1
|
Chaipoca K, Sirinarumitr T, Srisampan S, Wongsali C, Kovitvadhi A, Jaroensong T. The Expression Levels of CD20 as a Prognostic Value in Feline B-Cell Nasal Lymphoma: A Pilot Study. Animals (Basel) 2024; 14:1043. [PMID: 38612282 PMCID: PMC11010812 DOI: 10.3390/ani14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The effect of the semi-quantitative expression of CD20 in the prognosis of feline nasal lymphoma has not been described. This study investigated the prognostic significance of CD20 expression, clinicopathological characterization, and treatment outcomes in cats with nasal lymphoma. Clinical data from cats diagnosed with nasal lymphoma were retrospectively collected, including signalment, clinical signs, clinicopathological variables, treatment outcomes, and survival times. Using ImageJ software, CD20 expression was semi-quantitatively measured based on the proportion of CD20-positive areas. Correlations between laboratory findings, immunohistochemical expressions, and survival outcomes were investigated. All cats included in the study exhibited the B-cell immunophenotype. During treatment, a reduction in PCV was noted in the cats at the second and sixth weeks (p = 0.01 and p = 0.01, respectively). The cats with low CD20 expression exhibited a significantly shorter MST (91 days; 95% CI, 41-141) than those with high CD20 expression (MST, 214 days; 95% CI, 76-351) (p = 0.01). Stage T1 cats displayed a higher MST (143 days; 95% CI, 144-172) than those in other stages > T1 (120 days, 95% CI, 71-169 days) (p = 0.04). Anemia, a common adverse effect in feline nasal lymphoma, did not impact MST. T1 clinical staging and high CD20 expression showed a trend for better MST.
Collapse
Affiliation(s)
- Kravee Chaipoca
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand;
| | - Theerapol Sirinarumitr
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand;
| | - Supreeya Srisampan
- Center for Veterinary Diagnostic Laboratory-Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand; (S.S.); (C.W.)
| | - Charuwan Wongsali
- Center for Veterinary Diagnostic Laboratory-Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand; (S.S.); (C.W.)
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand;
| | - Tassanee Jaroensong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand;
- Feline Unit, Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Anooja VV, Archana K, Athira PP, Anju MV, Neelima S, Muhammed Musthafa S, Dhaneesha M, Sajeevan TP, Singh ISB, Philip R. Antibacterial activity and modes of action of a novel hepcidin isoform from the shrimp scad, Alepes djedaba (Forsskål, 1775). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109406. [PMID: 38278338 DOI: 10.1016/j.fsi.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepcidin, initially identified in human blood ultrafiltrate as cysteine rich Liver Expressed Antimicrobial Peptide (LEAP-1), is a core molecular conduit between iron trafficking and immune response. Though a great share of studies has been focused on the iron regulatory function of hepcidins, investigations on the antimicrobial aspects are relatively less. The present study is aimed at identification of hepcidin from a teleost fish, Alepes djedaba followed by its recombinant expression, testing antibacterial property, stability and evaluation of cytotoxicity. Modes of action on bacterial pathogens were also examined. A novel hepcidin isoform, Ad-Hep belonging to the HAMP1 (Hepcidin antimicrobial peptide 1) group of hepcidins was identified from the shrimp scad, Alepes djedaba. Ad-Hep with 2.9 kDa size was found to be a cysteine rich, cationic peptide (+4) with antiparallel beta sheet conformation, a furin cleavage site (RXXR) and 'ATCUN' motif. It was heterologously expressed in E. coli Rosettagami B(DE3)PLysS cells and the recombinant peptide, rAd-Hep was found to have significant antibacterial activity, especially against Edwardsiella tarda, Vibrio parahaemolyticus and Escherichia coli. Membrane depolarization followed by membrane permeabilization and Reactive Oxygen Species (ROS) production were found to be the modes of action of rAd-Hep on bacterial cells. Ad-Hep was found to be non-haemolytic to hRBC and non-cytotoxic in mammalian cell line. Stability of the peptide at varying temperature, pH and metal salts qualify them for applications in vivo. With significant bactericidal activity coupled with direct killing mechanisms, the rAd-Hep can be a promising drug candidate for therapeutic applications in medicine and fish culture systems.
Collapse
Affiliation(s)
- V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M Dhaneesha
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - T P Sajeevan
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
3
|
Badmaev V. Interactive Nutrient Process (INP) in a Generative AI of a New Drug-6-Shogaol as a Potential Case. Drug Des Devel Ther 2024; 18:161-163. [PMID: 38298811 PMCID: PMC10829501 DOI: 10.2147/dddt.s438577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The dynamically evolving science of pharmacology requires AI technology to advance a new path for drug development. The author proposes generative AI for future drugs, identifying suitable drug molecules, uncharacteristically to previous generations of medicines, incorporating the wisdom, experience, and intuit of traditional materia medica and the respective traditional medicine practitioners. This paper describes the guiding principles of the new drug development, springing from the tradition and practice of Tibetan medicine, defined as the Interactive Nutrient Process (INP). The INP provides traditional knowledge and practitioner's experience, contextualizing and teaching the new drug therapy. An illustrative example of the outcome of the INP is a potential small molecule drug, 6-Shogaol and related shogaol derivatives, from ginger roots (Zingiber officinalis fam. Zingiberaceae) evaluated clinically for 12 months for biological markers of iron homeostasis in patients with the myelodysplastic syndromes (MDS). The study's preliminary results indicate that 6-Shogaol and related shogaols may improve iron homeostasis in low-risk/intermediate-1 MDS patients without objective or subjective side effects.
Collapse
|
4
|
Li X, Chi H, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Anti-microbial activity and immunomodulation of recombinant hepcidin 2 and NK-lysin from flounder (Paralichthys olivaceus). Int J Biol Macromol 2023; 253:127590. [PMID: 37871716 DOI: 10.1016/j.ijbiomac.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Infections due to pathogens impact global aquaculture economy, where diseases caused by bacteria should be in particular focus due to antibiotic resistance. Hepcidin and NK-lysin are important innate immune factors having potential to be exploited as alternatives to antibiotics due to their antimicrobial activity and immunomodulatory capacity. In this study, the recombinant proteins of hepcidin 2 and NK-lysin (rPoHep2 and rPoNKL) from flounder (Paralichthys olivaceus) were obtained via a prokaryotic expression system. The results exhibited that rPoHep2 and rPoNKL killed both gram-negative and gram-positive bacteria mainly via attachment and disruption of the membrane. Interestingly, both peptides could bind to bacterial DNA. The antiviral assay showed that both peptides have antiviral activity against hirame nonvirhabdovirus. They exhibited no cytotoxicity to the mammalian and fish cell lines. PoHep2 was found localized in G-CSFR-positive peritoneal cells. Moreover, rPoHep2 significantly enhanced the phagocytosis of flounder leukocytes in vitro. These findings suggested that neutrophils contained rPoHep2 and may respond to the immunoreaction of neutrophils. In summary, both rPoHep2 and rPoNKL possess antimicrobial activities and may be exploited to replace traditional antibiotics. rPoHep2 possess immune regulatory functions, that can be further investigated as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Xinyu Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Hsu YC, Huang HC, Tang KS, Su LT, Huang YH, Huang HC, Chen IL. Elevated Urinary Hepcidin Level and Hypoferremia in Infants with Febrile Urinary Tract Infection: A Prospective Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050870. [PMID: 37238418 DOI: 10.3390/children10050870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
To evaluate the kinetics of serum and urinary hepcidin levels along with anemia-related parameters during the infection course of infants with febrile urinary tract infection (UTI), we enrolled febrile infants aged one to four months in this prospective study. Febrile patients with UTI were allocated into Escherichia coli (E. coli) or non-E. coli groups according to urine culture results. Septic workup, blood hepcidin, iron profile, urinalysis, and urinary hepcidin-creatinine ratio were collected upon admission and 3 days after antibiotic treatment. In total, 118 infants were included. On admission, the febrile UTI group showed a significant reduction in serum iron level and a significant elevation of urinary hepcidin-creatinine ratio compared to the febrile control counterpart. Moreover, urinary hepcidin-creatinine ratio had the highest odds ratio, 2.01, in logistics regression analysis. After 3 days of antibiotic treatment, hemoglobin and the urinary hepcidin-creatinine ratio were significantly decreased. Patients with an E. coli UTI had a significantly decreased urinary hepcidin-creatinine ratio after 3 days of antibiotics treatment, whereas the non-E. coli group showed insignificant changes. Our study suggested that the urinary hepcidin-creatinine ratio elevated during acute febrile urinary tract infection and significantly decreased after 3 days of antibiotics treatment, especially in E. coli UTI.
Collapse
Affiliation(s)
- Yu-Chen Hsu
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Linkou 33302, Taiwan
| | - Kuo-Su Tang
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Li-Ting Su
- Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Hui-Chen Huang
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - I-Lun Chen
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Linkou 33302, Taiwan
| |
Collapse
|
6
|
Lu X, Han YC, Shepherd BS, Xiang Y, Deng DF, Vinyard BT. Molecular Analysis and Sex-specific Response of the Hepcidin Gene in Yellow Perch (Perca Flavescens) Following Lipopolysaccharide Challenge. Probiotics Antimicrob Proteins 2023; 15:215-225. [PMID: 36562953 DOI: 10.1007/s12602-022-10024-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepcidin antimicrobial peptide (hamp) is active in teleosts against invading pathogens and plays important roles in the stress and immune responses of finfish. The response of hamp gene was studied in yellow perch (yp) (Perca flavescens) challenged with lipopolysaccharides to understand if this immunity response is sex-specifically different. The cloned hamp gene consists of an open-reading frame of 273 bp and encodes a deduced protein of 90 amino acids (a.a.), which includes a signal peptide of 24 a.a., a pro-domain of 40 a.a. and a mature peptide of 26 a.a. Yp hamp involves 8 cysteine residues with 4 disulfide bonds, and a protein with an internal alpha helix flanked with C- and N-terminal random coils was modeling predicted. RT-qPCR was used to analyze the relative abundances (RAs) of hamp mRNA in the livers of juvenile female and male yellow perch challenged with lipopolysaccharide. The expression levels of hamp were significantly elevated by 3 h (RA = 7.3) and then peaked by 6 h (RA = 29.4) post-treatment in females but the peak was delayed to 12 h (RA = 65.4) post-treatment in males. The peak mRNA level of challenged males was shown 7.6-fold higher than females. The post-treatment responses in both genders decreased to their lowest levels by 24 h and 48 h. Overall, female perch had an earlier but less-sensitive response to the lipopolysaccharide challenge than male.
Collapse
Affiliation(s)
- Xing Lu
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| | - Yueh-Chiang Han
- Oak Ridge Institute for Science and Education-Oak Ridge Associated Universities-US Department of Agriculture-Agricultural Research Service-School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | - Brian S Shepherd
- US Department of Agriculture-Agricultural Research Service-School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Ying Xiang
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
- School of Basic Medical Science, Wuhan University, Wuhan, 430071, Hubei, China
| | - Dong-Fang Deng
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Bryan T Vinyard
- US Department of Agriculture-Agricultural Research Service/Northeast Area Statistics Group, Beltsville, MD, USA
| |
Collapse
|
7
|
Ravenscroft H, El Karim I, Krasnodembskaya AD, Gilmore B, About I, Lundy FT. Novel Antibacterial Properties of the Human Dental Pulp Multipotent Mesenchymal Stromal Cell Secretome. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:956-969. [PMID: 35339427 DOI: 10.1016/j.ajpath.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
It is well recognized that clearance of bacterial infection within the dental pulp precedes pulpal regeneration. However, although the regenerative potential of the human dental pulp has been investigated extensively, its antimicrobial potential remains to be examined in detail. In the current study bactericidal assays were used to demonstrate that the secretome of dental pulp multipotent mesenchymal stromal cells (MSCs) has direct antibacterial activity against the archetypal Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Escherichia coli, respectively, as well as the oral pathogens Streptococcus mutans, Lactobacillus acidophilus, and Fusobacterium nucleatum. Furthermore, a cytokine/growth factor array, enzyme-linked immunosorbent assays, and antibody blocking were used to show that cytokines and growth factors present in the dental pulp MSC secretome, including hepatocyte growth factor, angiopoietin-1, IL-6, and IL-8, contribute to this novel antibacterial activity. This study elucidated a novel and diverse antimicrobial secretome from human dental pulp MSCs, suggesting that these cells contribute to the antibacterial properties of the dental pulp. With this improved understanding of the secretome of dental pulp MSCs and its novel antibacterial activity, new evidence for the ability of the dental pulp to fight infection and restore functional competence is emerging, providing further support for the biological basis of pulpal repair and regeneration.
Collapse
Affiliation(s)
- Harriet Ravenscroft
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Imad About
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Aix Marseille University, Marseille, France
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
8
|
Ma S, Adzavon YM, Wen X, Zhao P, Xie F, Liu M, Ma X. Novel Insights in the Regulatory Mechanisms of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:873029. [PMID: 35663406 PMCID: PMC9160826 DOI: 10.3389/fcell.2022.873029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a newly defined programmed cell death, which by its mechanism differs from other programmed cell death processes such as apoptosis, necrosis, and autophagy. It has a unique morphology and biological properties that antioxidants and iron-chelating agents can regulate. Ferroptosis has the characteristics of iron ion deposition and dependence on lipid peroxidation. It can affect the progression of many cancers, including liver cancer, by inducing an intracellular iron-dependent accumulation of reactive oxygen species, providing new possibilities for cancer treatment. At present, great progress has been made in exploring the molecular mechanism of ferroptosis. In this review, we summarize the characteristics, mechanisms, and regulatory factors of ferroptosis in detail, discuss the progress of ferroptosis research in liver cancer, and provide directions and new ideas for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Yao Mawulikplimi Adzavon
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- *Correspondence: Yao Mawulikplimi Adzavon,
| | - Xiaohu Wen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| |
Collapse
|
9
|
Petano-Duque JM, Lozano-Villegas KJ, Céspedes-Rubio ÁE, Rondón-Barragán IS. Molecular characterization of HEPCIDIN-1 (HAMP1) gene in red-bellied pacu (Piaractus brachypomus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104353. [PMID: 35065954 DOI: 10.1016/j.dci.2022.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Hepcidins are cysteine-rich peptides, which participate in iron metabolism regulation, the inflammatory and antimicrobial response. This study characterizes the hepcidin-1 (HAMP1) gene, its transcript expression in different tissues, as well as its regulation in a model of brain injury in Piaractus brachypomus. Bioinformatic analysis was carried out to determine conserved domains, glycosylation sites and protein structure of HAMP1, and probability that HAMP1 corresponds to an antimicrobial peptide (AMP). Relative gene expression of the P. brachypomus HAMP1 gene was determined by qPCR from cDNA of several tissues, a brain injury model, an organophosphate sublethal toxicity model and anesthetic experiment using the 2-ΔΔCt method. HAMP1 ORF encodes for a 91 aa pre-prohepcidin conformed for a prodomain with 42 aa and mature peptide of 25 aa. Mature domain was determined as an AMP. HAMP1 transcript is expressed in all the tissues, being higher in the spleen and liver. HAMP1 mRNA level was upregulated in the brain injury group, as well as in the olfactory bulb, optic chiasm and telencephalon of red-bellied pacu brain exposed to an organophosphate. In anesthetic experiment, HAMP1 mRNA level was upregulated in the liver and gills. HAMP1 gene of P. brachypomus may be involved in the inflammatory, antimicrobial, hypoxia and stress oxidative response.
Collapse
Affiliation(s)
| | | | - Ángel Enrique Céspedes-Rubio
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad of Tolima, Santa Helena Highs, 730006299, Ibagué-Tolima, Colombia.
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Colombia; Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad of Tolima, Santa Helena Highs, 730006299, Ibagué-Tolima, Colombia.
| |
Collapse
|
10
|
Liu E, Huang T, Gu W, Wang G, Dong F, Ma H, Zhang L, He X, Yao Z, Jiao W, Li C, Wang B, Xu G. Molecular characterization and antibacterial immunity functional analysis of the antimicrobial peptide hepcidin from Coregonus ussuriensis berg. FISH & SHELLFISH IMMUNOLOGY 2022; 122:78-86. [PMID: 35051564 DOI: 10.1016/j.fsi.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Collapse
Affiliation(s)
- Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Haibing Ma
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Lanlan Zhang
- Heilongjiang Fisheries Technology Extension Center, Harbin, PR China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, PR China
| | - Zuochun Yao
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Limited Liability Company, Yili, PR China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
11
|
Krasnov A, Johansen LH, Karlsen C, Sveen L, Ytteborg E, Timmerhaus G, Lazado CC, Afanasyev S. Transcriptome Responses of Atlantic Salmon ( Salmo salar L.) to Viral and Bacterial Pathogens, Inflammation, and Stress. Front Immunol 2021; 12:705601. [PMID: 34621264 PMCID: PMC8490804 DOI: 10.3389/fimmu.2021.705601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 11/15/2022] Open
Abstract
Transcriptomics provides valuable data for functional annotations of genes, the discovery of biomarkers, and quantitative assessment of responses to challenges. Meta-analysis of Nofima’s Atlantic salmon microarray database was performed for the selection of genes that have shown strong and reproducible expression changes. Using data from 127 experiments including 6440 microarrays, four transcription modules (TM) were identified with a total of 902 annotated genes: 161 virus responsive genes – VRG (activated with five viruses and poly I:C), genes that responded to three pathogenic bacteria (523 up and 33 down-regulated genes), inflammation not caused by infections – wounds, melanized foci in skeletal muscle and exposure to PAMP (180 up and 72 down-regulated genes), and stress by exercise, crowding and cortisol implants (33 genes). To assist the selection of gene markers, genes in each TM were ranked according to the scale of expression changes. In terms of functional annotations, association with diseases and stress was unknown or not reflected in public databases for a large part of genes, including several genes with the highest ranks. A set of multifunctional genes was discovered. Cholesterol 25-hydroxylase was present in all TM and 22 genes, including most differentially expressed matrix metalloproteinases 9 and 13 were assigned to three TMs. The meta-analysis has improved understanding of the defense strategies in Atlantic salmon. VRG have demonstrated equal or similar responses to RNA (SAV, IPNV, PRV, and ISAV), and DNA (gill pox) viruses, injection of bacterial DNA (plasmid) and exposure of cells to PAMP (CpG and gardiquimod) and relatively low sensitivity to inflammation and bacteria. Genes of the highest rank show preferential expression in erythrocytes. This group includes multigene families (gig and several trim families) and many paralogs. Of pathogen recognition receptors, only RNA helicases have shown strong expression changes. Most VRG (82%) are effectors with a preponderance of ubiquitin-related genes, GTPases, and genes of nucleotide metabolism. Many VRG have unknown roles. The identification of TMs makes possible quantification of responses and assessment of their interactions. Based on this, we are able to separate pathogen-specific responses from general inflammation and stress.
Collapse
Affiliation(s)
| | | | | | - Lene Sveen
- Fish Health Department, Nofima AS, Ås, Norway
| | | | | | | | - Sergey Afanasyev
- Laboratory of Neurophysiology and Behavioral Pathology, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint-Petersburg, Russia
| |
Collapse
|
12
|
Deng AF, Jiang ZH, Cong BL. Hepcidin Gene Cloning and Expression Pattern in Turbot ( Scophthalmus maximus) after Vibrio. anguillarum Infection. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2767. [PMID: 34056028 PMCID: PMC8148637 DOI: 10.30498/ijb.2020.2767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Antimicrobial peptides play crucial roles in organisms as the first line of defense against invading pathogens. OBJECTIVE To isolate the hepcidin (hepc1) gene from the liver of turbot (Scophthalmus maximus) challenged with Vibrio anguillarum (GenBank accession number: AM113708), characterize it, and assess its expression level in various tissues. MATERIALS AND METHODS The DNA sequence of hepcidin from S. maximus was determined from the total RNA extracted and reverse transcribed from this fish. The expression levels of tissue-specific hepcidin transcripts were determined using reverse-transcriptase polymerase chain reactions. RESULTS Hepcidin levels increased in the livers, head kidneys and spleens of the fish. The transcriptional increase was especially noticeable in the liver after bacterial infection commencement. The presence of hepcidin and interleukin-beta (IL-1β) in blood leukocytes was compared at the transcription level and hepcidin transcripts were detected earlier than IL-1β transcripts after infection, indicating that hepcidin might serve as the first line of defense to kill bacteria and may also play a more direct and effective role than that of IL-1β during the initial stage of the innate immune response when turbot are exposed to bacteria invasion. CONCLUSIONS Hepcidin might serve as the first line of defense to kill bacteria and may also play a more direct and effective role than that of IL-1β during the initial stage of the innate immune response when turbot are exposed to bacteria invasion.
Collapse
Affiliation(s)
- Ai-Fang Deng
- First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, China.,
Marine Ecology and Enviromental Science Laboratory, Qingdao, China
| | - Zhi-Hui Jiang
- First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, China.,
Ocean University of China, Qingdao, China
| | - Bai-Lin Cong
- First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, China.,
Marine Ecology and Enviromental Science Laboratory, Qingdao, China
| |
Collapse
|
13
|
Ghodsi Z, Kalbassi MR, Farzaneh P, Mobarez AM, Beemelmanns C, Amiri Moghaddam J. Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). FISH & SHELLFISH IMMUNOLOGY 2020; 104:55-61. [PMID: 32473358 DOI: 10.1016/j.fsi.2020.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Hepcidins, a group of antimicrobial peptides (AMPs), play a key role in the innate immune system of fishes and act against different pathogens. In this study, antimicrobial and immune-inflammatory activity of a synthetic EC-hepcidin1, previously identified from orange-spotted grouper, were evaluated. EC-hepcidin1 showed weak activity against the zoonotic fish pathogen Streptococcus iniae (MIC 100 μg mL-1 and MBC 150 μg mL-1). To study the effect of AMPs in general, and EC-hepcidin1 in particular, a primary cell culture (SC) from the fin tissue of the Caspian Trout (Salmo trutta caspius) was established. The neutral Red method on SC cells revealed that EC-hepcidin1 has no or very low cytotoxic properties. Treatment of cells with either EC-hepcidin1 (150 μg mL-1) or fish pathogen Streptococcus iniae (MOI = 10) and a mixture of both resulted in the up-regulation of gene expression of MHC-UBA, IL-6, and TNFα indicating the modulatory function on inflammatory processes. These findings indicate that EC-hepcidin1 might act as a candidate for modulation of the innate immune system in S. iniae-based infection.
Collapse
Affiliation(s)
- Zohreh Ghodsi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center, ACECR, Tehran, Iran
| | - Ashraf Mohebati Mobarez
- Department of Bacteriology, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany
| | - Jamshid Amiri Moghaddam
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany.
| |
Collapse
|
14
|
Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020; 8:microorganisms8040585. [PMID: 32316661 PMCID: PMC7232333 DOI: 10.3390/microorganisms8040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.
Collapse
|
15
|
ŞAHİNDURAN Ş, DÖRTKARDEŞ AB. Determination of serum amyloid A, haptoglobin and hepcidin levels in calves with endemic viral pneumonia. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.33988/auvfd.523958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Anti-TNF- α Monoclonal Antibody Therapy Improves Anemia through Downregulating Hepatocyte Hepcidin Expression in Inflammatory Bowel Disease. Mediators Inflamm 2019; 2019:4038619. [PMID: 31814801 PMCID: PMC6878771 DOI: 10.1155/2019/4038619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Anemia is one of the most common complications in patients with inflammatory bowel disease (IBD). Hepcidin as a key regulator of iron metabolism is pivotal in mediating the occurrence of anemia of chronic disease. Herein, we analyzed the levels of hepcidin in sera from IBD patients by enzyme-linked immunosorbent assay and investigated its potential role in regulating the anemia in IBD. We observed that the levels of serum hepcidin were increased in active IBD patients compared with those in remitted IBD patients and healthy controls and that serum hepcidin was associated with disease activity, CRP, and ESR, respectively. Importantly, we found that the increased levels of serum hepcidin were positively correlated with the severity of anemia and the imbalance of iron metabolism in anemic UC and CD patients. Proinflammatory factors (e.g., IL-6, IL-17, and TNF-α) were positively correlated with the concentrations of serum hepcidin in IBD patients. Interestingly, hepcidin was found to be decreased in patients with Crohn's disease after successful therapy with anti-TNF-α mAb (i.e., infliximab), indicating the underlying association between TNF-α and hepcidin expression. To investigate the specific mechanisms involved, we cultured LO2 and HepG2 cell lines in vitro under stimulation with TNF-α and observed that the levels of hepcidin mRNA were markedly upregulated in caspase-3/8- and NF-κB-dependent manners. Therefore, our data suggest that TNF-α stimulates the expression of hepcidin in IBD patients, resulting in aggravated anemia and that blockage of TNF-α or the caspase-3/8 and NF-κB pathways could downregulate hepcidin expression. This study provides inspiration for the therapy and management of anemia in IBD.
Collapse
|
17
|
Giudici F, Lombardelli L, Russo E, Cavalli T, Zambonin D, Logiodice F, Kullolli O, Giusti L, Bargellini T, Fazi M, Biancone L, Scaringi S, Clemente AM, Perissi E, Delfino G, Torcia MG, Ficari F, Tonelli F, Piccinni MP, Malentacchi C. Multiplex gene expression profile in inflamed mucosa of patients with Crohn’s disease ileal localization: A pilot study. World J Clin Cases 2019; 7:2463-2476. [PMID: 31559282 PMCID: PMC6745337 DOI: 10.12998/wjcc.v7.i17.2463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Crohn’s disease (CD) is a complex disorder resulting from the interaction of genetic, environmental, and microbial factors. The pathogenic process may potentially affect any segment of the gastrointestinal tract, but a selective location in the terminal ileum was reported in 50% of patients.
AIM To characterize clinical sub-phenotypes (colonic and/or ileal) within the same disease, in order to identify new therapeutic targets.
METHODS 14 consecutive patients undergoing surgery for ileal CD were recruited for this study. Peripheral blood samples from each patient were collected and the main polymorphisms of the gene Card15/Nod2 (R702W, G908R, and 1007fs) were analyzed in each sample. In addition, tissue samples were taken from both the tract affected by CD and from the apparently healthy and disease-free margins (internal controls). We used a multiplex gene assay in specimens obtained from patients with ileal localization of CD to evaluate the simultaneous expression of 24 genes involved in the pathogenesis of the disease. We also processed surgery gut samples with routine light microscopy (LM) and transmission electron microscopy (TEM) techniques to evaluate their structural and ultrastructural features.
RESULTS We found a significant increase of Th17 (IL17A and IL17F, IL 23R and CCR6) and Th1 (IFN-γ) gene expression in inflamed mucosa compared to non-inflamed sites of 14 CD patients. DEFB4 and HAMP, two genes coding for antimicrobial peptides, were also strongly activated in inflamed ileal mucosa, suggesting the overwhelming stimulation of epithelial cells by commensal microbiota. IFN-γ and CCR6 were more expressed in inflamed mucosa of CD patients with ileal localization compared with patients with colonic localization suggesting a more aggressive inflammation process in this site. Morphological analysis of the epithelial lining of Lieberkün crypts disclosed enhanced release activity from goblet mucocytes, whereas the lamina propria contained numerous cells pertaining to various lines.
CONCLUSION We observed that the expression of ileal genes related to Th1 and Th17 activity is strongly activated as well as the expression of genes involved in microbiota regulation.
Collapse
Affiliation(s)
- Francesco Giudici
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Letizia Lombardelli
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Edda Russo
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Tiziana Cavalli
- Dipartimento Chirurgico Ortopedico, Ospedale Carlo Poma di Mantova, Firenze 50134, Italy
| | - Daniela Zambonin
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Federica Logiodice
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Ornela Kullolli
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Lamberto Giusti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| | - Tatiana Bargellini
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Marilena Fazi
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Livia Biancone
- Department of Internal Medicine, University of Roma Tor Vergata, Roma 00133, Italy
| | - Stefano Scaringi
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Ann Maria Clemente
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Eloisa Perissi
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Giovanni Delfino
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| | - Maria G Torcia
- Marie- Pierre Piccinni, Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Ferdinando Ficari
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | - Francesco Tonelli
- Surgical Unit, Department of Surgery and Translational Medicine, University of Firenze, Firenze 50134, Italy
| | | | - Cecilia Malentacchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze 50134, Italy
| |
Collapse
|
18
|
Abstract
Hepcidin, belonging to the β-defensin family, was isolated for the first time from plasma and human urine. It is a cationic peptide, rich in cysteine bound with four disulfide bridges, which plays a major role in innate immunity and iron homeostasis. Some vertebrate species have multiple hepcidin homolog genes and each contains only one copy that functions as an iron regulator except hepcidin sequences in the pigeon (Columba livia). The aim of this chapter is to investigate the molecular evolution of several hepcidin gene from searches of the literature and public genomic databases from 17 different species, all among the vertebrates.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.), Tunis, Tunisie.
| | - Sondes Abidi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Université Carthage, Zarzouna, Tunisie
| |
Collapse
|
19
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
20
|
Liu Y, Han X, Chen X, Yu S, Chai Y, Zhai T, Zhu Q. Molecular characterization and functional analysis of the hepcidin gene from roughskin sculpin (Trachidermus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:349-358. [PMID: 28743631 DOI: 10.1016/j.fsi.2017.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Hepcidin is a kind of cysteine-rich antimicrobial peptide that plays a vital role in host innate immune activity and iron regulation. Here, we report the molecular characterization and functional analysis of a novel hamp1 hepcidin isoforms Tf-Hep from roughskin sculpin, Trachidermus fasciatus. A cDNA fragment of 988 bp with an ORF of 273 bp was obtained. The coding sequence encodes for a signal peptide of 24 amino acids coupled with a prodomain of 40 amino acids and a mature peptide of 26 amino acids. Tissue distribution analysis indicated that Tf-Hep was most abundant in the liver. It could be significantly induced post lipopolysaccharide (LPS) challenge and heavy metal exposure. The mature peptide was expressed as a 6.061 kDa fusion protein in Pichia pastoris GS115. The active purified recombinant protein (rTf-Hep) exhibited a wide spectrum of potent antimicrobial activity in vitro against 4 Gram-negative bacteria Escherichia coli, Vibrio Anguillarum, Klebsiella pneumoniae, and Pseudomonas aeruginosa and 4 Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium with minimum inhibitory concentrations (MICs) of 5-80 μg/ml (0.825-13.2 μM). It also displayed high affinity to polysaccharides on bacteria surface including LPS, lipoteichoic acid (LTA) and peptidoglycan (PGN). We further revealed that rTf-hep was capable of agglutinating 6 of the 8 bacteria. All these results suggest that rTf-hep may be both an antibacterial effector and a pattern recognition molecule in fish immune defense. The in vivo bacterial treatment results demonstrated that rTf-Hep could significantly improve the survival rate of fish infected with V. anguillarum. Taken together, these data indicate an important role for Tf-hep in the innate immunity of Trachidermus fasciatus and suggest its potential application in aquaculture for increasing fish resistance to disease.
Collapse
Affiliation(s)
- Yingying Liu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xiaodi Han
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xuezhao Chen
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Tongjie Zhai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Qian Zhu
- Ocean College, Shandong University (Weihai), Weihai 264209, China.
| |
Collapse
|
21
|
Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology. Gene 2017; 610:112-117. [PMID: 28188870 DOI: 10.1016/j.gene.2017.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 02/01/2023]
Abstract
Hepcidin25 is a small cysteine-rich peptide hormone known as a new class of antimicrobial peptides. The purpose of the present study was to express, purify and investigate the antibacterial properties of recombinant human hepcidin25 protein production in Escherichia coli. Human hepcidin25 gene was optimized and fused to a small ubiquitin-related modifier (SUMO) gene for higher expression. Then SUMO-hepcidin25 was cloned into the pET-32a (+) vector and expressed in E. coli Origami. The fusion protein with a molecular weight of approximately 35kDa was analyzed on SDS-PAGE gel. The highest expression was observed after 6h induction and the fusion protein consisted approximately 47% of the total cellular protein. The purified SUMO-hepcidin25 purity was determined to be higher than 95%, with a final yield of 3.9mgl-1 of media. The recombinant hepcidin25 showed antibacterial activity against both Gram negative (Klebsiella pneumonia) and Gram positive (Staphylococcus aureus and Bacillus cereus) bacteria with minimum inhibitory concentrations (MICs) of 150μgml-1, 18.7μg/ml-1 and 37.5μg/ml-1, respectively. These results indicated that thioredoxin and SUMO dual fusion system is an efficient production system for synthesis functional human hepcidin25.
Collapse
|
22
|
Liu QN, Xin ZZ, Zhang DZ, Jiang SH, Chai XY, Wang ZF, Li CF, Zhou CL, Tang BP. cDNA cloning and expression analysis of a hepcidin gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). FISH & SHELLFISH IMMUNOLOGY 2017; 60:247-254. [PMID: 27815205 DOI: 10.1016/j.fsi.2016.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Hepcidin is a small, cysteine-rich antimicrobial peptide with a highly conserved β-sheet structure that plays a vital role in innate host immunity against pathogenic organisms. In this study, a hepcidin gene was identified in Pelteobagrus fulvidraco, an economically important freshwater fish in China. The gene is named PfHep. The complete PfHep cDNA was 723 bp, including a 5'-untranslated region (UTR) of 102 bp, a 3'-UTR of 339 bp and an open reading frame of 282 bp encoding a polypeptide of 93 amino acids, which includes a predicted signal peptide and the Hepcidin domain. The predicted mature, cationic PfHep protein has a typical hepcidin RX (K/R)R motif and eight conserved cysteine residues. The deduced PfHep protein sequence has 70%, 54% and 39% percent identity with hepcidins from Ictalurus punctatus, Danio rerio, and Homo sapiens, respectively. The predicted tertiary structure of PfHep is very similar to that of hepcidin in other animals. Phylogenetic analysis revealed that PfHep is closely related to the hepcidins of I. punctatus and I. furcatus. Real-time quantitative reverse transcription-PCR showed that the PfHep gene was expressed most in liver of healthy P. fulvidraco, and expressed to some extent in all the tissues tested. After challenge with lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (poly I:C), respectively, the expression levels of PfHep were markedly upregulated in liver, spleen, head kidney and blood at different time points. Together these results imply that PfHep may be an important component of the innate immune system and be involved in immune defense against invading pathogens.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China.
| |
Collapse
|
23
|
Boumaiza M, Carmona F, Poli M, Asperti M, Gianoncelli A, Bertuzzi M, Ruzzenenti P, Arosio P, Marzouki MN. Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains. Protein Eng Des Sel 2016; 30:77-84. [PMID: 27980120 DOI: 10.1093/protein/gzw066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5'end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli The recombinant fusion hepcidin-ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin-ferroportin interaction in cells and also as drug-delivery agent.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| | - Fernando Carmona
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Michela Bertuzzi
- Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Paola Ruzzenenti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Paolo Arosio
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11 , Brescia, Italy
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut Nationale des Sciences Appliquées et de Technologie (I.N.S.A.T.) BP 676, Tunis Cedex 1080, Tunisie
| |
Collapse
|
24
|
Erkilic EE, Erdogan HM, Ogun M, Kirmizigul AH, Gokce E, Kuru M, Kukurt A. Relationship between hepcidin and oxidant/antioxidant status in calves with suspected neonatal septicemia. Vet World 2016; 9:1238-1241. [PMID: 27956775 PMCID: PMC5146304 DOI: 10.14202/vetworld.2016.1238-1241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022] Open
Abstract
AIM This study has been conducted for the purpose of determining serum hepcidin, total antioxidant status (TAS), total oxidant status (TOS), and Fe levels in calves with suspected neonatal septicemia before and after treatment and the clinical significance of hepcidin in calves with suspected neonatal septicemia. MATERIALS AND METHODS The study material consisted of 15 calves of different ages and sexes brought to the Training, Research and Application Center at the Kafkas University Faculty of Veterinary Medicine with suspected neonatal septicemia. 8.5 mL of blood was drawn from the jugular vein of each animal into coagulant tubes before and after treatment for one-off biochemical analyses and centrifuged. After this, the serum was separated. Hepcidin, TAS, TOS, and Fe levels in the serum were measured. RESULTS While pre-treatment hepcidin levels were 58.42±3.46 ng/mL, post-treatment levels were 46.87±2.98 ng/mL (p<0.05). Pre-treatment Fe levels were 60.13±7.27 µg/dl, while post-treatment levels were 83.1±8.09 µg/dl (p<0.05). The changes in the TAS and TOS levels were also found to be statistically significant. CONCLUSION In light of the fact that hepcidin plays a role function in the regulation of Fe as well as the fact that Fe is a significant nutritional source for many microorganisms, it was concluded that hepcidin may play a significant role in nutritional immunity and the pathogenesis of diseases.
Collapse
Affiliation(s)
- E. E. Erkilic
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - H. M. Erdogan
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - M. Ogun
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - A. H. Kirmizigul
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - E. Gokce
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - M. Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| | - A. Kukurt
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, 36100, Kars, Turkey
| |
Collapse
|
25
|
Boumaiza M, Chahed H, Ezzine A, Jaouen M, Gianoncelli A, Longhi G, Carmona F, Arosio P, Sari MA, Marzouki MN. Recombinant overexpression of camel hepcidin cDNA in Pichia pastoris: purification and characterization of the polyHis-tagged peptide HepcD-His. J Mol Recognit 2016; 30. [PMID: 27507710 DOI: 10.1002/jmr.2561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 11/09/2022]
Abstract
Hepcidin, a liver-expressed antimicrobial peptide, has been demonstrated to act as an iron regulatory hormone as well as to exert a wide spectrum of antimicrobial activity. The aim of this work was the expression, as secreted peptide, purification, and characterization of a new recombinant polyHis-tagged camel hepcidin (HepcD-His) in yeast Pichia pastoris. The use of this eukaryotic expression system, for the production of HepcD-His, having 6 histidine residues at its C terminus, was simpler and more efficient compared with the use of the prokaryotic system Escherichia coli. Indeed, a single purification step was required to isolate the soluble hepcidin with purity estimated more that 94% and a yield of 2.8 against 0.2 mg/L for the E coli system. Matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF mass spectrometry of the purified HepcD-His showed 2 major peaks at m/z 4524.64 and 4634.56 corresponding to camel hepcidin with 39 and 40 amino acids. Evaluation of disulfide bond connectivity with the Ellman method showed an absence of free thiol groups, testifying that the 8 cysteine residues in the peptide are displayed, forming 4 disulfide bridges. Circular dichroism spectroscopy showed that camel hepcidin structure was significantly modified at high temperature of 90°C and returns to its original structure when incubation temperature drops back to 20°C. Interestingly, this peptide showed also a greater bactericidal activity, at low concentration of 9.5μM, against E coli, than the synthetic analog DH3. Thus, the production, at a large scale, of the recombinant camel hepcidin, HepcD-His, may be helpful for future therapeutic applications including bacterial infection diseases.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Haifa Chahed
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Aymen Ezzine
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| | - Maryse Jaouen
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université Paris Descartes, CNRS, 45 rue des Saints Pères, 75270, Paris Cedex 06, Paris, France
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Fernando Carmona
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, DMMT, University of Brescia, Viale Europa 11, 25123, Brescia, Brescia, Italy
| | - Marie-Agnès Sari
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université Paris Descartes, CNRS, 45 rue des Saints Pères, 75270, Paris Cedex 06, Paris, France
| | - Mohamed Nejib Marzouki
- Laboratoire d'ingénierie des protéines et des molécules bioactives (LIP-MB), Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunis, Tunisia
| |
Collapse
|
26
|
Qiu W, Shen Y, Pan C, Liu S, Wu M, Yang M, Wang KJ. The potential immune modulatory effect of chronic bisphenol A exposure on gene regulation in male medaka (Oryzias latipes) liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:146-154. [PMID: 27104808 DOI: 10.1016/j.ecoenv.2016.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) is a well-known estrogenic endocrine disrupting chemical (EDC) ubiquitously present in various environmental media. The present study aims to identify the responsive genes in male fish chronically exposed to low concentrations of BPA at the transcription level. We screened genes from a suppression subtractive hybridization library constructed from male medaka (Oryzias latipes) livers after 60-d exposure to 10μg/L BPA under the condition at which changes of hepatic antioxidant parameters have been previously reported. The identified genes were predicted to be involved in multiple biological processes including antioxidant physiology, endocrine system, detoxification, notably associated with the immune response processes. With real time PCR analysis, the immune-associated genes including hepcidin-like precursor, complement component and factors, MHC class I, alpha-2-macroglobulin and novel immune-type receptor 6 isoform were significantly up-regulated in a nonmonotonic dose response pattern in livers upon exposure to different concentrations of BPA (0.1, 1, 10, 100, 1000μg/L). Our results demonstrated a negative impact on gene regulation in fish chronically exposed to relatively low and environmentally relevant concentrations of BPA, and suggested the potential immune modulatory effect of chronic EDC exposure on fish. The immunotoxicity of BPA and other EDCs should be much concerned for the health of human beings and other vertebrates exposed to it.
Collapse
Affiliation(s)
- Wenhui Qiu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
27
|
Torrente C, Manzanilla EG, Bosch L, Fresno L, Rivera Del Alamo M, Andaluz A, Saco Y, Ruiz de Gopegui R. Plasma iron, C-reactive protein, albumin, and plasma fibrinogen concentrations in dogs with systemic inflammatory response syndrome. J Vet Emerg Crit Care (San Antonio) 2015; 25:611-9. [PMID: 26172578 DOI: 10.1111/vec.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 05/14/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the diagnostic and prognostic value over time of plasma iron compared with the inflammatory markers albumin, C-reactive protein (CRP), and fibrinogen in dogs with systemic inflammatory response syndrome (SIRS). DESIGN Prospective observational study of sequentially enrolled dogs. SETTING ICU of a veterinary teaching hospital. ANIMALS One hundred and sixteen client-owned dogs: 54 dogs with SIRS or sepsis, 42 with focal inflammation, and 20 clinically healthy dogs. MEASUREMENTS AND MAIN RESULTS Blood samples were obtained on admission in all study groups, and then on alternate days until discharge or death in both inflammation groups. On admission, dogs with SIRS had significantly lower plasma iron (65 ± 5.8 μg/dL, P = 0.001) concentrations than dogs with focal inflammation (89.5 ± 6.2 μg/dL, P = 0.001). Plasma iron, albumin, and CRP effectively discriminated the SIRS/sepsis group from those presenting with focal inflammation with areas under the curve for the receiver operating curves of 0.679, 0.834, and 0.704, respectively. The admission values for these variables did not discriminate survivors from nonsurvivors within the SIRS/sepsis group. However, the magnitude of increase in iron concentration and the decrease in CRP concentration from admission to hospital discharge was higher in survivors than in nonsurvivors within the SIRS/septic group (22.8 vs. 2.51 μg/dL, respectively, P = 0.021 for iron; -67.1 vs. -4.1 mg/L, respectively, P = 0.002 for CRP), resulting in iron and CRP concentrations at hospital discharge for survivors similar to those in the focal inflammation group. CONCLUSION Hypoferremia is a sensitive marker of systemic inflammation in dogs. In this study, the increase in iron concentrations during the hospitalization period of SIRS/septic dogs was associated with a better prognosis, suggesting that plasma iron in combination with CRP and albumin concentrations might be used to monitor dogs with inflammatory disease processes.
Collapse
Affiliation(s)
- Carlos Torrente
- Servei d'Emergències i Cures Intensives FHCV-UAB, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edgar G Manzanilla
- the Departament de Ciència Animal i dels Aliments, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Bosch
- Servei d'Emergències i Cures Intensives FHCV-UAB, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Fresno
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rivera Del Alamo
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Andaluz
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Saco
- Departament de Bioquímica i Biologia molecular, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Ruiz de Gopegui
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària de la UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Ke F, Wang Y, Yang CS, Xu C. Molecular cloning and antibacterial activity of hepcidin from Chinese rare minnow (Gobiocypris rarus). ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol Ther 2015; 146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
|
30
|
Das A, Mohapatra A, Sahoo PK. Cloning and Characterization of Antimicrobial Peptide, Hepcidin in Medium Carp, Puntius sarana. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9438-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Ibrahim IA, Mohamad UM, Darweesh HA, Rashad AM. Impact of hepcidin, interleukin 6, and other inflammatory markers with respect to erythropoietin on anemia in chronic hemodialysis patients. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2014. [DOI: 10.4103/1110-7782.132882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Local burn injury impairs epithelial permeability and antimicrobial peptide barrier function in distal unburned skin. Crit Care Med 2014; 42:e420-31. [PMID: 24717471 DOI: 10.1097/ccm.0000000000000309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Our objective was to characterize the mechanisms by which local burn injury compromises epithelial barrier function in burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue. DESIGN Experimental mouse scald burn injury. SETTING University Research Laboratory. SUBJECTS C57/Bl6 Male mice, 8-12 weeks old. INTERVENTIONS To confirm that dehydration was not contributing to our observed barrier defects, in some experiments mice received 1 mL of saline fluid immediately after burn, while a subgroup received an additional 0.5 mL at 4 hours and 1 mL at 24 hours following burn. We then assessed skin pH and transepidermal water loss every 12 hours on the burn wounds for 72 hours postburn. MEASUREMENTS AND MAIN RESULTS Burn margin exhibited increased epidermal barrier permeability indicated by higher pH, greater transepidermal water loss, and reduced lipid synthesis enzyme expression and structural protein production up to 96 hours postburn. By contrast, antimicrobial peptide production and protease activity were elevated in burn margin. Skin extracts from burn margin did not exhibit changes in the ability to inhibit bacterial growth. However, distal unburned skin from burned mice also demonstrated an impaired response to barrier disruption, indicated by elevated transepidermal water loss and reduced lipid synthesis enzyme and structural protein expression up to 96 hours postburn. Furthermore, skin extracts from distal unburned skin exhibited greater protease activity and a reduced capacity to inhibit bacterial growth of several skin pathogens. Finally, we established that antimicrobial peptide levels were also altered in the lung and bladder, which are common sites of secondary infection in burn-injured patients. CONCLUSIONS These findings reveal several undefined deficiencies in epithelial barrier function at the burn margin, potential donor skin sites, and organs susceptible to secondary infection. These functional and biochemical data provide novel insights into the mechanisms for graft failure and secondary infection after burn injury.
Collapse
|
33
|
Lin W, Liu S, Hu L, Zhang S. Characterization and bioactivity of hepcidin-2 in zebrafish: dependence of antibacterial activity upon disulfide bridges. Peptides 2014; 57:36-42. [PMID: 24787654 DOI: 10.1016/j.peptides.2014.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/18/2023]
Abstract
Hepcidin is an antimicrobial peptide and iron-regulatory molecule with highly conserved disulfide bridges among vertebrates, but structural insights into the function in fish remains largely missing. We demonstrate here that recombinant hepcidin-2 from zebrafish is capable of inhibiting the growth of the Gram-negative bacteria Escherichia coli and Vibrio anguillarum, and the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with minimum inhibitory concentrations (MICs) of 18, 15, 13 and 9μM, respectively. We also show by TEM examination that recombinant hepcidin-2 is directly cidal to the cells of E. coli and S. aureus. Moreover, we find that hepcidin-2 displays affinity to LPS, LTA and PGN. All these data indicate that hepcidin-2 is both a pattern recognition molecule, capable of identifying LPS, LTA and PGN, and an antibacterial effector, capable of inhibiting the growth of bacteria. The data also show that the antibacterial activity of hepcidin-2 depends upon the disulfide bridges.
Collapse
Affiliation(s)
- Wenjing Lin
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Hu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
34
|
Boumaiza M, Ezzine A, Jaouen M, Sari MA, Marzouki MN. Molecular characterization of a novel hepcidin (HepcD) from Camelus dromedarius. Synthetic peptide forms exhibit antibacterial activity. J Pept Sci 2014; 20:680-8. [PMID: 24895313 DOI: 10.1002/psc.2644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023]
Abstract
Hepcidin is a cysteine-rich peptide widely characterized in immunological processes and antimicrobial activity in several vertebrate species. Obviously, this hormone plays a central role in the regulation of systemic iron homeostasis. However, its role in camelids' immune response and whether it is involved in antibacterial immunity have not yet been proven. In this study, we characterized the Arabian camel hepcidin nucleotide sequence with an open reading frame of 252 bp encoding an 83-amino acid preprohepcidin peptide. Eight cysteine key residues conserved in all mammalian hepcidin sequences were identified. The model structure analysis of hepcidin-25 peptide showed a high homology structure and sequence identity to the human hepcidin. Two different hepcidin-25 analogs manually synthesized by SPPS shared significant cytotoxic capacity toward the Gram-negative bacterium Escherichia coli American Type Culture Collection (ATCC) 8739 as well as the Gram-positive bacteria Bacillus subtilis ATCC 11779 and Staphylococcus aureus ATCC 6538 in vitro. The three disulfide bridges hepcidin analog demonstrated bactericidal activity, against B. subtilis ATCC 11779 and S. aureus ATCC 6538 strains, at the concentration of 15 μM (50 µg/ml) or above at pH 6.2. This result correlates with the revealed structural features suggesting that camel hepcidin is proposed to be involved in antibacterial process of innate immune response.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratoire d'ingénierie des protéines et des molécules bioactives, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, BP 676, 1080, Tunis Cedex, Tunisia
| | | | | | | | | |
Collapse
|
35
|
Gong LC, Wang H, Deng L. Molecular characterization, phylogeny and expression of a hepcidin gene in the blotched snakehead Channa maculata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:1-11. [PMID: 24287270 DOI: 10.1016/j.dci.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 06/02/2023]
Abstract
A hepcidin-like gene (cmHep) was cloned and characterized from the liver of the blotched snakehead Channa maculata. The complete cmHep cDNA was 756 bp in length, containing an open reading frame of 270 bp (encoding 89 amino acids), flanked by 210 bp and 276 bp of 5' and 3' untranslated regions, respectively. The deduced peptide of 89 amino acids consisted of 24 aa, 40 aa and 25 aa for signal peptide, prodomain and mature peptide, respectively. The mature peptide had eight cysteines at the identical conserved positions in common with most of other known hepcidins in vertebrates. cmHepc gene displayed a tripartite structure (three exons interrupted by two introns), which organisation was conserved between the blotched snakehead and other fish species. Phylogenetic analysis of hepcidins from C. maculata and other vertebrates showed that major phylogenetic grouping of fish hepcidin coincided with the current euteleosts classification, indicating the multiphyletic evolution of hepcidin in the teleosts. In the Acanthopterygii subclade, there were two distinct additional subclades named as HAMP-Ac1 and HAMP-Ac2. The blotched snakehead hepcidin was in the group HAMP-Ac1, which has the hypothetical iron regulatory sequence [Q-S/I-H-L/I-S/A] motif in N-terminal of mature peptide. The RT-PCR showed cmHep mRNA transcripts were widely distributed in all tissues tested in the blotched snakehead including the liver, gill, intestine, spleen, head kidney and peripheral white blood cell. The most abundant of cmHep mRNA was detected in liver. A significant up-regulation of cmHep expression was detected only in head kidney at 24h post-challenge with Vibrio parahaemolyticus in blotched snakehead adults, no significant differences found in liver, gill, intestine and spleen. The cmHep expression was up-regulated in spleen, head kidney and intestine at 24h post-injection with LPS in blotched snakehead juveniles, liver cmHep expression was not altered. Iron overloading and poly I:C stimulation down-regulated cmHep expression in liver, but did not significantly change cmHep expression in spleen, head kidney and intestine in blotched snakehead juveniles.
Collapse
Affiliation(s)
- Li-cai Gong
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Hao Wang
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Li Deng
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| |
Collapse
|
36
|
Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf) 2014; 210:717-32. [PMID: 24521359 DOI: 10.1111/apha.12256] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 02/03/2014] [Indexed: 12/14/2022]
Abstract
The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β-cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.
Collapse
Affiliation(s)
- J. B. Hansen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - I. W. Moen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Mandrup-Poulsen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
37
|
Oliveira F, Rocha S, Fernandes R. Iron metabolism: from health to disease. J Clin Lab Anal 2014; 28:210-8. [PMID: 24478115 DOI: 10.1002/jcla.21668] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations. METHODS An extensive literature review on the basic aspects of iron metabolism was performed, and the most recent findings on this field were highlighted as well. RESULTS New insights on iron metabolism have shed light into its real complexity, and its role in both healthy and pathological states has been recognized. Important discoveries about the iron regulatory machine and imbalances in its regulation have been made, which may lead in a near future to the development of new therapeutic strategies against iron disorders. Besides, the toxicity of free iron and its association with several pathologies has been addressed, although it requires further investigations. CONCLUSION This review will provide students in the fields of biochemistry and health sciences a brief and clear overview of iron physiology and toxicity, as well as imbalances in the iron homeostasis and associated pathological conditions.
Collapse
Affiliation(s)
- Fernando Oliveira
- Ciências Químicas e das Biomoléculas e Unidade de Mecanismos Moleculares da Doença do Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | | | | |
Collapse
|
38
|
Martín-Antonio B, Granell M, Urbano-Ispizua Á. Genomic polymorphisms of the innate immune system and allogeneic stem cell transplantation. Expert Rev Hematol 2014; 3:411-27. [DOI: 10.1586/ehm.10.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Mandilaras K, Pathmanathan T, Missirlis F. Iron absorption in Drosophila melanogaster. Nutrients 2013; 5:1622-47. [PMID: 23686013 PMCID: PMC3708341 DOI: 10.3390/nu5051622] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022] Open
Abstract
The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.
Collapse
Affiliation(s)
- Konstantinos Mandilaras
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; E-Mail:
| | - Tharse Pathmanathan
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, IPN Avenue 2508, Zacatenco, 07360, Mexico City, Mexico; E-Mail:
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, IPN Avenue 2508, Zacatenco, 07360, Mexico City, Mexico; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-55-5747-3963; Fax: +52-55-5747-5713
| |
Collapse
|
40
|
Abstract
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Leida Tandara
- Department of Medical Laboratory Diagnosis, University Hospital Center Split, Split, Croatia.
| | | |
Collapse
|
41
|
Chaithanya ER, Philip R, Sathyan N, Anil Kumar PR, Antony SP, Sanjeevan VN, Bright Singh IS. A Novel Isoform of the Hepatic Antimicrobial Peptide, Hepcidin (Hepc-CB1), from a Deep-Sea Fish, the Spinyjaw Greeneye Chlorophthalmus bicornis (Norman, 1939): Molecular Characterisation and Phylogeny. Probiotics Antimicrob Proteins 2012; 5:1-7. [DOI: 10.1007/s12602-012-9120-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Brosnahan M, Erb H, Perkins G, Divers T, Borges A, Osterrieder N. Serum Iron Parameters and Acute Experimental EHV-1 Infection in Horses. J Vet Intern Med 2012; 26:1232-5. [DOI: 10.1111/j.1939-1676.2012.00963.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- M.M. Brosnahan
- Baker Institute for Animal Health; Cornell University; Ithaca; NY
| | - H.N. Erb
- Department of Population Medicine & Diagnostic Sciences
| | - G.A. Perkins
- Department of Clinical Sciences; College of Veterinary Medicine (Perkins); Cornell University; Ithaca; NY
| | - T.J. Divers
- Department of Population Medicine & Diagnostic Sciences
| | - A.S. Borges
- Department of Veterinary Clinical Science; School of Veterinary Medicine and Animal Science; Univ Estadual Paulista (UNESP); Botucatu; SP; Brazil
| | - N. Osterrieder
- Institut für Virologie; Freie Universität Berlin; Berlin; Germany
| |
Collapse
|
43
|
Grimes CN, Giori L, Fry MM. Role of hepcidin in iron metabolism and potential clinical applications. Vet Clin North Am Small Anim Pract 2012; 42:85-96. [PMID: 22285159 DOI: 10.1016/j.cvsm.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relatively recent discovery of hepcidin has stimulated renewed research interest in iron metabolism and iron-related disorders, emphasizing the importance of this hormone in many normal and pathologic processes. Important questions still remain to be answered; however, research to date offers promising diagnostic and therapeutic implications for both humans and veterinary species.
Collapse
Affiliation(s)
- Carolyn N Grimes
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996-4542, USA
| | | | | |
Collapse
|
44
|
Smith AD, Wilks A. Extracellular heme uptake and the challenges of bacterial cell membranes. CURRENT TOPICS IN MEMBRANES 2012; 69:359-92. [PMID: 23046657 PMCID: PMC3731948 DOI: 10.1016/b978-0-12-394390-3.00013-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.
Collapse
Affiliation(s)
- Aaron D. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| |
Collapse
|
45
|
Macdougall IC. New anemia therapies: translating novel strategies from bench to bedside. Am J Kidney Dis 2011; 59:444-51. [PMID: 22192713 DOI: 10.1053/j.ajkd.2011.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/29/2011] [Indexed: 01/27/2023]
Abstract
Recombinant human erythropoietin (epoetin) has been available for the treatment of renal anemia for more than 20 years, and within the last decade two molecularly engineered analogues darbepoetin alfa and pegylated epoetin beta were introduced as longer-acting erythropoiesis-stimulating agents. Recently, newer strategies for correcting anemia have been explored, some of which remain in the laboratory while others are translating across into clinical trials. Peginesatide has completed phase 3 clinical trials for the treatment of anemia associated with chronic kidney disease; this molecule is immunologically distinct from the erythropoietic proteins, with no cross-reactivity with anti-erythropoietin antibodies. HIF (hypoxia inducible factor) stabilization involves the pharmacologic inhibition of prolyl hydroxylation of HIF-α (the major transcription factor controlling erythropoietin gene expression), thereby preventing its degradation in the proteasome. Hepcidin is the master regulator of iron metabolism, and this peptide is upregulated in inflammatory conditions, including uremia; its antagonism has been shown to cause amelioration of inflammatory anemia in animal models. For the time being, erythropoiesis-stimulating agent therapy remains the mainstay of anemia management in chronic kidney disease, but it is possible that one or more of the strategies discussed in this review may have a future role in the treatment of this condition.
Collapse
Affiliation(s)
- Iain C Macdougall
- Department of Renal Medicine, King's College Hospital, London, United Kingdom.
| |
Collapse
|
46
|
Nam YK, Cho YS, Lee SY, Kim BS, Kim DS. Molecular characterization of hepcidin gene from mud loach (Misgurnus mizolepis; Cypriniformes). FISH & SHELLFISH IMMUNOLOGY 2011; 31:1251-1258. [PMID: 21959039 DOI: 10.1016/j.fsi.2011.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
The gene encoding hepcidin, an antimicrobial peptide, was isolated and characterized in the mud loach Misgurnus mizolepis (Cypriniformes). Mud loach hepcidin shows a considerable degree of structural homology to other vertebrate hamp1 orthologues at both the gene and protein levels, particularly with respect to its tripartite genomic organization, typical transcription-factor-binding motifs in its promoter, and conserved cysteine residues in the mature cationic peptide. The mud loach possesses at least two allelic forms of hamp1, which are expected to be translated into the same hepcidin preproprotein. The two alleles are transmitted from parental fish to offspring with a Mendelian inheritance pattern, as demonstrated with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping. Southern blot hybridization analysis showed a high degree of polymorphisms in the restriction patterns of individuals. Mud loach hamp1 mRNA is predominantly expressed in the liver, although many other tissues showed detectable levels of hamp1 transcripts in RT-PCR assay. Lipopolysaccharide and bacterial challenges induced significant hamp1 expression, whereas hamp1 was not clearly stimulated by polyinosinic:polycytidylic acid [poly(I:C)] injection. Iron overload and Cu exposure also elevated hamp1 transcripts in various tissues. The transcriptional activation of mud loach hamp1 in response to these stimuli varied among tissue types, and the liver appears predominantly involved in hepcidin-mediated iron regulation. However, hepcidin expression in the kidney and spleen was preferentially modulated by inflammation-mediated signals produced by immune challenges. Our results suggest that mud loach hepcidin has two basic functions, in iron regulation and antimicrobial activity, and that its transcription is also modulated by other environmental perturbations, including heavy metal exposure.
Collapse
Affiliation(s)
- Yoon Kwon Nam
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea.
| | | | | | | | | |
Collapse
|
47
|
Bruhn O, Grötzinger J, Cascorbi I, Jung S. Antimicrobial peptides and proteins of the horse--insights into a well-armed organism. Vet Res 2011; 42:98. [PMID: 21888650 PMCID: PMC3179947 DOI: 10.1186/1297-9716-42-98] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/02/2011] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute for Experimental and Clinical Pharmacology, Hospitalstraße 4, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
48
|
Gomes S, Gallego-Llamas J, Leonor IB, Mano JF, Reis RL, Kaplan DL. Biological responses to spider silk-antibiotic fusion protein. J Tissue Eng Regen Med 2011; 6:356-68. [PMID: 22514077 DOI: 10.1002/term.437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
The development of a new generation of multifunctional biomaterials is a continual goal for the field of materials science. The in vivo functional behaviour of a new fusion protein that combines the mechanical properties of spider silk with the antimicrobial properties of hepcidin was addressed in this study. This new chimeric protein, termed 6mer + hepcidin, fuses spider dragline consensus sequences (6mer) and the antimicrobial peptide hepcidin, as we have recently described, with retention of bactericidal activity and low cytotoxicity. In the present study, mouse subcutaneous implants were studied to access the in vivo biological response to 6mer + hepcidin, which were compared with controls of silk alone (6mer), polylactic-glycolic acid (PLGA) films and empty defects. Along with visual observations, flow cytometry and histology analyses were used to determine the number and type of inflammatory cells at the implantation site. The results show a mild to low inflammatory reaction to the implanted materials and no apparent differences between the 6mer + hepcidin films and the other experimental controls, demonstrating that the new fusion protein has good in vivo biocompatibility, while maintaining antibiotic function.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Wu S, Zhang K, Lv C, Wang H, Cheng B, Jin Y, Chen Q, Lian Q, Fang X. Nuclear factor-κB mediated lipopolysaccharide-induced mRNA expression of hepcidin in human peripheral blood leukocytes. Innate Immun 2011; 18:318-24. [PMID: 21685415 DOI: 10.1177/1753425911405087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepcidin is a known key modulator of iron homeostasis and an innate immune molecule secreted by the liver. The transcriptional mechanism of hepcidin in hepatocytes during inflammation is mediated via the IL-6/STAT3 pathway. Recently, hepcidin demonstrated an anti-inflammatory function in endotoxic mice, and a TLR4-dependent inducible expression of hepcidin was detected in myeloid cells. In this study, we explored the expression and signaling mechanism regulating hepcidin mRNA expression in peripheral blood leukocytes. The mRNA levels of hepcidin in peripheral blood leukocytes from patients with severe sepsis (n = 14) was significantly higher than those in healthy controls (n = 16;0.286 ± 0.065 vs 0.068 ± 0.025; P < 0.05). Ex vivo studies found hepcidin mRNA can be highly induced by challenge of 100 ng/ml LPS or 20 ng/ml TNF-α in peripheral blood leukocytes rather than IL-6, IL-1 and IFN-γ. Anti-TNF-α antibody significantly decreased the levels of hepcidin mRNA induced by LPS. Inhibitor of nuclear factor (NF)-κB rather than that of STAT3 completely abolished the inducibility of hepcidin mRNA in PBMCs and neutrophils. These results indicate that hepcidin mRNA expression in peripheral blood leukocytes induced by LPS depends on NF-κB, and TNF-α may be a key mediator in this procedure.
Collapse
Affiliation(s)
- Shuijing Wu
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Badial PR, Oliveira Filho JP, Cunha PHJ, Cagnini DQ, Araújo JP, Winand NJ, Borges AS. Identification, characterization and expression analysis of hepcidin gene in sheep. Res Vet Sci 2011; 90:443-50. [DOI: 10.1016/j.rvsc.2010.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 12/24/2022]
|