Kjeldsen E, Hokland P, Nyvold CG. Characterization and prognostic significance of mitochondrial DNA variations in acute myeloid leukemia. Eur J Haematol 2013; 90:385-96. [DOI: 10.1111/ejh.12090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Trine Silkjaer
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Anni Aggerholm
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Eigil Kjeldsen
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | - Peter Hokland
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | |
Collapse
|
47
|
Abstract
Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.
Collapse
Affiliation(s)
- Alfonso F Davila
- SETI Institute. 189 N. Bernardo Avenue, Suite 100 Mountain View, CA 94043, USA.
| | | |
Collapse
|
48
|
Dai N, Cao XJ, Li MX, Qing Y, Liao L, Lu XF, Zhang SH, Li Z, Yang YX, Wang D. Serum APE1 autoantibodies: a novel potential tumor marker and predictor of chemotherapeutic efficacy in non-small cell lung cancer. PLoS One 2013; 8:e58001. [PMID: 23472128 PMCID: PMC3589448 DOI: 10.1371/journal.pone.0058001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 12/31/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), which has the dual functions of both DNA repair and redox activity, has been reported to be highly expressed in non-small cell lung cancer (NSCLC), and this appears to be a characteristic related to chemotherapy resistance. In this study, we identified serum APE1 autoantibodies (APE1-AAbs) in NSCLC patients and healthy controls by immunoblotting and investigated the expression of APE1-AAbs by indirect ELISA from the serum of 292 NSCLC patients and 300 healthy controls. In addition, serum APE1-AAbs level alterations of 91 patients were monitored before and after chemotherapy. Our results showed that serum APE1-AAbs can be detected in both NSCLC patients and healthy controls. Serum APE1-AAbs were significantly higher than those of healthy controls and closely related to APE1 antigen levels both in tumor tissues and the peripheral blood. Moreover, the change in levels of serum APE1-AAbs in NSCLC is closely associated with the response to chemotherapy. These results suggest that APE1-AAbs is a potential tumor marker and predictor of therapeutic efficacy in NSCLC.
Collapse
Affiliation(s)
- Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xiao-Jing Cao
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Meng-Xia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Ling Liao
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xian-Feng Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Shi-Heng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yu-Xin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
49
|
Du Toit J, van der Westhuizen FH, Pretorius PJ. Investigating the effects of the presence of foreign DNA on DNA methylation and DNA repair events in cultured eukaryotic cells. Gene 2012; 512:117-22. [PMID: 23063738 DOI: 10.1016/j.gene.2012.09.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/17/2012] [Accepted: 09/29/2012] [Indexed: 11/15/2022]
Abstract
Methylation of DNA in eukaryotic cells, global as well as gene-specific, is affected by endogenous and endogenous factors. In this paper, it is reported that deviations in DNA methylation and expression of genes involved in DNA repair and the cell cycle are affected in 143B cultured cells containing an expression vector. Global DNA methylation analysis with cytosine-extension assay revealed a decreased global DNA methylation in the presence of the expression vector. Less promoter-specific methylation, as measured by bisulfite-MS PCR, was observed for MGMT and p16INK4a in vector-containing cells. Comet assay investigations revealed a negative effect on the DNA repair capacity of both BER and NER in Complex III compromised cells. This was reflected in the down-regulation of hOGG1 and ERCC1 expression. The results presented in this paper support the existence of a strong relationship between impaired mitochondrial function and deviations in DNA methylation and extend this relationship to impaired DNA repair.
Collapse
Affiliation(s)
- J Du Toit
- Centre of Human Metabonomics, North-West University, Potchefstroom 2520, South Africa.
| | | | | |
Collapse
|
50
|
Barthéléry M, Jaishankar A, Salli U, Freeman WM, Vrana KE. 2-D DIGE identification of differentially expressed heterogeneous nuclear ribonucleoproteins and transcription factors during neural differentiation of human embryonic stem cells. Proteomics Clin Appl 2012; 3:505-14. [PMID: 21136975 DOI: 10.1002/prca.200800109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural stem cells (NSC) are progenitors that can give rise to all neural lineages. They are found in specific niches of fetal and adult brains and grow in vitro as non-adherent colonies, the neurospheres. These cells express the intermediate filament nestin, commonly considered an NSC marker. NSC can be derived as neurospheres from human embryonic stem cells (hESC). The mechanisms of cellular programming that hESC undergo during differentiation remain obscure. To investigate the commitment process of hESC during directed neural differentiation, we compared the nuclear proteomes of hESC and hESC-derived neurospheres. We used 2-D DIGE to conduct a quantitative comparison of hESC and NSC nuclear proteins and detected 1521 protein spots matched across three gels. Statistical analysis (ANOVA n = 3 with false discovery correction) revealed that only 2.1% of the densitometric signal was significantly changed. The ranges of average ratios varied from 1.2- to 11-fold at a statistically significant p-value <0.05. MS/MS identified 15 regulated proteins previously shown to be involved in chromatin remodeling, mRNA processing and gene expression regulation. Notably, three members of the heterogeneous nuclear ribonucleoprotein family (AUF-1, and FBP-1 and FBP-2) register a 54, 70 and 99% increased expression, highlighting them as potential markers for NSC in vitro derivation. By contrast, Cpsf-6 virtually disappears with differentiation with an 11-fold drop in NSC, highlighting this protein as a novel marker for undifferentiated ESC.
Collapse
Affiliation(s)
- Miguel Barthéléry
- Pennsylvania State University College of Medicine, Department of Pharmacology, Hummelstown, PA, USA
| | | | | | | | | |
Collapse
|