1
|
Zygmunt A, Wong B, Moon D, Horn P, Rathbun R, Lambert J, Bange J, Rybalsky I, Reebals L, Tian C. The impact of genotype on age at loss of ambulation in individuals with Duchenne muscular dystrophy treated with corticosteroids: A single-center study of 555 patients. Muscle Nerve 2024; 70:1053-1061. [PMID: 39291879 DOI: 10.1002/mus.28255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION/AIMS Studies have demonstrated that certain genotypes in Duchenne muscular dystrophy (DMD) have milder or more severe phenotypes. These studies included individuals treated and not treated with corticosteroids and multiple sites with potentially varying standards of care. We aimed to assess genotype-phenotype correlations for age at loss of ambulation (LoA) in a large cohort of individuals with DMD treated with corticosteroids at one center. METHODS In this retrospective review of medical records, encounters were included for individuals diagnosed with DMD if prescribed corticosteroids, defined as daily deflazacort or prednisone or high-dose weekend prednisone, for 12 consecutive months. Encounters were excluded if the participants were taking disease-modifying therapy. Data were analyzed using survival analysis for LoA and Fisher's exact tests to assess the percentage of late ambulatory (>14 years old) individuals for selected genotypes. RESULTS Overall, 3948 encounters from 555 individuals were included. Survival analysis showed later age at LoA for exon 44 skip amenable (p = .004), deletion exons 3-7 (p < .001) and duplication exon 2 (p = .043) cohorts and earlier age at LoA for the exon 51 skip amenable cohort (p < .001) when compared with the rest of the cohort. Individuals with deletions of exons 3-7 had significantly more late ambulatory individuals than other cohorts (75%), while those with exon 51 skip amenable deletions had significantly fewer (11.9%) compared with other cohorts. DISCUSSION This confirms previous observations of genotype-phenotype correlations in DMD and enhances information for trial design and clinical management.
Collapse
Affiliation(s)
- Alexander Zygmunt
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brenda Wong
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - David Moon
- Division of Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Paul Horn
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard Rathbun
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua Lambert
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jean Bange
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Irina Rybalsky
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa Reebals
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cuixia Tian
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Bello L, Hoffman EP, Pegoraro E. Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy? Nat Rev Neurol 2023; 19:410-423. [PMID: 37308617 DOI: 10.1038/s41582-023-00823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis - processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.
Collapse
Affiliation(s)
- Luca Bello
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Elena Pegoraro
- Department of Neurosciences (DNS), University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Andrews JG, Galindo MK, Thomas S, Mathews KD, Whitehead N. DMD Gene and Dystrophinopathy Phenotypes Associated With Mutations: A Systematic Review for Clinicians. J Clin Neuromuscul Dis 2023; 24:171-187. [PMID: 37219861 DOI: 10.1097/cnd.0000000000000436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT The diagnosis of Duchenne and Becker muscular dystrophy (DBMD) is made by genetic testing in approximately 95% of cases. Although specific mutations can be associated with skeletal muscle phenotype, pulmonary and cardiac comorbidities (leading causes of death in Duchenne) have not been associated with Duchenne muscular dystrophy mutation type or location and vary within families. Therefore, identifying predictors for phenotype severity beyond frameshift prediction is important clinically. We performed a systematic review assessing research related to genotype-phenotype correlations in DBMD. While there are severity differences across the spectrum and within mild and severe forms of DBMD, few protective or exacerbating mutations within the dystrophin gene were reported. Except for intellectual disability, clinical test results reporting genotypic information are insufficient for clinical prediction of severity and comorbidities and the predictive validity is too low to be useful when advising families. Including expanded information coupled with proposed severity predictions in clinical genetic reports for DBMD is critical for improving anticipatory guidance.
Collapse
Affiliation(s)
- Jennifer G Andrews
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ
| | | | | | - Katherine D Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | | |
Collapse
|
5
|
Kosac A, Pesovic J, Radenkovic L, Brkusanin M, Radovanovic N, Djurisic M, Radivojevic D, Mladenovic J, Ostojic S, Kovacevic G, Kravljanac R, Savic Pavicevic D, Milic Rasic V. LTBP4, SPP1, and CD40 Variants: Genetic Modifiers of Duchenne Muscular Dystrophy Analyzed in Serbian Patients. Genes (Basel) 2022; 13:1385. [PMID: 36011296 PMCID: PMC9407083 DOI: 10.3390/genes13081385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical course variability in Duchenne muscular dystrophy (DMD) is partially explained by the mutation location in the DMD gene and variants in modifier genes. We assessed the effect of the SPP1, CD40, and LTBP4 genes and DMD mutation location on loss of ambulation (LoA). METHODS SNPs in SPP1-rs28357094, LTBP4-rs2303729, rs1131620, rs1051303, rs10880, and CD40-rs1883832 were genotyped, and their effect was assessed by survival and hierarchical cluster analysis. RESULTS Patients on glucocorticoid corticosteroid (GC) therapy experienced LoA one year later (p = 0.04). The modifying effect of SPP1 and CD40 variants, as well as LTBP4 haplotypes, was not observed using a log-rank test and multivariant Cox regression analysis. Cluster analysis revealed two subgroups with statistical trends in differences in age at LoA. Almost all patients in the cluster with later LoA had the protective IAAM LTBP4 haplotype and statistically significantly fewer CD40 genotypes with harmful T allele and "distal" DMD mutations. CONCLUSIONS The modifying effect of SPP1, CD40, and LTBP4 was not replicated in Serbian patients, although our cohort was comparable in terms of its DMD mutation type distribution, SNP allele frequencies, and GC-positive effect with other European cohorts. Cluster analysis may be able to identify patient subgroups carrying a combination of the genetic variants that modify LoA.
Collapse
Affiliation(s)
- Ana Kosac
- Department of Neurology, Clinic of Neurology and Psychiatry for Children and Youth, 11000 Belgrade, Serbia
| | - Jovan Pesovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lana Radenkovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Brkusanin
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Nemanja Radovanovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Djurisic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Danijela Radivojevic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Jelena Mladenovic
- Department of Neurology, Clinic of Neurology and Psychiatry for Children and Youth, 11000 Belgrade, Serbia
| | - Slavica Ostojic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Gordana Kovacevic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Ruzica Kravljanac
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusanka Savic Pavicevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
6
|
Genetic modifiers of upper limb function in Duchenne muscular dystrophy. J Neurol 2022; 269:4884-4894. [PMID: 35513612 PMCID: PMC9363325 DOI: 10.1007/s00415-022-11133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/26/2022]
Abstract
Genetic modifiers of Duchenne muscular dystrophy (DMD) are variants located in genes different from the disease-causing gene DMD, but associated with differences in disease onset, progression, or response to treatment. Modifiers described so far have been tested mainly for associations with ambulatory function, while their effect on upper limb function, which is especially relevant for quality of life and independence in non-ambulatory patients, is unknown. We tested genotypes at several known modifier loci (SPP1, LTBP4, CD40, ACTN3) for association with Performance Upper Limb version 1.2 score in an Italian multicenter cohort, and with Brooke scale score in the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS), using generalized estimating equation (GEE) models of longitudinally collected data, with age and glucocorticoid treatment as covariates. CD40 rs1883832, previously linked to earlier loss of ambulation, emerged as a modifier of upper limb function, negatively affecting shoulder and distal domains of PUL (p = 0.023 and 0.018, respectively) in the Italian cohort, as well as of Brooke score (p = 0.018) in the CINRG-DNHS. These findings will be useful for the design and interpretation of clinical trials in DMD, especially for non-ambulatory populations.
Collapse
|
7
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Szabo SM, Gooch KL, Mickle AT, Salhany RM, Connolly AM. The impact of genotype on outcomes in individuals with Duchenne muscular dystrophy: A systematic review. Muscle Nerve 2021; 65:266-277. [PMID: 34878187 DOI: 10.1002/mus.27463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
Duchenne muscular dystrophy (DMD) is associated with progressive muscle weakness, loss of ambulation (LOA), and early mortality. In this review we have synthesized published data on the clinical course of DMD by genotype. Using a systematic search implemented in Medline and Embase, 53 articles were identified that describe the clinical course of DMD, with pathogenic variants categorizable by exon skip or stop-codon readthrough amenability and outcomes presented by age. Outcomes described included those related to ambulatory, cardiac, pulmonary, or cognitive function. Estimates of the mean (95% confidence interval) age at LOA ranged from 9.1 (8.7-9.6) years among 90 patients amenable to skipping exon 53 to 11.5 (9.5-13.5) years among three patients amenable to skipping exon 8. Although function worsened with age, the impact of genotype was less clear for other outcomes (eg, forced vital capacity and left ventricular ejection fraction). Understanding the distribution of pathogenic variants is important for studies in DMD, as this research suggests major differences in the natural history of disease. In addition, specific details of the use of key medications, including corticosteroids, antisense oligonucleotides, and cardiac medications, should be reported.
Collapse
Affiliation(s)
- Shelagh M Szabo
- Broadstreet Heath Economics & Outcomes Research, Vancouver, British Columbia, Canada
| | | | - Alexis T Mickle
- Broadstreet Heath Economics & Outcomes Research, Vancouver, British Columbia, Canada
| | | | - Anne M Connolly
- Division of Neurology, Nationwide Children's Hospital, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Rossi R, Falzarano MS, Osman H, Armaroli A, Scotton C, Mantuano P, Boccanegra B, Cappellari O, Schwartz E, Yuryev A, Mercuri E, Bertini E, D'Amico A, Mora M, Johansson C, Al-Khalili Szigyarto C, De Luca A, Ferlini A. Circadian Genes as Exploratory Biomarkers in DMD: Results From Both the mdx Mouse Model and Patients. Front Physiol 2021; 12:678974. [PMID: 34305639 PMCID: PMC8300012 DOI: 10.3389/fphys.2021.678974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients’ plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.
Collapse
Affiliation(s)
- Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Hana Osman
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Johansson
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| |
Collapse
|
10
|
Luce L, Carcione M, Mazzanti C, Buonfiglio PI, Dalamón V, Mesa L, Dubrovsky A, Corderí J, Giliberto F. Theragnosis for Duchenne Muscular Dystrophy. Front Pharmacol 2021; 12:648390. [PMID: 34149409 PMCID: PMC8209366 DOI: 10.3389/fphar.2021.648390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Dystrophinopathies cover a spectrum of rare progressive X-linked muscle diseases, arising from DMD mutations. They are among the most common pediatric muscular dystrophies, being Duchenne muscular dystrophy (DMD) the most severe form. Despite the fact that there is still no cure for these serious diseases, unprecedented advances are being made for the development of therapies for DMD. Some of which are already conditionally approved: exon skipping and premature stop codon read-through. The present work aimed to characterize the mutational spectrum of DMD in an Argentinian cohort, to identify candidates for available pharmacogenetic treatments and finally, to conduct a comparative analysis of the Latin American (LA) frequencies of mutations amenable for available DMD therapies. We studied 400 patients with clinical diagnosis of dystrophinopathy, implementing a diagnostic molecular algorithm including: MLPA/PCR/Sanger/Exome and bioinformatics. We also performed a meta-analysis of LA's metrics for DMD available therapies. The employed algorithm resulted effective for the achievement of differential diagnosis, reaching a detection rate of 97%. Because of this, corticosteroid treatment was correctly indicated and validated in 371 patients with genetic confirmation of dystrophinopathy. Also, 20 were eligible for exon skipping of exon 51, 21 for exon 53, 12 for exon 45 and another 70 for premature stop codon read-through therapy. We determined that 87.5% of DMD patients will restore the reading frame with the skipping of only one exon. Regarding nonsense variants, UGA turned out to be the most frequent premature stop codon observed (47%). According to the meta-analysis, only four LA countries (Argentina, Brazil, Colombia and Mexico) provide the complete molecular algorithm for dystrophinopathies. We observed different relations among the available targets for exon skipping in the analyzed populations, but a more even proportion of nonsense variants (∼40%). In conclusion, this manuscript describes the theragnosis carried out in Argentinian dystrophinopathy patients. The implemented molecular algorithm proved to be efficient for the achievement of differential diagnosis, which plays a crucial role in patient management, determination of the standard of care and genetic counseling. Finally, this work contributes with the international efforts to characterize the frequencies and variants in LA, pillars of drug development and theragnosis.
Collapse
Affiliation(s)
- Leonela Luce
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carcione
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chiara Mazzanti
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula I Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Lilia Mesa
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Alberto Dubrovsky
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - José Corderí
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Abstract
The DMD gene is the largest in the human genome, with a total intron content exceeding 2.2Mb. In the decades since DMD was discovered there have been numerous reported cases of pseudoexons (PEs) arising in the mature DMD transcripts of some individuals, either as the result of mutations or as low-frequency errors of the spliceosome. In this review, I collate from the literature 58 examples of DMD PEs and examine the diversity and commonalities of their features. In particular, I note the high frequency of PEs that arise from deep intronic SNVs and discuss a possible link between PEs induced by distal mutations and the regulation of recursive splicing.
Collapse
Affiliation(s)
- Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University and Perron Institute, Perth, Australia
| |
Collapse
|
12
|
Chen M, Wang L, Li Y, Chen Y, Zhang H, Zhu Y, He R, Li H, Lin J, Zhang Y, Zhang C. Genetic Modifiers of Duchenne Muscular Dystrophy in Chinese Patients. Front Neurol 2020; 11:721. [PMID: 32849198 PMCID: PMC7403400 DOI: 10.3389/fneur.2020.00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
Background: Duchenne muscular dystrophy (DMD) is a fatal, X-linked recessive muscle disorder characterized by heterogeneous progression and severity. We aimed to study the effects of single nucleotide polymorphisms (SNPs) in SPP1 and LTBP4 on DMD progression in Chinese patients. Methods: We genotyped LTBP4 haplotypes and the SPP1 promoter SNPs rs28357094, rs11730582, and rs17524488 in 326 patients registered in the neuromuscular database of The First Affiliated Hospital of Sun Yat-sen University. Kaplan-Meier curves and log-rank tests were used to estimate and compare median age at loss of ambulation, while Cox proportional hazard regression models were used as to analyze the effects of glucocorticoids treatments, DMD genotype, and SPP1/LTBP4 SNPs on loss of ambulation. Results: The CC/CT genotype at rs11730582 was associated with a 1.33-year delay in ambulation loss (p = 0.006), with hazard ratio 0.63 (p = 0.008), in patients with truncated DMD genotype and undergoing steroid treatment. On the other hand, rs17524488 in SPP1 and the IAAM/IAAM haplotype in LTBP4 were not associated with time to ambulation loss. Conclusions:SPP1 rs11730582 is a genetic modifier of the long-term effects of steroid treatment in Chinese DMD patients. Thus, any future clinical study in DMD should adjust for glucocorticoids use, DMD genotype, and SPP1 polymorphisms.
Collapse
Affiliation(s)
- Menglong Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongjun Chen
- Department of Neurology, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yuling Zhu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
The "Usual Suspects": Genes for Inflammation, Fibrosis, Regeneration, and Muscle Strength Modify Duchenne Muscular Dystrophy. J Clin Med 2019; 8:jcm8050649. [PMID: 31083420 PMCID: PMC6571893 DOI: 10.3390/jcm8050649] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathy, is quite homogeneous with regards to its causative biochemical defect, i.e., complete dystrophin deficiency, but not so much with regards to its phenotype. For instance, muscle weakness progresses to the loss of independent ambulation at a variable age, starting from before 10 years, to even after 16 years (with glucocorticoid treatment). Identifying the bases of such variability is relevant for patient counseling, prognosis, stratification in trials, and identification of therapeutic targets. To date, variants in five loci have been associated with variability in human DMD sub-phenotypes: SPP1, LTBP4, CD40, ACTN3, and THBS1. Four of these genes (SPP1, LTBP4, CD40, and THBS1) are implicated in several interconnected molecular pathways regulating inflammatory response to muscle damage, regeneration, and fibrosis; while ACTN3 is known as “the gene for speed”, as it contains a common truncating polymorphism (18% of the general population), which reduces muscle power and sprint performance. Studies leading to the identification of these modifiers were mostly based on a “candidate gene” approach, hence the identification of modifiers in “usual suspect” pathways, which are already known to modify muscle in disease or health. Unbiased approaches that are based on genome mapping have so far been applied only initially, but they will probably represent the focus of future developments in this field, and will hopefully identify novel, “unsuspected” therapeutic targets. In this article, we summarize the state of the art of modifier loci of human dystrophin deficiency, and attempt to assess their relevance and implications on both clinical management and translational research.
Collapse
|
14
|
Andrews JG, Lamb MM, Conway K, Street N, Westfield C, Ciafaloni E, Matthews D, Cunniff C, Pandya S, Fox DJ. Diagnostic Accuracy of Phenotype Classification in Duchenne and Becker Muscular Dystrophy Using Medical Record Data1. J Neuromuscul Dis 2019; 5:481-495. [PMID: 30320597 DOI: 10.3233/jnd-180306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dystrophinopathies are caused by mutations in DMD resulting in progressive muscle weakness. They are historically divided into the more severe Duchenne (DMD) and milder Becker (BMD) muscular dystrophy phenotypes. Classification is important for research and clinical care. The purpose of this study was to describe a multi-variable approach to classifying cases from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) and to assess the accuracy of the diagnostic classification scheme. We used age at loss of mobility, molecular testing results, and age at symptom onset to classify cases as having DMD or BMD and to assess sensitivity and specificity. Mobility status showed low sensitivity and high specificity for predicting DMD (65.5% and 99.3%, respectively) and BMD (62.8% and 97.7%, respectively) phenotypes. Molecular testing showed 90.9% sensitivity and 66.4% specificity for DMD; 76.3% sensitivity and 90.0% specificity for BMD. Age of onset predicted DMD with sensitivity of 73.9% and specificity of 69.0%; BMD had 99.7% specificity and 36.7% sensitivity. Mobility status, molecular test results, and age at symptom onset are important but inconsistent measures for accurately classifying individuals into DMD or BMD phenotypes. These results have implications for prognosis in newly diagnosed individuals and for classifying phenotype in clinical trials.
Collapse
Affiliation(s)
| | - Molly M Lamb
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kristin Conway
- Department of Epidemiology, The University of Iowa, Iowa City, Iowa, USA
| | - Natalie Street
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Emma Ciafaloni
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Dennis Matthews
- Physical Medicine and Rehabilitation, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher Cunniff
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Shree Pandya
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Deborah J Fox
- New York State Department of Health, Albany, New York, USA
| | | |
Collapse
|
15
|
Precise mapping of 17 deletion breakpoints within the central hotspot deletion region (introns 50 and 51) of the DMD gene. J Hum Genet 2017; 62:1057-1063. [PMID: 28878337 DOI: 10.1038/jhg.2017.84] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
Exon deletions in the human DMD gene, which encodes the dystrophin protein, are the molecular defect in 50-70% of cases of Duchenne/Becker muscular dystrophies. Deletions are preferentially clustered in the 5' (exons 2-20) and the central (exons 45-53) region of DMD, likely because local DNA structure predisposes to specific breakage or recombination events. Notably, innovative therapeutic strategies may rescue dystrophin function by homology-based specific targeting of sequences within the central DMD hot spot deletion region. To further study molecular mechanisms that generate such frequent genome variations and to identify residual intronic sequences, we sequenced 17 deletion breakpoints within introns 50 and 51 of DMD and analyzed the surrounding genomic architecture. There was no breakpoint clustering within the introns nor extensive homology between sequences adjacent to each junction. However, at or near the breakpoint, we found microhomology, short tandem repeats, interspersed repeat elements and short sequence stretches that predispose to DNA deletion or bending. Identification of such structural elements contributes to elucidate general mechanisms generating deletion within the DMD gene. Moreover, precise mapping of deletion breakpoints and localization of repeated elements are of interest, because residual intronic sequences may be targeted by therapeutic strategies based on genome editing correction.
Collapse
|
16
|
Brinkmeyer-Langford C, Balog-Alvarez C, Cai JJ, Davis BW, Kornegay JN. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy. BMC Genomics 2016; 17:665. [PMID: 27549615 PMCID: PMC4994242 DOI: 10.1186/s12864-016-2948-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. Results We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. Conclusions The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2948-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cynthia Balog-Alvarez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Brian W Davis
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Bello L, Morgenroth LP, Gordish-Dressman H, Hoffman EP, McDonald CM, Cirak S. DMD genotypes and loss of ambulation in the CINRG Duchenne Natural History Study. Neurology 2016; 87:401-9. [PMID: 27343068 DOI: 10.1212/wnl.0000000000002891] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/22/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To correlate time to loss of ambulation (LoA) and different truncating DMD gene mutations in a large, prospective natural history study of Duchenne muscular dystrophy (DMD), with particular attention to mutations amenable to emerging molecular treatments. METHODS We analyzed data from the Cooperative International Neuromuscular Research Group Duchenne Natural History Study for participants with DMD single- or multi-exon deletions or duplications with defined exon boundaries (n = 186), or small mutations identified by sequencing (n = 26, including 16 nonsense point mutations). We performed a time-to-event analysis of LoA, a strong indicator of overall disease severity, adjusting for glucocorticoid treatment and genetic modifiers. RESULTS Participants with deletions amenable to skipping of exon 44 had later LoA (median 14.8 years, hazard ratio 0.31, 95% confidence interval 0.14-0.69, p = 0.004). Age at LoA did not differ significantly in participants with deletions amenable to exon 45, 51, and 53 skipping, duplications, and small rearrangements. Nonsense mutation DMD also showed a typical median age at LoA (11.1 years), with a few outliers (ambulatory around or after 16 years of age) carrying stop codons within in-frame exons, more often situated in the rod domain. CONCLUSIONS As exon 44 skipping-amenable DMD has a later LoA, mutation-specific randomization and selection of placebo groups are essential for the success of clinical trials.
Collapse
Affiliation(s)
- Luca Bello
- From the Children's National Health System (L.B., L.P.M., H.G.-D., E.P.H., S.C.), Washington, DC; Department of Neuroscience (L.B.), University of Padova, Italy; University of California Davis Medical Center (C.M.M.), Sacramento; and Institute of Human Genetics (S.C.), University Children's Hospital, and Center of Molecular Medicine, University of Cologne, Germany
| | - Lauren P Morgenroth
- From the Children's National Health System (L.B., L.P.M., H.G.-D., E.P.H., S.C.), Washington, DC; Department of Neuroscience (L.B.), University of Padova, Italy; University of California Davis Medical Center (C.M.M.), Sacramento; and Institute of Human Genetics (S.C.), University Children's Hospital, and Center of Molecular Medicine, University of Cologne, Germany
| | - Heather Gordish-Dressman
- From the Children's National Health System (L.B., L.P.M., H.G.-D., E.P.H., S.C.), Washington, DC; Department of Neuroscience (L.B.), University of Padova, Italy; University of California Davis Medical Center (C.M.M.), Sacramento; and Institute of Human Genetics (S.C.), University Children's Hospital, and Center of Molecular Medicine, University of Cologne, Germany
| | - Eric P Hoffman
- From the Children's National Health System (L.B., L.P.M., H.G.-D., E.P.H., S.C.), Washington, DC; Department of Neuroscience (L.B.), University of Padova, Italy; University of California Davis Medical Center (C.M.M.), Sacramento; and Institute of Human Genetics (S.C.), University Children's Hospital, and Center of Molecular Medicine, University of Cologne, Germany
| | - Craig M McDonald
- From the Children's National Health System (L.B., L.P.M., H.G.-D., E.P.H., S.C.), Washington, DC; Department of Neuroscience (L.B.), University of Padova, Italy; University of California Davis Medical Center (C.M.M.), Sacramento; and Institute of Human Genetics (S.C.), University Children's Hospital, and Center of Molecular Medicine, University of Cologne, Germany
| | | | | |
Collapse
|
18
|
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene that encodes the cytoskeletal protein, dystrophin. Dystrophinopathies are inherited in an X-linked recessive manner. Due to the tremendous size of the gene (2.2 megabases), the DMD locus has a high spontaneous mutation rate, and one third of sporadic cases of DMD are due to a de novo mutation. There are seven tissue-specific promoters in the gene. The skeletal muscular transcript contains 79 exons and encode the full-length protein (427-kDa) located at the inner face of the sarcolemma of muscle fibers. DMD gene mutations are highly heterogeneous. Large rearrangements (deletions or duplications of one or more exons) are most frequently involved while point mutations account for 20 %-30 % of cases. A survey of current strategies of molecular diagnosis is presented here. In particular, the role of muscle biopsy (for dystrophin and RNA analyses) in the diagnosis of dystrophinopathies is discussed. In more than 90 % of cases, the clinical severity is correlated with the impact of the mutations on the reading frame and the expression of the dystrophin (absence or residual amount of mutated protein). Various mechanisms contribute to the exceptions. Besides the clinical interest for the patient, the identification of the mutation allows accurate genetic counseling in the familles, and is a necessary prerequisite for the inclusion of the patient in the genotype-based clinical trials.
Collapse
Affiliation(s)
- F Leturcq
- Laboratoire de biochimie et génétique, moléculaire, Hôpital Cochin et Institut de Myologie, Groupe hospitalier La Pitié Salpétrière, APHP, France
| | - S Tuffery-Giraud
- Laboratoire de Génétique de Maladies Rares, Université de Montpellier, IURC, 641 av du Doyen G. Giraud, 34093 Montpellier cedex 5, France.
| |
Collapse
|
19
|
Toh ZYC, Thandar Aung-Htut M, Pinniger G, Adams AM, Krishnaswarmy S, Wong BL, Fletcher S, Wilton SD. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies. PLoS One 2016; 11:e0145620. [PMID: 26745801 PMCID: PMC4706350 DOI: 10.1371/journal.pone.0145620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/07/2015] [Indexed: 12/03/2022] Open
Abstract
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.
Collapse
Affiliation(s)
- Zhi Yon Charles Toh
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
| | | | - Gavin Pinniger
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Abbie M. Adams
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | | | - Brenda L. Wong
- Department of Paediatrics, Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sue Fletcher
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Steve D. Wilton
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
- * E-mail:
| |
Collapse
|
20
|
DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations. PLoS One 2015; 10:e0135189. [PMID: 26284620 PMCID: PMC4540588 DOI: 10.1371/journal.pone.0135189] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.
Collapse
|
21
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Brinkmeyer-Langford C, Kornegay JN. Comparative Genomics of X-linked Muscular Dystrophies: The Golden Retriever Model. Curr Genomics 2014; 14:330-42. [PMID: 24403852 PMCID: PMC3763684 DOI: 10.2174/13892029113149990004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease that dramatically decreases the lifespan and abilities of affected young people. The primary molecular cause of the disease is the absence of functional dystrophin protein, which is critical to proper muscle function. Those with DMD vary in disease presentation and dystrophin mutation; the same causal mutation may be associated with drastically different levels of disease severity. Also contributing to this variation are the influences of additional modifying genes and/or changes in functional elements governing such modifiers. This genetic heterogeneity complicates the efficacy of treatment methods and to date medical interventions are limited to treating symptoms. Animal models of DMD have been instrumental in teasing out the intricacies of DMD disease and hold great promise for advancing knowledge of its variable presentation and treatment. This review addresses the utility of comparative genomics in elucidating the complex background behind phenotypic variation in a canine model of DMD, Golden Retriever muscular dystrophy (GRMD). This knowledge can be exploited in the development of improved, more personalized treatments for DMD patients, such as therapies that can be tailor-matched to the disease course and genomic background of individual patients.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Texas A&M University College of Veterinary Medicine, Dept. of Veterinary Integrative Biosciences - Mailstop 4458, College Station, Texas, U.S.A. 77843-4458
| | - Joe N Kornegay
- Texas A&M University College of Veterinary Medicine, Dept. of Veterinary Integrative Biosciences - Mailstop 4458, College Station, Texas, U.S.A. 77843-4458
| |
Collapse
|
23
|
Echigoya Y, Lee J, Rodrigues M, Nagata T, Tanihata J, Nozohourmehrabad A, Panesar D, Miskew B, Aoki Y, Yokota T. Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice. PLoS One 2013; 8:e69194. [PMID: 23894429 PMCID: PMC3722172 DOI: 10.1371/journal.pone.0069194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Joshua Lee
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ashkan Nozohourmehrabad
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Dharminder Panesar
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Bailey Miskew
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Molecular analysis of the dystrophin gene in 407 Chinese patients with Duchenne/Becker muscular dystrophy by the combination of multiplex ligation-dependent probe amplification and Sanger sequencing. Clin Chim Acta 2013; 423:35-8. [PMID: 23588064 DOI: 10.1016/j.cca.2013.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Progressive muscular dystrophy is a leading neuromuscular disorder without any effective treatments and a common genetic cause of mortality among teenagers. A challenge exists in the screening of subtle mutations in 79 exons and little is known about the genotype-phenotype correlation. METHODS Here we adopted multiplex ligation-dependent probe amplification and Sanger sequencing to detect the dystrophin gene in 407 patients and 76 mothers. RESULTS Sixty-three percent (257/407) of the patients harbored a deletion or duplication mutation, with a de novo mutation frequency of 39.5% in 76 affected patients, and approximately 43.7% of the deletions occurred from exon 45 to 52. To those patients suspected with single exon deletion, combined with Sanger sequencing, five subtle mutations were identified: c.8608C>T, c.2302C>T, c.7148dupT, c.10855C>T and c.2071-2093del AGGGAACAGATCCTGGTAAAGCA; the last three mutations were novel. Furthermore, after genotype-phenotype analysis, the severity of DMD/BMD was associated with the frame shift mutation but not with the deletion, the duplication or the number of deleted exons. CONCLUSION The majority of patients have a deletion/duplication mutation in the dystrophin gene, with a hot deletion mutation region from exon 45 to 52. Combined with Sanger sequencing, multiplex ligation-dependent probe amplification is capable of detecting part of subtle mutations.
Collapse
|
25
|
Yang J, Li SY, Li YQ, Cao JQ, Feng SW, Wang YY, Zhan YX, Yu CS, Chen F, Li J, Sun XF, Zhang C. MLPA-based genotype-phenotype analysis in 1053 Chinese patients with DMD/BMD. BMC MEDICAL GENETICS 2013; 14:29. [PMID: 23453023 PMCID: PMC3599358 DOI: 10.1186/1471-2350-14-29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 02/08/2013] [Indexed: 12/23/2022]
Abstract
Background Large-scale analysis of the transmission, mutation characteristics and the relationship between the reading frame and phenotype of the DMD gene has previously been performed in several countries, however, analogous studies have yet to be performed in Chinese populations. Methods Clinical data from 1053 Chinese patients with DMD/BMD were collected, and the DMD gene was tested by MLPA in all patients and 400 proband mothers. In 20 patients with negative MLPA, sequencing was also performed. Results We found that 27.50% of cases had a family medical history of DMD/BMD, and large rearrangements were identified in 70.56% of the probands, of which 59.35% and 11.21% were deletions or duplications, respectively. The carrier status of the mothers in the study was determined to be 50.75%, and it was established that the DMD mutation was inherited from the mother in 51.72% of the probands. Exons 45–54 and 3–22 were the most frequently deleted regions, and exons 3–11 and 21–37 were the most prevalently duplicated regions of the gene. Breakpoints mainly occurred in introns 43–55 for deletion mutations and in introns 2 and 7 for duplication mutations. No breakpoints were found at the 5′ or 3′ end of introns 31, 35, 36, 40, 65, 68, and 74–78 in any of the deletion or duplication mutations. The reading frame rule held true for 86.4% of the DMD patients and 74.55% of the BMD patients. Conclusion It is essential to increase physicians’ understanding of DMD/BMD, to promote scientific information, and to increase awareness in regards to genetic counseling and prenatal diagnosis in pedigrees with a family history of the disease, particularly in families with small DMD lesions in China. In addition, such a large-scale analysis will prove to be instructive for leading translational studies between basic science and clinical medicine.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shaner Road, Guangzhou City, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord 2013; 23:4-14. [DOI: 10.1016/j.nmd.2012.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023]
|
27
|
Brioschi S, Gualandi F, Scotton C, Armaroli A, Bovolenta M, Falzarano MS, Sabatelli P, Selvatici R, D'Amico A, Pane M, Ricci G, Siciliano G, Tedeschi S, Pini A, Vercelli L, De Grandis D, Mercuri E, Bertini E, Merlini L, Mongini T, Ferlini A. Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype. BMC MEDICAL GENETICS 2012; 13:73. [PMID: 22894145 PMCID: PMC3459813 DOI: 10.1186/1471-2350-13-73] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial. METHODS Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females. RESULTS The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers. CONCLUSIONS This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.
Collapse
Affiliation(s)
- Simona Brioschi
- Section of Medical Genetics, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ankala A, Kohn JN, Hegde A, Meka A, Ephrem CLH, Askree SH, Bhide S, Hegde MR. Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene. Genome Res 2011; 22:25-34. [PMID: 22090376 DOI: 10.1101/gr.123463.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), and microhomology-mediated replication-dependent recombination (MMRDR) have all been put forward as mechanisms to explain DNA rearrangements associated with genomic disorders. However, many nonrecurrent rearrangements in humans remain unexplained. To further investigate the mutation mechanisms of these copy number variations (CNVs), we performed breakpoint mapping analysis for 62 clinical cases with intragenic deletions in the human DMD gene (50 cases) and other known disease-causing genes (one PCCB, one IVD, one DBT, three PAH, one STK11, one HEXB, three DBT, one HRPT1, and one EMD cases). While repetitive elements were found in only four individual cases, three involving DMD and one HEXB gene, microhomologies (2-10 bp) were observed at breakpoint junctions in 56% and insertions ranging from 1 to 48 bp were seen in 16 of the total 62 cases. Among these insertions, we observed evidence for tandem repetitions of short segments (5-20 bp) of reference sequence proximal to the breakpoints in six individual DMD cases (six repeats in one, four repeats in three, two repeats in one, and one repeat in one case), strongly indicating attempts by the replication machinery to surpass the stalled replication fork. We provide evidence of a novel template slippage event during replication rescue. With a deeper insight into the complex process of replication and its rescue during origin failure, brought forward by recent studies, we propose a hypothesis based on aberrant firing of replication origins to explain intragenic nonrecurrent rearrangements within genes, including the DMD gene.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tuffery-Giraud S, Béroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, Moizard MP, Bernard R, Cossée M, Boisseau P, Blayau M, Creveaux I, Guiochon-Mantel A, de Martinville B, Philippe C, Monnier N, Bieth E, Khau Van Kien P, Desmet FO, Humbertclaude V, Kaplan JC, Chelly J, Claustres M. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 2009; 30:934-45. [PMID: 19367636 DOI: 10.1002/humu.20976] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UMD-DMD France is a knowledgebase developed through a multicenter academic effort to provide an up-to-date resource of curated information covering all identified mutations in patients with a dystrophinopathy. The current release includes 2,411 entries consisting in 2,084 independent mutational events identified in 2,046 male patients and 38 expressing females, which corresponds to an estimated number of 39 people per million with a genetic diagnosis of dystrophinopathy in France. Mutations consist in 1,404 large deletions, 215 large duplications, and 465 small rearrangements, of which 39.8% are nonsense mutations. The reading frame rule holds true for 96% of the DMD patients and 93% of the BMD patients. Quality control relies on the curation by four experts for the DMD gene and related diseases. Data on dystrophin and RNA analysis, phenotypic groups, and transmission are also available. About 24% of the mutations are de novo events. This national centralized resource will contribute to a greater understanding of prevalence of dystrophinopathies in France, and in particular, of the true frequency of BMD, which was found to be almost half (43%) that of DMD. UMD-DMD is a searchable anonymous database that includes numerous newly developed tools, which can benefit to all the scientific community interested in dystrophinopathies. Dedicated functions for genotype-based therapies allowed the prediction of a new multiexon skipping (del 45-53) potentially applicable to 53% of the deleted DMD patients. Finally, such a national database will prove to be useful to implement the international global DMD patients' registries under development.
Collapse
|
30
|
Zhang Z, Yagi M, Okizuka Y, Awano H, Takeshima Y, Matsuo M. Insertion of the IL1RAPL1 gene into the duplication junction of the dystrophin gene. J Hum Genet 2009; 54:466-73. [PMID: 19609279 DOI: 10.1038/jhg.2009.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Duplications of one or more exons of the dystrophin gene are the second most common mutation in dystrophinopathies. Even though duplications are suggested to occur with greater complexity than thought earlier, they have been considered an intragenic event. Here, we report the insertion of a part of the IL1RAPL1 (interleukin-1 receptor accessory protein-like 1) gene into the duplication junction site. When the actual exon junction was examined in 15 duplication mutations in the dystrophin gene by analyzing dystrophin mRNA, one patient was found to have an unknown 621 bp insertion at the junction of duplication of exons from 56 to 62. Unexpectedly, the inserted sequence was found completely identical to sequences of exons 3-5 of the IL1RAPL1 gene that is nearly 100 kb distal from the dystrophin gene. Accordingly, the insertion of IL1RAPL1 exons 3-5 between dystrophin exons 62 and 56 was confirmed at the genomic sequence level. One junction between the IL1RAPL1 intron 5 and dystrophin intron 55 was localized within an Alu sequence. These results showed that a fragment of the IL1RAPL1 gene was inserted into the duplication junction of the dystrophin gene in the same direction as the dystrophin gene. This suggests the novel possibility of co-occurrence of complex genomic rearrangements in dystrophinopathy.
Collapse
Affiliation(s)
- Zhujun Zhang
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Wang Q, Li-Ling J, Lin C, Wu Y, Sun K, Ma H, Jin C. Characteristics of dystrophin gene mutations among Chinese patients as revealed by multiplex ligation-dependent probe amplification. Genet Test Mol Biomarkers 2009; 13:23-30. [PMID: 19309270 DOI: 10.1089/gtmb.2008.0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS To verify whether dystrophin gene mutations among Chinese patients feature different types and frequencies from other populations. METHODS Multiplex ligation-dependent probe amplification (MLPA) in combination with multiplex PCR (mPCR) and/or short tandem repeat (STR)-based linkage analysis were applied in a large series of Chinese families affected with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD). There were a total of 19 cases seeking prenatal diagnosis during their second pregnancies. RESULTS Of the 59 family trios (51 with DMD and 8 with BMD), 40 were found to have carried various mutations of the dystrophin gene. In addition to deletions and duplications within the mutational hotspots identified by both methods, 10 mutations missed by mPCR were detected by MLPA, among which at least 3 were of rare types. Combined MLPA and linkage analysis also achieved prenatal diagnoses in all of the 19 amniocentesis samples. CONCLUSIONS Mutations of dystrophin gene among Chinese patients showed a diverse spectrum, with similarity to as well as discrepancies from other populations. For the comprehensive coverage of all exons of the dystrophin gene, MLPA should be the method of choice for initial screening of DMD/BMD patients. When combined with STR-based analysis, it can achieve diagnosis in as much as 70-80% of all referred cases.
Collapse
Affiliation(s)
- Qian Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Hegde MR, Chin ELH, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat 2008; 29:1091-9. [PMID: 18663755 DOI: 10.1002/humu.20831] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.
Collapse
Affiliation(s)
- Madhuri R Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Kesari A, Pirra LN, Bremadesam L, McIntyre O, Gordon E, Dubrovsky AL, Viswanathan V, Hoffman EP. Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum Mutat 2008; 29:728-37. [PMID: 18348289 DOI: 10.1002/humu.20722] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Becker muscular dystrophy (BMD) is a milder form of X-linked Duchenne muscular dystrophy (DMD). Here, we report a study of 75 patients with immunoblot and/or immunostaining findings of muscle biopsy consistent with BMD (abnormal dystrophin). We utilized multiplex ligation dependent probe amplification (MLPA) on genomic DNA (gDNA) to screen all 79 exons for both deletions and duplications. A total of 19 patients testing negative for MLPA mutations were tested for mRNA splicing abnormalities using cDNA-MLPA on muscle biopsy. Complete cDNA sequencing was done on MLPA-negative patients. We identified disease-causing mutations in 66 (88%) of the patients. Of the mutation-positive patients, 42 (64%) showed deletions of one or more exons, 14 (21%) showed duplications, and 10 (15%) showed various mutations detected by cDNA-MLPA and sequencing studies. We found a high rate of "exceptions" to the reading frame rule in this BMD series (out-of-frame BMD; 17/56 deletions/duplications; 30%). This was partly explained by the high incidence of 5' gene deletions in BMD patients (a region known to be a hotspot for exceptions), and due to complex splicing patterns in which a subset of transcripts showed deletions larger than gDNA (exon-skipping). Comparing our findings in BMD to previously published DMD data, BMD patients have higher proportions of duplications, a different distribution of mutations, and higher exception to the reading frame rule.
Collapse
Affiliation(s)
- Akanchha Kesari
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | |
Collapse
|