1
|
Gallo‐Terán J, Salomón‐Felechosa C, González‐Aguado R, Onecha E, Fontalba A, del Castillo I, Morales‐Angulo C. Sensorineural Hearing Loss in Patients With the m.1555A>G Mutation in the MTRNR1 Gene. Laryngoscope 2025; 135:901-907. [PMID: 39323315 PMCID: PMC11725701 DOI: 10.1002/lary.31796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Mutations in the MTRNR1 gene of mitochondrial DNA are associated with non-syndromic hearing loss and increased susceptibility to aminoglycoside ototoxicity. The aim of our study was to determine the clinical characteristics of sensorineural hearing loss caused by the m.1555A>G mutation in MTRNR1. METHODS An observational retrospective study of the m.1555A>G mutation was conducted in patients with suspected hereditary bilateral sensorineural hearing loss in the Department of Otolaryngology of the Marqués de Valdecilla University Hospital (Cantabria, Spain) and in 100 controls with normal hearing. RESULTS The m.1555A>G mutation was found in 82 individuals from 20 different families and in none of the controls. Variable degrees of hearing loss were observed, ranging from normal hearing to profound deafness. Patients with a history of streptomycin administration exhibited significantly more pronounced hearing loss. The onset of hearing loss occurred from childhood to adulthood, with progression or stability over the years. No associated vestibular alterations or other clinical manifestations outside the ear were found. Two cochlear implant recipients showed significant improvement in speech comprehension. CONCLUSIONS Patients with the m.1555A>G mutation in the MTRNR1 gene often develop bilateral, symmetric sensorineural hearing loss, predominantly affecting high frequencies, worsened by streptomycin administration. This mutation does not affect the vestibular function. The variability in the severity of hearing loss, the heterogeneity of phenotypic expression, and the presence of carrier individuals with normal hearing may indicate the existence of modifying factors, both environmental and genetic. Cochlear implantees showed a good response in terms of speech intelligibility. Genetic testing for this mutation is recommended in patients with a family history of hearing loss to prevent the use of aminoglycosides if the mutation is found. LEVEL OF EVIDENCE 4 Laryngoscope, 135:901-907, 2025.
Collapse
Affiliation(s)
- Jaime Gallo‐Terán
- Department of RadiologyMarqués de Valdecilla University HospitalSantanderSpain
| | | | | | - Esther Onecha
- Department of GeneticsMarqués de Valdecilla University HospitalSantanderSpain
| | - Ana Fontalba
- Department of GeneticsMarqués de Valdecilla University HospitalSantanderSpain
| | - Ignacio del Castillo
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER‐ISCIII)MadridSpain
| | - Carmelo Morales‐Angulo
- Head of the Department of Otolaryngology and Head and Neck SurgeryMarqués de Valdecilla University HospitalSantanderSpain
- University of CantabriaSantanderSpain
- Cell cycle, Stem Cell Fate and Cancer LaboratoryInstitute for Research Marqués de Valdecilla (IDIVAL)SantanderSpain
| |
Collapse
|
2
|
Borisova TV, Cherdonova AM, Pshennikova VG, Teryutin FM, Morozov IV, Bondar AA, Baturina OA, Kabilov MR, Romanov GP, Solovyev AV, Fedorova SA, Barashkov NA. High prevalence of m.1555A > G in patients with hearing loss in the Baikal Lake region of Russia as a result of founder effect. Sci Rep 2024; 14:15342. [PMID: 38961196 PMCID: PMC11222474 DOI: 10.1038/s41598-024-66254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondrial forms account approximately 1-2% of all nonsyndromic cases of hearing loss (HL). One of the most common causative variants of mtDNA is the m.1555A > G variant of the MT-RNR1 gene (OMIM 561000). Currently the detection of the m.1555A > G variant of the MT-RNR1 gene is not included in all research protocols. In this study this variant was screened among 165 patients with HL from the Republic of Buryatia, located in the Baikal Lake region of Russia. In our study, the total contribution of the m.1555A > G variant to the etiology of HL was 12.7% (21/165), while the update global prevalence of this variant is 1.8% (863/47,328). The m.1555A > G variant was notably more prevalent in Buryat (20.2%) than in Russian patients (1.3%). Mitogenome analysis in 14 unrelated Buryat families carrying the m.1555A > G variant revealed a predominant lineage: in 13 families, a cluster affiliated with sub-haplogroup A5b (92.9%) was identified, while one family had the D5a2a1 lineage (7.1%). In a Russian family with the m.1555A > G variant the lineage affiliated with sub-haplogroup F1a1d was found. Considering that more than 90% of Buryat families with the m.1555A > G variant belong to the single maternal lineage cluster we conclude that high prevalence of this variant in patients with HL in the Baikal Lake region can be attributed to a founder effect.
Collapse
Affiliation(s)
- Tuyara V Borisova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aleksandra M Cherdonova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Vera G Pshennikova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Fedor M Teryutin
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Igor V Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Alexander A Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Olga A Baturina
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Georgii P Romanov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aisen V Solovyev
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Sardana A Fedorova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Nikolay A Barashkov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia.
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia.
| |
Collapse
|
3
|
Gaafar D, Baxter N, Cranswick N, Christodoulou J, Gwee A. Pharmacogenetics of aminoglycoside-related ototoxicity: a systematic review. J Antimicrob Chemother 2024; 79:1508-1528. [PMID: 38629462 DOI: 10.1093/jac/dkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Aminoglycosides (AGs) are important antibiotics in the treatment of Gram-negative sepsis. However, they are associated with the risk of irreversible sensorineural hearing loss (SNHL). Several genetic variants have been implicated in the development of ototoxicity. OBJECTIVES To evaluate the pharmacogenetic determinants of AG-related ototoxicity. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and was registered on Prospero (CRD42022337769). In Dec 2022, PubMed, Cochrane Library, Embase and MEDLINE were searched. Included studies were those reporting original data on the effect of the AG-exposed patient's genome on the development of ototoxicity. RESULTS Of 10 202 studies, 31 met the inclusion criteria. Twenty-nine studies focused on the mitochondrial genome, while two studied the nuclear genome. One study of neonates found that 30% of those with the m.1555A > G variant failed hearing screening after AG exposure (level 2 evidence). Seventeen additional studies found the m.1555A > G variant was associated with high penetrance (up to 100%) of SNHL after AG exposure (level 3-4 evidence). Nine studies of m.1494C > T found the penetrance of AG-related SNHL to be up to 40%; however, this variant was also identified in those with SNHL without AG exposure (level 3-4 evidence). The variants m.1005T > C and m.1095T > C may be associated with AG-related SNHL; however, further studies are needed. CONCLUSIONS This review found that the m.1555A > G and m.1494C > T variants in the MT-RNR1 gene have the strongest evidence in the development of AG-related SNHL, although study quality was limited (level 2-4). These variants were associated with high penetrance of a SNHL phenotype following AG exposure.
Collapse
Affiliation(s)
- D Gaafar
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - N Baxter
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - N Cranswick
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - J Christodoulou
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - A Gwee
- Infectious Diseases and Clinical Pharmacology Units, Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
4
|
Mitochondrial tRNAGln 4394C>T Mutation May Contribute to the Clinical Expression of 1555A>G-Induced Deafness. Genes (Basel) 2022; 13:genes13101794. [PMID: 36292680 PMCID: PMC9602358 DOI: 10.3390/genes13101794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial 1555A>G mutation plays a critical role in aminoglycoside-induced and non-syndromic hearing loss (AINSHL). Previous studies have suggested that mitochondrial secondary variants may modulate the clinical expression of m.1555A>G-induced deafness, but the molecular mechanism has remained largely undetermined. In this study, we investigated the contribution of a deafness-associated tRNAGln 4394C>T mutation to the clinical expression of the m.1555A>G mutation. Interestingly, a three-generation family with both the m.1555A>G and m.4394C>T mutations exhibited a higher penetrance of hearing loss than another family harboring only the m.1555A>G mutation. At the molecular level, the m.4394C>T mutation resides within a very conserved nucleotide of tRNAGln, which forms a new base-pairing (7T-66A) and may affect tRNA structure and function. Using trans-mitochondrial cybrid cells derived from three subjects with both the m.1555A>G and m.4394C>T mutations, three patients with only the m.1555A>G mutation and three control subjects without these primary mutations, we observed that cells with both the m.1555A>G and m.4394C>T mutations exhibited more severely impaired mitochondrial functions than those with only the m.1555A>G mutation. Furthermore, a marked decrease in mitochondrial RNA transcripts and respiratory chain enzymes was observed in cells harboring both the m.1555A>G and m.4394C>T mutations. Thus, our data suggest that the m.4394C>T mutation may play a synergistic role in the m.1555A>G mutation, enhancing mitochondrial dysfunctions and contributing to a high penetrance of hearing loss in families with both mtDNA pathogenic mutations.
Collapse
|
5
|
Screening for deafness-associated mitochondrial 12S rRNA mutations by using a multiplex allele-specific PCR method. Biosci Rep 2020; 40:224124. [PMID: 32400865 PMCID: PMC7263198 DOI: 10.1042/bsr20200778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial 12S rRNA A1555G and C1494T mutations are the major contributors to hearing loss. As patients with these mutations are sensitive to aminoglycosides, mutational screening for 12S rRNA is therefore recommended before the use of aminoglycosides. Most recently, we developed a novel multiplex allele-specific PCR (MAS-PCR) that can be used for detecting A1555G and C1494T mutations. In the present study, we employed this MAS-PCR to screen the 12S rRNA mutations in 500 deaf patients and 300 controls from 5 community hospitals. After PCR and electrophoresis, two patients with A1555G and one patient with C1494T were identified, this was consistent with Sanger sequence results. We further traced the origin of three Chinese pedigrees. Clinical evaluation revealed variable phenotypes of hearing loss including severity, age at onset and audiometric configuration in these patients. Sequence analysis of the mitochondrial genomes from matrilineal relatives suggested the presence of three evolutionarily conserved mutations: tRNACys T5802C, tRNALys A8343G and tRNAThr G15930A, which may result the failure in tRNAs metabolism and lead to mitochondrial dysfunction that was responsible for deafness. However, the lack of any functional variants in GJB2, GJB3, GJB6 and TRMU suggested that nuclear genes may not play active roles in deafness expression. Hence, aminoglycosides and mitochondrial genetic background may contribute to the clinical expression of A1555G/C1494T-induced deafness. Our data indicated that the MAS-PCR was a fast, convenience method for screening the 12S rRNA mutations, which was useful for early detection and prevention of mitochondrial deafness.
Collapse
|
6
|
Gao Z, Yuan YS. Screening for mitochondrial 12S rRNA C1494T mutation in 655 patients with non-syndromic hearing loss: An observational study. Medicine (Baltimore) 2020; 99:e19373. [PMID: 32221064 PMCID: PMC7220552 DOI: 10.1097/md.0000000000019373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in mitochondrial DNA, especially in 12S rRNA gene, are the most important causes for hearing loss. In particular, the A1555G and C1494T mutations have been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. To determine the frequency of C1494T mutation in deaf patients, in the current study, we screened this mutation in 655 patients with non-syndromic hearing loss and 300 control subjects. After PCR amplification of mitochondrial 12S rRNA gene and direct sequence analysis, we found that there were 2 patients carrying the C1494T mutation; however, this mutation was not detected in 300 healthy subjects. Further genetic counseling suggested that only 1 patient had an obvious family history of hearing impairment. Clinical evaluation showed that 3 of 10 matrilineal relatives suffered from hearing loss, with different age at onset of hearing loss. Molecular analysis revealed the presence of homoplasmic 12S rRNA C1494T and ND5 T12338C mutations, together with a set of polymorphisms belonging to human mitochondrial haplogroup F2. Interestingly, T12338C mutation resulted in the replacement of the first amino acid, a translation-initiating methionine with a threonine, shortening 2 amino acids of ND5 polypeptide. Moreover, this mutation is located in 2 nucleotides adjacent to the 3' end of the mt-tRNALeu(CUN) gene. Therefore, this mutation may alter ND5 mRNA metabolism and the processing of RNA precursors. Thus, the combination of T12338C and C1494T mutations may contribute to deafness expression in this family. Taken together, our data suggested that the C1494T mutation was the molecular basis for hearing loss, screening for the mitochondrial DNA pathogenic mutations was recommended for early detection, prevention, and diagnosis of mitochondrial deafness.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Ya-Sheng Yuan
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Khatami S, Rokni-Zadeh H, Mohsen-Pour N, Biglari A, Changi-Ashtiani M, Shahrooei M, Shahani T. Whole exome sequencing identifies both nuclear and mitochondrial variations in an Iranian family with non-syndromic hearing loss. Mitochondrion 2019; 46:321-325. [DOI: 10.1016/j.mito.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|
8
|
Moassass F, Al-Halabi B, Nweder MS, Al-Achkar W. Investigation of the mtDNA mutations in Syrian families with non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2018; 113:110-114. [PMID: 30173967 DOI: 10.1016/j.ijporl.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hearing loss is a common sensory disorder, and at least 50% of cases are due to a genetic etiology. Several mitochondrial DNA mutations (mtDNA) have been reported to be associated with nonsyndromic hearing loss (NSHL) in different population. However, There is no previous available data about the frequency of mtDNA mutations as etiology for deafness in Syrian. The aim of present study is to investigate the incidence of common mt DNA mutations in our families with congenital hearing loss and not related to the ototoxicity or aminoglycosides. METHODS A total of 50 deaf families were enrolled in the present study. Direct sequencing and PCR-RFLP methods were employed to detect seven mt DNA mutations, including A1555G, A3243G, C1494T, G3316A, T7510C, A7445G, and 7472insC. RESULTS Our results revealed a high prevalence of mt DNA mutation (10%) in deaf families (5/50). In surprising, the unexpected mutations were observed. The G3316A mutation was found in 2 families as homoplasmic genotype. Also, we found the homoplasmic and heteroplasmic genotype for the C1494T mutation in two families. In one family the heteroplasmic genotype for T7510C mutation was observed; this family harbor 35delG mutation in GJB2 gene. None of the common mtDNA mutations (A1555G, A3243G) and other mutations (A7445G, 7472insC) were detected here. CONCLUSION Our findings indicate to significant contribution of the mt DNA mutations in our families with NSHL. The presented data is the first report about mt DNA and it will improve the genetic counseling of hearing impaired in Syrian families.
Collapse
Affiliation(s)
- Faten Moassass
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Bassel Al-Halabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Mohamad Sayah Nweder
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Walid Al-Achkar
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria.
| |
Collapse
|
9
|
|
10
|
Yuan EF, Xia W, Huang JT, Hu L, Liao X, Dai X, Liu SM. A sensitive and convenient method for clinical detection of non-syndromic hearing loss-associated common mutations. Gene 2017; 628:322-328. [PMID: 28734895 DOI: 10.1016/j.gene.2017.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The majority of non-syndromic hearing loss (NSHL) patients result from causative mutations in GJB2, SLC26A4 and mitochondrial 12S rRNA genes. Accurate detection of these genetic mutations is increasingly recognized for its clinical significance to reduce incidence and guide individual treatment of NSHL. Current methods for clinical practice are labor intensive, expensive or of low sensitivity. METHODS Genomic DNA from 7 newborns not passing the hearing screening and 94 newborns passing the hearing screening were analyzed for the common mutations using high resolution melting analysis (HRMA) and Sanger sequencing. RESULTS Our newly developed HRMA allowed the hot-spot mutations of GJB2 c.176_191del16 and c.235delC, SLC26A4 IVS7-2A>G and mitochondrial 12S rRNA 1494C>T and 1555A>G to be detected by melting profiles based on small amplicons. HRMA can distinguish different content mutant DNA from wildtype DNA, with a detection limit of 5%. Moreover, the results were highly concordant between HRMA and Sanger sequencing. CONCLUSIONS These results indicate that HRMA could be used as a routine clinical method for prenatal diagnosis and newborn genetic screening due to its accuracy, sensitivity, and rapid, low-cost and less laborious workflows.
Collapse
Affiliation(s)
- Er-Feng Yuan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Wei Xia
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Jing-Tao Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Ling Hu
- Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Xing Liao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Xiang Dai
- Laboratory of Reproductive Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| |
Collapse
|
11
|
Subathra M, Ramesh A, Selvakumari M, Karthikeyen NP, Srisailapathy CRS. Genetic Epidemiology of Mitochondrial Pathogenic Variants Causing Nonsyndromic Hearing Loss in a Large Cohort of South Indian Hearing Impaired Individuals. Ann Hum Genet 2017; 80:257-73. [PMID: 27530448 DOI: 10.1111/ahg.12161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/16/2016] [Indexed: 01/28/2023]
Abstract
Mitochondria play a critical role in the generation of metabolic energy in the form of ATP. Tissues and organs that are highly dependent on aerobic metabolism are involved in mitochondrial disorders including nonsyndromic hearing loss (NSHL). Seven pathogenic variants leading to NSHL have so far been reported on two mitochondrial genes: MT-RNR1 encoding 12SrRNA and MT-TS1 encoding tRNA for Ser((UCN)) . We screened 729 prelingual NSHL subjects to determine the prevalence of MT-RNR1 variants at position m.961, m.1555A>G and m.1494C>T, and MT-TS1 m.7445A>G, m.7472insC m.7510T>C and m.7511T>C variants. Mitochondrial pathogenic variants were found in eight probands (1.1%). Five of them were found to have the m.1555A>G variant, two others had m.7472insC and one proband had m.7444G>A. The extended relatives of these probands showed variable degrees of hearing loss and age at onset. This study shows that mitochondrial pathogenic alleles contribute to about 1% prelingual hearing loss. This study will henceforth provide the reference for the prevalence of mitochondrial pathogenic alleles in the South Indian population, which to date has not been estimated. The m.1555A>G variant is a primary predisposing genetic factor for the development of hearing loss. Our study strongly suggests that mitochondrial genotyping should be considered for all hearing impaired individuals and particularly in families where transmission is compatible with maternal inheritance, after ruling out the most common variants.
Collapse
Affiliation(s)
- Mahalingam Subathra
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Arabandi Ramesh
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Mathiyalagan Selvakumari
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - N P Karthikeyen
- DOAST (Doctrine Oriented Art of Symbiotic Treatment) Hearing Care Center and Integrated Therapy Center for Autism, Anna Nagar West, Chennai, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| |
Collapse
|
12
|
Gao Z, Chen Y, Guan MX. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol 2017; 12:1-8. [PMID: 29937831 PMCID: PMC6011804 DOI: 10.1016/j.joto.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Aminoglycosides (AmAn) are widely used for their great efficiency against gram-negative bacterial infections. However, they can also induce ototoxic hearing loss, which has affected millions of people around the world. As previously reported, individuals bearing mitochondrial DNA mutations in the 12S rRNA gene, such as m.1555A>G and m.1494C>T, are more prone to AmAn-induced ototoxicity. These mutations cause human mitochondrial ribosomes to more closely resemble bacterial ribosomes and enable a stronger aminoglycoside interaction. Consequently, exposure to AmAn can induce or worsen hearing loss in these individuals. Furthermore, a wide range of severity and penetrance of hearing loss was observed among families carrying these mutations. Studies have revealed that these mitochondria mutations are the primary molecular mechanism of genetic susceptibility to AmAn ototoxicity, though nuclear modifier genes and mitochondrial haplotypes are known to modulate the phenotypic manifestation.
Collapse
Affiliation(s)
- Zewen Gao
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Ibekwe TS, Bhimrao SK, Westerberg BD, Kozak FK. A meta-analysis and systematic review of the prevalence of mitochondrially encoded 12S RNA in the general population: Is there a role for screening neonates requiring aminoglycosides? Afr J Paediatr Surg 2015; 12:105-13. [PMID: 26168747 PMCID: PMC4955414 DOI: 10.4103/0189-6725.160342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND This was a meta-analysis and systematic review to determine the global prevalence of the mitochondrially encoded 12S RNA (MT-RNR1) genetic mutation in order to assess the need for neonatal screening prior to aminoglycoside therapy. MATERIALS AND METHODS A comprehensive search of MEDLINE, EMBASE, Ovid, Database of Abstracts of Reviews of Effect, Cochrane Library, Clinical Evidence and Cochrane Central Register of Trials was performed including cross-referencing independently by 2 assessors. Selections were restricted to human studies in English. Meta-analysis was done with MetaXL 2013. RESULTS Forty-five papers out of 295 met the criteria. Pooled prevalence in the general population for MT-RNR1 gene mutations (A1555G, C1494T, A7445G) was 2% (1-4%) at 99%. CONCLUSION Routine screening for MT-RNR1 mutations in the general population prior to treatment with aminoglycosides appear desirable but poorly supported by the weak level of evidence available in the literature. Routine screening in high-risk (Chinese and Spanish) populations appear justified.
Collapse
Affiliation(s)
- Titus S Ibekwe
- Department of ENT, University of Abuja Teaching Hospital and College of Health Sciences, University of Abuja, Abuja, Nigeria
| | | | | | | |
Collapse
|
14
|
Al-Malky G, Suri R, Sirimanna T, Dawson SJ. Normal hearing in a child with the m.1555A>G mutation despite repeated exposure to aminoglycosides. Has the penetrance of this pharmacogenetic interaction been overestimated? Int J Pediatr Otorhinolaryngol 2014; 78:969-73. [PMID: 24703164 DOI: 10.1016/j.ijporl.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/02/2014] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
Abstract
The mtDNA m.1555A>G mutation causes increased susceptibility to aminoglycoside ototoxicity resulting in significant hearing loss in 100% of reported exposed cases. Genetic and audiological assessments were conducted in a sample of 59 children with cystic fibrosis (CF) undergoing aminoglycoside treatment. Of the two m.1555G patients identified one had severe-profound deafness. Surprisingly, the second m.1555G patient exhibited well-preserved hearing despite repeated exposure. This may be a rare case of intact hearing in an m.1555G individual with aminoglycoside use. Alternatively, its penetrance may have been previously overestimated due to recruitment bias. Further studies are required to determine the true penetrance to inform m.1555A>G genetic testing in similar clinical scenarios.
Collapse
Affiliation(s)
| | - Ranjan Suri
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital and the Portex Unit, Institute of Child Health, UCL, London, UK
| | - Tony Sirimanna
- Department of Audiology & Audiological Medicine, Great Ormond Street Hospital, London, UK
| | | |
Collapse
|
15
|
Associations between GJB2, mitochondrial 12S rRNA, SLC26A4 mutations, and hearing loss among three ethnicities. BIOMED RESEARCH INTERNATIONAL 2014; 2014:746838. [PMID: 24804242 PMCID: PMC3996913 DOI: 10.1155/2014/746838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/11/2014] [Indexed: 11/24/2022]
Abstract
The epidemiological researches show that the mutations of GJB2, mitochondrial 12S rRNA, and SLC26A4 genes have played an important role in the hearing loss. This study aims to investigate the mutation spectrum of GJB2, mitochondrial 12S rRNA, and SLC26A4 genes of Han Chinese, Hui people, and Uyghur ethnicities in sensorineural hearing loss (SNHL) patients in northwest of China. Mutational analyses in the three genes were brought by direct sequencing and each fragment was analyzed using an ABI 3730 DNA Sequencer. The mutation frequencies for the three HL causative genes were 34.05% in Han Chinese participants, 27.47% in Hui people, and 14.44% in Uyghur participants, respectively. The prevalence of GJB2 mutations was 13.7%, 11.4%, and 11.4% in Han Chinese, Hui people, and Uyghur participants (χ2 = 10.2, P < 0.05), respectively. The prevalence of mtDNA 12S rRNA A1555G homozygous mutations was 6.05%, 3.27%, and 1.44% in Han Chinese, Hui people, and Uyghur participants (χ2 = 13.9, P < 0.05), respectively. The prevalence of SLC26A4 mutations was 14.3%, 12.8%, and 1.6% in Han Chinese, Hui people, and Uyghur participants, respectively. In summary, we find that Uyghur and Hui SNHL individuals vary significantly from Han Chinese patients in three causative HL genes' mutational spectrum, especially for Uyghur.
Collapse
|
16
|
Wei Q, Wang S, Yao J, Lu Y, Chen Z, Xing G, Cao X. Genetic mutations of GJB2 and mitochondrial 12S rRNA in nonsyndromic hearing loss in Jiangsu Province of China. J Transl Med 2013; 11:163. [PMID: 23826813 PMCID: PMC3706284 DOI: 10.1186/1479-5876-11-163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hearing loss is caused by several environmental and genetic factors and the proportion attributed to inherited causes is assumed at 50 ~ 60% . Mutations in GJB2 and mitochondrial DNA (mtDNA) 12S rRNA are the most common molecular etiology for nonsyndromic sensorineural hearing loss (NSHL). The mutation spectra of these genes vary among different ethnic groups. METHODS To add the molecular etiologic information of hearing loss in the Chinese population, a total of 658 unrelated patients with NSHL from Jiangsu Province of China were selected for mutational screening including GJB2 and mtDNA 12S rRNA genes using PCR and DNA sequencing technology. As for controls, 462 normal-hearing individuals were collected. RESULTS A total of 9 pathogenic mutations in the GJB2 and 7 pathogenic mutations in the 12S rRNA gene were identified. Of all patients, 70 had monoallelic GJB2 coding region mutation in the heterozygous state, 94 carried two confirmed pathogenic mutations including 79 homozygotes and 15 compound heterozygotes. The 235delC appears to be the most common deafness-causing GJB2 mutation (102/658, 15.50% ). No mutations or variants in the GJB2 exon1 and basal promoter region were found. In these patients, 4 subjects carried the m.1494C > T mutation (0.61% ) and 39 subjects harbored the m.1555A > G mutation (5.93% ) in mtDNA 12S rRNA gene. A novel sequence variant at m.1222A > G in the 12S rRNA gene was identified, which could alter the secondary structure of the 12S rRNA. CONCLUSION The mutation spectrum and prevalence of GJB2 and mtDNA 12S rRNA genes in Jiangsu population are similar to other areas of China. There are in total 31.46% of the patients with NSHL carry deafness-causing mutation in GJB2 or mtDNA 12S rRNA genes. Mutation in GJB2 gene is the most common factor, mtDNA 12S rRNA also plays an important part in the pathogenesis of hearing loss in Jiangsu Province areas. The m.1222A > G was found to be a new candidate mutation associated with hearing loss. Our results indicated the necessity of genetic screening for mutations of these genes in Jiangsu patients with NSHL.
Collapse
Affiliation(s)
- Qinjun Wei
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Shuai Wang
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Jun Yao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Yajie Lu
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Zhibin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road No.300, Nanjing 210029, P.R. China
| | - Guangqian Xing
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road No.300, Nanjing 210029, P.R. China
| | - Xin Cao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| |
Collapse
|
17
|
Chen T, Liu Q, Jiang L, Liu C, Ou Q. Mitochondrial COX2 G7598A mutation may have a modifying role in the phenotypic manifestation of aminoglycoside antibiotic-induced deafness associated with 12S rRNA A1555G mutation in a Han Chinese pedigree. Genet Test Mol Biomarkers 2013; 17:122-30. [PMID: 23256547 PMCID: PMC3552164 DOI: 10.1089/gtmb.2012.0251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity, in the AmAn-induced deafness and NSHL associated with 12S rRNA A1555G mutation in the Han Chinese pedigree.
Collapse
Affiliation(s)
- Tianbin Chen
- First Clinical College, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University Clinical Transformation Base of Biochip Beijing National Engineering Research Center, Fuzhou, China
| | - Qicai Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University Clinical Transformation Base of Biochip Beijing National Engineering Research Center, Fuzhou, China
| | - Ling Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University Clinical Transformation Base of Biochip Beijing National Engineering Research Center, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University Clinical Transformation Base of Biochip Beijing National Engineering Research Center, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University Clinical Transformation Base of Biochip Beijing National Engineering Research Center, Fuzhou, China
| |
Collapse
|
18
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
19
|
Molecular and clinical characterization of the variable phenotype in Korean families with hearing loss associated with the mitochondrial A1555G mutation. PLoS One 2012; 7:e42463. [PMID: 22879993 PMCID: PMC3412860 DOI: 10.1371/journal.pone.0042463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Hearing loss, which is genetically heterogeneous, can be caused by mutations in the mitochondrial DNA (mtDNA). The A1555G mutation of the 12S ribosomal RNA (rRNA) gene in the mtDNA has been associated with both aminoglycoside-induced and non-syndromic hearing loss in many ethnic populations. Here, we report for the first time the clinical and genetic characterization of nine Korean pedigrees with aminoglycoside-induced and non-syndromic hearing loss. These Korean families carry in the A1555G mutation of 12S rRNA gene and exhibit variable penetrance and expressivity of hearing loss. Specifically, the penetrance of hearing loss in these families ranged between 28.6% and 75%, with an average of 60.8%. These results were higher than the 29.8% penetrance that was previously reported in a Chinese population but similar to the 65.4% and 54.1% penetrance observed in a large Arab-Israeli population and nineteen Spanish pedigrees, respectively. The mutational analysis of the complete mtDNA genome in these families showed that the haplogroups of the Korean population, which belongs to the eastern Asian population, were similar to those of the Chinese population but different from the Spanish population, which belongs to the European-Caucasian population. The mtDNA variants that may act as modifier factors were also found to be similar to the Chinese population. Although the mtDNA haplogroups and variants were similar to the eastern Asian population, we did find some differing phenotypes, although some subjects had the same variants. This result suggests that both the ethnic background and environmental factors lead to a variable phenotype of the A1555G mutation.
Collapse
|
20
|
Li Q, Yuan YY, Huang DL, Han DY, Dai P. Rapid screening for the mitochondrial DNA C1494T mutation in a deaf population in China using real-time quantitative PCR. Acta Otolaryngol 2012; 132:814-8. [PMID: 22497215 DOI: 10.3109/00016489.2012.664781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Real-time quantitative polymerase chain reaction (qPCR) with a TaqMan minor groove binding (MGB) probe is useful for large-scale screening for the C1494T mutation. The mitochondrial DNA(mtDNA) C1494T mutation has a low carrier frequency in Chinese patients with nonsyndromic hearing loss. OBJECTIVE To develop a simple, rapid, and reliable real-time qPCR assay based on TaqMan technology using a new MGB probe for detecting the mtDNA C1494T mutation directly, and to investigate the carrier frequency in nonsyndromic deaf Chinese subjects. METHODS A TaqMan-MGB probe was constructed. Peripheral blood samples were collected from 3133 nonsyndromic deaf patients and genomic DNA was extracted. A real-time qPCR using MGB probes (wild-type) in a single tube was used to detect the mtDNA C1494T mutation. The results were then compared to the DNA sequence of the PCR products. RESULTS A total of 13 of 3133 (0.4%) Chinese nonsyndromic hearing loss patients were C1494T-positive. The results of the TaqMan-MGB probe method were consistent with those of sequencing.
Collapse
Affiliation(s)
- Qi Li
- Department of Otolaryngology, Nanjing Children's Hospital, Nanjing Medical University, Jiangsu, China
| | | | | | | | | |
Collapse
|
21
|
Mutai H, Kouike H, Teruya E, Takahashi-Kodomari I, Kakishima H, Taiji H, Usami SI, Okuyama T, Matsunaga T. Systematic analysis of mitochondrial genes associated with hearing loss in the Japanese population: dHPLC reveals a new candidate mutation. BMC MEDICAL GENETICS 2011; 12:135. [PMID: 21989059 PMCID: PMC3207971 DOI: 10.1186/1471-2350-12-135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
Background Variants of mitochondrial DNA (mtDNA) have been evaluated for their association with hearing loss. Although ethnic background affects the spectrum of mtDNA variants, systematic mutational analysis of mtDNA in Japanese patients with hearing loss has not been reported. Methods Using denaturing high-performance liquid chromatography combined with direct sequencing and cloning-sequencing, Japanese patients with prelingual (N = 54) or postlingual (N = 80) sensorineural hearing loss not having pathogenic mutations of m.1555A > G and m.3243A > G nor GJB2 were subjected to mutational analysis of mtDNA genes (12S rRNA, tRNALeu(UUR), tRNASer(UCN), tRNALys, tRNAHis, tRNASer(AGY), and tRNAGlu). Results We discovered 15 variants in 12S rRNA and one homoplasmic m.7501A > G variant in tRNASer(UCN); no variants were detected in the other genes. Two criteria, namely the low frequency in the controls and the high conservation among animals, selected the m.904C > T and the m.1105T > C variants in 12S rRNA as candidate pathogenic mutations. Alterations in the secondary structures of the two variant transcripts as well as that of m.7501A > G in tRNASer(UCN) were predicted. Conclusions The m.904C > T variant was found to be a new candidate mutation associated with hearing loss. The m.1105T > C variant is unlikely to be pathogenic. The pathogenicity of the homoplasmic m.7501T > A variant awaits further study.
Collapse
Affiliation(s)
- Hideki Mutai
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Tudi M, Sun J, He C, Lu HL, Shang Q, Jiang D, Kuyaxi P, Hu B, Zhang H. Genetic mutations in non-syndromic deafness patients of Uyghur and Han Chinese ethnicities in Xinjiang, China: a comparative study. J Transl Med 2011; 9:154. [PMID: 21917135 PMCID: PMC3189127 DOI: 10.1186/1479-5876-9-154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background The deafness-associated gene mutation profile varies greatly among regions and races. Due to the multi-ethnic coalition of over one thousand years, non-syndromic deafness (NSD) patients of Uyghur ethnicity may exhibit a unique deafness-associated gene mutation spectrum as compared to Han Chinese deaf population. Methods In order to characterize nine loci of four deafness-associated genes of Uyghur NSD patients in comparison with Chinese Han deaf population, NSD patients (n = 350) were enrolled, including Uyghur (n = 199) and Han Chinese (n = 151). Following the history taking, blood samples were collected for DNA extraction. DNA microarray was performed on nine loci of four deafness-associated genes, including 35delG, 176-191del16, 235delC, 299-300delAT, 538C > T, 1555A > G, 1494C > T, 2168A > G, and IVS7-2A > G. The samples that showed the absence of both wild and mutant probe signals were tested for further DNA sequencing analysis. Results The mutations in the nine loci of prevalent deafness-associated genes were detected in 13.06% of Uyghur NSD patients and 32.45% of Han Chinese patients (P < 0.05), respectively. GJB2 mutation was detected in 9.05% of Uyghur patients and 16.56% of Han Chinese patients (P > 0.05), respectively. 235delC was the hotspot mutation region in NSD patients of the two ethnicities, whereas 35delG was the mutation hotspot in Uyghur patients. 187delG mutation was detected for the first time in Uyghur NSD patients and considered as an unreported pathological variant of GJB2. SLC26A4 mutation was found in 2.01% of Uyghur patients and 14.57% of Han Chinese patients (P < 0.05), respectively. The frequencies of mtDNA 12S rRNA mutation in Uyghur and Han Chinese patients were 2.01% and 2.65% (P > 0.05), respectively. The NSD patients exhibited a low frequency of GJB3 mutation regardless of ethnicity. Conclusion Prevalent deafness-associated gene mutations in the nine loci studied were less frequently detected in Uyghur NSD patients than in Han Chinese patients. GJB2 was the most common mutant gene in the two ethnicities, whilst the two ethnicities differed substantially in hotspot mutations. A low-frequency SLC26A4 mutation was detected in Uyghur NSD patients. Uyghur NSD patients differed significantly from Han Chinese patients in gene mutation profile.
Collapse
Affiliation(s)
- Yu Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Men M, Jiang L, Wang H, Liu Y, Hu Z, He C, Feng Y. Unique penetrance of hearing loss in a five-generation Chinese family with the mitochondrial 12S rRNA 1555A > G mutation. Acta Otolaryngol 2011; 131:970-5. [PMID: 21504270 DOI: 10.3109/00016489.2011.575794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Analysis of the complete mtDNA genome and X-linkage of this five-generation Chinese family revealed that the 1555A > G mutation may lead to deafness. OBJECTIVES Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. However, the variable clinical phenotype and incomplete penetrance of mtDNA 1555A > G-induced hearing loss complicate our understanding of this mutation. We aimed to identify whether nuclear genes, mitochondrial haplotypes/variants, and a possible threshold effect are involved in its manifestation in the pedigree. METHODS We performed clinical, genetic, and X-linkage analysis of a five-generation Chinese family in which all the affected individuals were male. RESULTS Clinical evaluation revealed that affected individuals with or without aminoglycoside exposure developed hearing loss extending gradually from 8000 Hz to 4000 Hz and then to 1000 Hz. Using X-linkage analysis and sequencing, we detected an identical homoplasmic 1555A > G mutation in nine individuals, and a previously unreported variant 14163C > T in mtDNA. The new variant 14163C > T coexisted with the 1555A > G mutation in six affected subjects of our pedigree. The previously unreported variant 14163C > T and aminoglycoside exposure may synergize the development of this deafness.
Collapse
Affiliation(s)
- Meichao Men
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Shen Z, Zheng J, Chen B, Peng G, Zhang T, Gong S, Zhu Y, Zhang C, Li R, Yang L, Zhou J, Cai T, Jin L, Lu J, Guan MX. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics. J Transl Med 2011; 9:4. [PMID: 21205314 PMCID: PMC3029225 DOI: 10.1186/1479-5876-9-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/04/2011] [Indexed: 11/13/2022] Open
Abstract
Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females) had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel) variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S rRNA accounted for ~30% cases of aminoglycoside-induced deafness in this cohort. Our data strongly support the idea that the mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity. These data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside antibiotic therapy, and eventually to decrease the incidence of deafness.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otolaryngology, Ningbo Medical Center, Li Huili Hospital, Ningbo, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zheng L, Luo G, Zhang X, Zhang J, Mu Q, Wei J, Feng Y, Yu Y, Pan L, Xu N. A novel method of detecting mitochondrial m.1494C>T and m.1555A>G mutations in a single PCR reaction using base-quenched probe. Clin Chim Acta 2010; 411:2114-6. [PMID: 20816786 DOI: 10.1016/j.cca.2010.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 11/29/2022]
|
26
|
Guan MX. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion 2010; 11:237-45. [PMID: 21047563 DOI: 10.1016/j.mito.2010.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/31/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022]
Abstract
The mitochondrial 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic 1555A>G and 1494C>T mutations at the highly conserved decoding region of the 12S rRNA have been associated with hearing loss worldwide. In particular, these two mutations account for a significant number of cases of aminoglycoside ototoxicity. The 1555A>G or 1494C>T mutation is expected to form a novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the human mitochondrial ribosomes more bacteria-like and alter binding sites for aminoglycosides. As a result, the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying one of these mutations. Biochemical characterization demonstrated an impairment of mitochondrial protein synthesis and subsequent defects in respiration in cells carrying the A1555G or 1494C>T mutation. Furthermore, a wide range of severity, age-at-onset and penetrance of hearing loss was observed within and among families carrying these mutations. Nuclear modifier genes, mitochondrial haplotypes and aminoglycosides should modulate the phenotypic manifestation of the 12S rRNA 1555A>G and 1494C>T mutations. Therefore, these data provide valuable information and technology: (1) to predict which individuals are at risk for ototoxicity; (2) to improve the safety of aminoglycoside antibiotic therapy; and (3) eventually to decrease the incidence of hearing loss.
Collapse
Affiliation(s)
- Min-Xin Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
27
|
Bai Y, Wang Z, Dai W, Li Q, Chen G, Cong N, Guan M, Li H. A six-generation Chinese family in haplogroup B4C1C exhibits high penetrance of 1555A > G-induced hearing Loss. BMC MEDICAL GENETICS 2010; 11:129. [PMID: 20822538 PMCID: PMC2944124 DOI: 10.1186/1471-2350-11-129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/07/2010] [Indexed: 12/05/2022]
Abstract
Background The 1555A > G mutation is the most common cause of aminoglycoside-induced and non-syndromic deafness. However, the variable clinical phenotype and incomplete penetrance of A1555G-induced hearing loss complicate our understanding of this mutation. Environmental factors, nuclear genes, mitochondrial haplotypes/variants and a possible threshold effect have been reported to may be involved in its manifestation. Methods Here, we performed a clinical, molecular, genetic and phylogenic analysis in a six-generation Chinese family. Results A clinical evaluation revealed that affected individuals without aminoglycoside exposure developed hearing loss extending gradually from 12000 Hz to 8000 Hz and then to 4000 Hz. Using pyrosequencing, we detected an identical homoplasmic 1555A > G mutation in all individuals except one. We did not find any correlation between the mutation load and the severity of hearing loss. T123N coexisted with the 1555A > G mutation in six affected subjects in our pedigree. Analysis of the complete mtDNA genome of this family revealed that this family belonged to haplotype B4C1C and exhibited high penetrance. Upon the inclusion of subjects that had been exposed to aminoglycosides, the penetrance of the hearing loss was 63.6%.; without exposure to aminoglycosides, it was 51.5%. This pedigree and another reported Chinese pedigree share the same haplotype (B4C1C) and lack functionally significant mitochondrial tRNA variants, but nevertheless they exhibit a different penetrance of hearing loss. Conclusions Our results imply that the factors responsible for the higher penetrance and variable expression of the deafness associated with the 1555A > G mutation in this pedigree may not be mtDNA haplotype/variants, but rather nuclear genes and/or aminoglycosides.
Collapse
Affiliation(s)
- Yan Bai
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu J, Li Z, Zhu Y, Yang A, Li R, Zheng J, Cai Q, Peng G, Zheng W, Tang X, Chen B, Chen J, Liao Z, Yang L, Li Y, You J, Ding Y, Yu H, Wang J, Sun D, Zhao J, Xue L, Wang J, Guan MX. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion 2010; 10:380-90. [PMID: 20100600 PMCID: PMC2874659 DOI: 10.1016/j.mito.2010.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 11/17/2022]
Abstract
In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat-shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Jianxin Lu
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhiyuan Li
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yi Zhu
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Aifen Yang
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Ronghua Li
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jing Zheng
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | - Guanghua Peng
- Department of Otolaryngology, the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Wuwei Zheng
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Bobei Chen
- Department of Otolaryngology, the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianfu Chen
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhisu Liao
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yongyan Li
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Junyan You
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yu Ding
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Hong Yu
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jindan Wang
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Dongmei Sun
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianyue Zhao
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Ling Xue
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jieying Wang
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Deparment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Tang X, Li R, Zheng J, Cai Q, Zhang T, Gong S, Zheng W, He X, Zhu Y, Xue L, Yang A, Yang L, Lu J, Guan MX. Maternally inherited hearing loss is associated with the novel mitochondrial tRNA Ser(UCN) 7505T>C mutation in a Han Chinese family. Mol Genet Metab 2010; 100:57-64. [PMID: 20153673 DOI: 10.1016/j.ymgme.2010.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 11/18/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been found to be one of the most important causes of sensorineural hearing loss. We report here a clinical, genetic, molecular and biochemical characterization of a Han Chinese pedigree with maternally transmitted nonsyndromic hearing impairment. Seven of nine matrilineal relatives exhibited a variable severity and age-at-onset (8 years old) of hearing loss. Mutational analysis of mtDNA identified the novel homoplasmic tRNA(Ser(UCN)) 7505T>C mutation and other 37 variants belonging to haplogroup F1. The 7505T>C mutation, which is absent in 449 Chinese controls, is located at a highly conserved base-pairing (10A-20U) of tRNA(Ser(UCN)). The abolishment of 10A-20U base-pairing likely alters the tRNA(Ser(UCN)) metabolism. Functional significant of this mutation was supported by approximately 65% reductions in the level of tRNA(Ser(UCN)) observed in the lymphoblastoid cell lines carrying the 7505T>C mutation, compared with the wild-type cell lines. This reduced tRNA level is below the proposed threshold to support a normal respiration in lymphoblastoid cells. Furthermore, the highly conserved tRNA(Ala) 5587T>C and Cytb C93Y variants may have a modifying role of deafness expression associated with the 7505T>C mutation. However, genotyping analysis of nuclear modifier gene TRMU and the prominent deafness-cause gene GJB2 failed to detect any mutations in the member of this family. These data strongly indicate that the novel tRNA(Ser(UCN)) 7505T>C mutation is involved in maternally transmitted hearing loss. However, other genetic, epigenetic or environmental factors may contribute to the phenotypic variability of this family. Our findings will be helpful for counseling families of maternally inherited hearing loss.
Collapse
Affiliation(s)
- Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tong Y, Sun YH, Zhou X, Zhao F, Mao Y, Wei QP, Yang L, Qu J, Guan MX. Very low penetrance of Leber's hereditary optic neuropathy in five Han Chinese families carrying the ND1 G3460A mutation. Mol Genet Metab 2010; 99:417-24. [PMID: 20053576 PMCID: PMC2839065 DOI: 10.1016/j.ymgme.2009.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/26/2022]
Abstract
We report here the clinical, genetic, and molecular characterization of five Han Chinese families with Leber's hereditary optic neuropathy (LHON). Strikingly, there were very low penetrances of visual impairment in these Chinese families, ranging from 4.2% to 22.2%, with an average of 10.2%. In particular, only 7 (4 males/3 females) of 106 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual dysfunction. The age-at-onset for visual impairment in matrilineal relatives in these families, varied from 20 to 25 years, with an average of 21.8 years old. Molecular analysis of mitochondrial genomes identified the homoplasmic ND1 G3460A mutation and distinct sets of variants, belonging to the Asian haplogroups B5b, C4a1, D5, F1, and R9, respectively. This suggests that the G3640A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of known secondary LHON-associated mtDNA mutations in these Chinese families. Very low penetrance of visual loss in these five Chinese pedigrees strongly indicated that the G3640A mutation was itself insufficient to develop the optic neuropathy. The absence of secondary LHON mtDNA mutations suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the G3640A mutation in those Chinese families with low penetrance of vision loss. However, nuclear modifier genes, epigenetic and environmental factors appear to be modifier factors for the phenotypic manifestation of the G3640A mutation in these Chinese families.
Collapse
Affiliation(s)
- Yi Tong
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- Giuseppe Attardi Institute of Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yan-Hong Sun
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
| | - Fuxin Zhao
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
| | - Yijian Mao
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
| | - Qi-ping Wei
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078, China
| | - Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jia Qu
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- Giuseppe Attardi Institute of Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- Corresponding authors. Addresses: Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. Fax: +1 513 636 3486 (M.-X. Guan), School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China (J. Qu). (J. Qu), , (M.-X. Guan)
| | - Min-Xin Guan
- Giuseppe Attardi Institute of Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Corresponding authors. Addresses: Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. Fax: +1 513 636 3486 (M.-X. Guan), School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003, China (J. Qu). (J. Qu), , (M.-X. Guan)
| |
Collapse
|
31
|
Human H, Hagen CM, de Jong G, Harris T, Lombard D, Christiansen M, Bardien S. Investigation of mitochondrial sequence variants associated with aminoglycoside-induced ototoxicity in South African TB patients on aminoglycosides. Biochem Biophys Res Commun 2010; 393:751-6. [PMID: 20171168 DOI: 10.1016/j.bbrc.2010.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
A known side effect of aminoglycoside antibiotics is the development of permanent hearing loss. As South Africa is currently facing a tuberculosis (TB) epidemic, with an increasing number of multi-drug resistant tuberculosis (MDR-TB) infections, the use of aminoglycosides is on the increase. It is therefore important to determine whether the mitochondrial mutations associated with aminoglycoside-induced hearing loss occur at high frequencies in particular ethnic groups in our population. A total of 115 mainly MDR-TB patients all on aminoglycosides and 439 controls representative of the main ethnic groups in South Africa were screened for six mutations using the SNaPshot technique. Furthermore, the mitochondrial genomes of eight patients with ototoxicity were sequenced. Homoplasmic mutations were found in controls (A1555G in 0.9% of Black controls and A827G in 1.1% of Afrikaner controls) which reveal that a significant proportion of the South African population is genetically predisposed to developing aminoglycoside-induced hearing loss. The 961 delT+insC((n)) and T961G variants were found at frequencies of >1% indicating that both are probably non-pathogenic polymorphisms. Sequencing of the entire mitochondrial genome in eight patients did not reveal any mutations in the MT-RNR1 gene. However, two potentially pathogenic variants, T10114C (I19T in MT-ND3) and T15312C (I189T in MT-CYB) were found that may impact on the oxidative phosphorylation capacity and warrant further investigation for their possible role in this disorder. It is imperative that the genetic basis of this potentially preventable condition be investigated, particularly in countries where aminoglycosides are still commonly used, in order to identify individuals and/or ethnic groups who are at risk for this type of hearing loss.
Collapse
Affiliation(s)
- Hanniqué Human
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
32
|
Lu J, Qian Y, Li Z, Yang A, Zhu Y, Li R, Yang L, Tang X, Chen B, Ding Y, Li Y, You J, Zheng J, Tao Z, Zhao F, Wang J, Sun D, Zhao J, Meng Y, Guan MX. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation. Mitochondrion 2010; 10:69-81. [PMID: 19818876 PMCID: PMC2787746 DOI: 10.1016/j.mito.2009.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 12/17/2022]
Abstract
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of approximately 3.96% for the 1555A>G mutation in this hearing-impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30years old, with the average of 14.5years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient's mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.
Collapse
Affiliation(s)
- Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yaping Qian
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhiyuan Li
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Aifen Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yi Zhu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Ronghua Li
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaowen Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Bobei Chen
- Department of Otolaryngology, the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yu Ding
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Junyan You
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jing Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhihua Tao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Fuxin Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jindan Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Dongmei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianyue Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yanzi Meng
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Deparment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Li R, Liu Y, Li Z, Yang L, Wang S, Guan MX. Failures in mitochondrial tRNAMet and tRNAGln metabolism caused by the novel 4401A>G mutation are involved in essential hypertension in a Han Chinese Family. Hypertension 2009; 54:329-37. [PMID: 19546379 DOI: 10.1161/hypertensionaha.109.129270] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report here on the clinical, genetic, and molecular characterization of 1 Han Chinese family with maternally transmitted hypertension. Three of 7 matrilineal relatives in this 4-generation family exhibited the variable degree of essential hypertension at the age at onset, ranging from 35 to 60 years old. Sequence analysis of the complete mitochondrial DNA in this pedigree identified the novel homoplasmic 4401A>G mutation localizing at the spacer immediately to the 5' end of tRNA(Met) and tRNA(Gln) genes and 39 other variants belonging to the Asian haplogroup C. The 4401A>G mutation was absent in 242 Han Chinese controls. Approximately 30% reductions in the steady-state levels of tRNA(Met) and tRNA(Gln) were observed in 2 lymphoblastoid cell lines carrying the 4401A>G mutation compared with 2 control cell lines lacking this mutation. Failures in mitochondrial metabolism are apparently a primary contributor to the reduced rate of mitochondrial translation and reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration in lymphoblastoid cell lines carrying the 4401A>G mutation. The homoplasmic form, mild biochemical defect, late onset, and incomplete penetrance of hypertension in this family suggest that the 4401A>G mutation itself is insufficient to produce a clinical phenotype. Thus, the other modifier factors, eg, nuclear modifier genes and environmental and personal factors, may also contribute to the development of hypertension in these subjects carrying this mutation. These data suggest that mitochondrial dysfunctions, caused by the 4401A>G mutation, are involved in the development of hypertension in this Chinese pedigree.
Collapse
Affiliation(s)
- Ronghua Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ding Y, Li Y, You J, Yang L, Chen B, Lu J, Guan MX. Mitochondrial tRNA(Glu) A14693G variant may modulate the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in a Han Chinese family. J Genet Genomics 2009; 36:241-50. [PMID: 19376484 DOI: 10.1016/s1673-8527(08)60111-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/14/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022]
Abstract
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss. This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of hearing impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TPsiC-loop of tRNA(Glu) and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNA(Glu) A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated A1555G mutation in this Chinese pedigree.
Collapse
Affiliation(s)
- Yu Ding
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
35
|
A South African family with the mitochondrial A1555G mutation on haplogroup L0d. Biochem Biophys Res Commun 2009; 382:390-4. [DOI: 10.1016/j.bbrc.2009.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
|
36
|
Hearing loss and epilepsy may be associated with the novel mito-chondrial Trna Ser(UCN) 7472delC mutation in a Chinese family. YI CHUAN = HEREDITAS 2009; 30:1557-62. [DOI: 10.3724/sp.j.1005.2008.01557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wang X, Lu J, Zhu Y, Yang A, Yang L, Li R, Chen B, Qian Y, Tang X, Wang J, Zhang X, Guan MX. Mitochondrial tRNAThr G15927A mutation may modulate the phenotypic manifestation of ototoxic 12S rRNA A1555G mutation in four Chinese families. Pharmacogenet Genomics 2008; 18:1059-70. [PMID: 18820594 PMCID: PMC2905378 DOI: 10.1097/fpc.0b013e3283131661] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the role of mitochondrial modifiers in the development of deafness associated with 12S rRNA A1555G mutation. METHODS Four Chinese families with nonsyndromic and aminoglycoside-induced deafness were studied by clinical and genetic evaluation, molecular and biochemical analyses of mitochondrial DNA (mtDNA). RESULTS These families exhibited high penetrance and expressivity of hearing impairment. Penetrances of hearing loss in WZD31, WZD32, WZD33, and WZD34 pedigrees ranged from 50 to 67% and from 39 to 50%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Matrilineal relatives in these families developed hearing loss at the average of 14, 13, 16, and 15 years of age, respectively, when aminoglycoside-induced deafness was excluded. Mutational analysis of entire mtDNA in these families showed the homoplasmic A1555G mutation and distinct sets of variants belonging to haplogroup B5b1. Of these, the tRNA G15927A mutation locates at the fourth base in the anticodon stem (conventional position 42) of tRNA. A guanine (G42) at this position of tRNA is highly conserved from bacteria to human mitochondria. The lower levels and altered electrophoretic mobility of tRNA were observed in cells carrying A1555G and G15927A mutations or only G15927A mutation but not cells carrying only A1555G mutation. The abolished base pairing (28C-42G) of this tRNA by the G15927A mutation caused a failure in tRNA metabolism, worsening the mitochondrial dysfunctions altered by the A1555G mutation. CONCLUSION The G15927A mutation has a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.
Collapse
Affiliation(s)
- Xinjian Wang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Yi Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Aifen Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ronghua Li
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bobei Chen
- Department of Otolaryngology, the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Yaping Qian
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaowen Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Jindan Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang
| | - Xue Zhang
- Department of Genetics, Peking Union Medical College, Beijing, China
| | - Min-Xin Guan
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang
| |
Collapse
|
38
|
Current World Literature. Curr Opin Otolaryngol Head Neck Surg 2008; 16:490-5. [DOI: 10.1097/moo.0b013e3283130f63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Tang XW, Li ZY, Lu JX, Zhu Y, Li RH, Wang JD, Guan MX. [Mitochondrial tRNAThr G15927A mutation may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation.]. YI CHUAN = HEREDITAS 2008; 30:1287-1294. [PMID: 18930888 DOI: 10.3724/sp.j.1005.2008.01287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report here the clinical and genetic evaluations as well as mutational analysis of mitochondrial DNA (mtDNA) in a four-generation Chinese Han family with aminoglycoside-induced and nonsyndromic hearing loss. Strikingly, this family exhibited a high penetrance and expressivity of hearing loss. The penetrances of hearing loss in this family were 75% and 41.7% respectively, when aminoglycoside-induced deafness was included or was excluded. The severity of hearing loss in matrilineal relatives varied from profound hearing loss to normal hearing. Mutational analysis of mtDNA identified the homoplasmic A1555G mutation and a distinct set of mtDNA variants belonging to the Asian haplogroup B5b. Of these, the G15927A mutation absent in 156 Chinese controls is localized at the anticodon-stem of tRNAThr at conventional position 42. The guanine at this position (G42) of tRNAThr is highly conserved from bacteria to human mitochondria. Thus, it is antici-pated that the G15927A disrupted the highly conserved C-G base-pairing at the anticodon-stem of tRNAThr. The alteration of structure of this tRNA likely leads to a failure in tRNA metabolism, thereby worsens the mitochondrial dysfunction asso-ciated with the A1555G mutation. Thus, the G15927A mutation has a potential modifying role in increasing the penetrance and expressivity of hearing loss associated with the deafness-associated 12S rRNA A1555G mutation in this Chinese pedigree.
Collapse
Affiliation(s)
- Xiao-Wen Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China E-mail:
| | | | | | | | | | | | | |
Collapse
|
40
|
Chen J, Yuan H, Lu J, Liu X, Wang G, Zhu Y, Cheng J, Wang X, Han B, Yang L, Yang S, Yang A, Sun Q, Kang D, Zhang X, Dai P, Zhai S, Han D, Young WY, Guan MX. Mutations at position 7445 in the precursor of mitochondrial tRNASer(UCN) gene in three maternal Chinese pedigrees with sensorineural hearing loss. Mitochondrion 2008; 8:285-92. [DOI: 10.1016/j.mito.2008.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/06/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
41
|
Mitochondrial DNA G7444A mutation may influence the phenotypic manifestation of the deafness-associated 12S rRNA A1555G mutation. YI CHUAN = HEREDITAS 2008; 30:728-34. [DOI: 10.3724/sp.j.1005.2008.00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Chen B, Sun D, Yang L, Zhang C, Yang A, Zhu Y, Zhao J, Chen Y, Guan M, Wang X, Li R, Tang X, Wang J, Tao Z, Lu J, Guan MX. Mitochondrial ND5 T12338C, tRNA(Cys) T5802C, and tRNA(Thr) G15927A variants may have a modifying role in the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese pedigrees. Am J Med Genet A 2008; 146A:1248-58. [PMID: 18386806 DOI: 10.1002/ajmg.a.32285] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset, audiometric configuration in these subjects. The penetrance of hearing loss in WZD8, WZD9, and WZD10 pedigrees were 46%, 46%, and 50%, respectively, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in these pedigrees were 23%, 31%, and 37.5%, respectively. Mutational analysis of the complete mitochondrial genomes showed the homoplasmic A1555G mutation and distinct sets of mitochondrial DNA variants belonging to haplogroups D4b2b, B5b1, and F2, respectively. Of these, the tRNA(Cys) T5802C, tRNA(Thr) A15924C, and ND5 T12338C variants are of special interest as these variants occur at positions which are highly evolutionarily conserved nucleotides of tRNAs or amino acid of polypeptide. These homoplasmic mtDNA variants were absent among 156 unrelated Chinese controls. The T5802C and G15927A variants disrupted a highly conserved A-U or C-G base-pairing at the anticodon-stem of tRNA(Cys) or tRNA(Thr), while the ND5 T12338C mutation resulted in the replacement of the translation-initiating methionine with a threonine, and also located in two nucleotides adjacent to the 3' end of the tRNA(Leu(CUN)). Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA variants. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.
Collapse
Affiliation(s)
- Bobei Chen
- Department of Otolaryngology, The Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liao Z, Zhao J, Zhu Y, Yang L, Yang A, Sun D, Zhao Z, Wang X, Tao Z, Tang X, Wang J, Guan M, Chen J, Li Z, Lu J, Guan MX. The ND4 G11696A mutation may influence the phenotypic manifestation of the deafness-associated 12S rRNA A1555G mutation in a four-generation Chinese family. Biochem Biophys Res Commun 2007; 362:670-6. [PMID: 17723226 PMCID: PMC2696936 DOI: 10.1016/j.bbrc.2007.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/28/2022]
Abstract
We report here the clinical, genetic and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. The penetrance of hearing loss (affected matrilineal relatives/total matrilineal relatives) in this pedigree was 53%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in this pedigree was 42%. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA A1555G mutation and other 35 variants belonging to Eastern Asian haplogroup D4. Of these, the V313I (G11696A) mutation in ND4 was associated with vision loss. However, the extremely low penetrance of visual loss, and the mild biochemical defect and the presence of one/167 Chinese controls indicted that the G11696A mutation is itself not sufficient to produce a clinical phenotype. Thus, the G11696A mutation may act in synergy with the primary deafness-associated 12S rRNA A1555G mutation in this Chinese family, thereby increasing the penetrance and expressivity of hearing loss in this Chinese pedigree.
Collapse
Affiliation(s)
- Zhisu Liao
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianyue Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yi Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aifen Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Dongmei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhongnong Zhao
- The Second Hospital of Shaoxing City, Shaoxing, Zhejiang, China
| | - Xinjian Wang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhihua Tao
- Department of Laboratory Medicine, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaowen Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jindan Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Minqiang Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jiafu Chen
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhiyuan Li
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Deparment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Abstract
Is severe and permanent in genetically susceptible people
Collapse
|
45
|
Chen J, Yang L, Yang A, Zhu Y, Zhao J, Sun D, Tao Z, Tang X, Wang J, Wang X, Lan J, Li W, Wu F, Yuan Q, Feng J, Wu C, Liao Z, Li Z, Greinwald JH, Lu J, Guan MX. Maternally inherited aminoglycoside-induced and nonsyndromic hearing loss is associated with the 12S rRNA C1494T mutation in three Han Chinese pedigrees. Gene 2007; 401:4-11. [PMID: 17698299 PMCID: PMC2014725 DOI: 10.1016/j.gene.2007.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 11/24/2022]
Abstract
We report here the clinical, genetic and molecular characterization of three Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 28%, 20%, and 15%, with an average of 21%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 21%, 13% and 8%, with an average of 14%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T mutation, in addition to distinct sets of mtDNA polymorphism belonging to Eastern Asian haplogroups F1a1, F1a1 and D5a2, respectively. This suggested that the C1494T mutation occurred sporadically and multiplied through evolution of the mtDNA. The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggests that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in those Chinese families. In addition, the lack of significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.
Collapse
Affiliation(s)
- Jianfu Chen
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aifeng Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yi Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jianyue Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Dongmei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhihua Tao
- Department of Laboratory Medicine, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaowen Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jindan Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xinjian Wang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jinshan Lan
- Department of Otolaryngology, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Weixing Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310014, China
| | - Fangli Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, the Affiliated Hospital, Shaoxing University College of Medicine, Shaoxing, Zhejiang, China
| | - Qian Yuan
- Department of Laboratory Medicine, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jinbao Feng
- Quzhou Special Education School, Quzhou, Zhejiang 324000, China
| | - Chunli Wu
- Quzhou Special Education School, Quzhou, Zhejiang 324000, China
| | - Zhisu Liao
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhiyuan Li
- Department of Otolaryngology, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - John H. Greinwald
- Division of Otolaryngology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Deparment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Deparment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Yuan H, Chen J, Liu X, Cheng J, Wang X, Yang L, Yang S, Cao J, Kang D, Dai P, Zhai S, Han D, Young WY, Guan MX. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun 2007; 362:94-100. [PMID: 17698030 DOI: 10.1016/j.bbrc.2007.07.161] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022]
Abstract
Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.
Collapse
Affiliation(s)
- Huijun Yuan
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Chen
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Xin Liu
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Xinjian Wang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Li Yang
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Shuzhi Yang
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Juyang Cao
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Dongyang Kang
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Pu Dai
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Suoqiang Zhai
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Dongyi Han
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.
| | - Wie-Yen Young
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.
| | - Min-Xin Guan
- Division of Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Jin L, Yang A, Zhu Y, Zhao J, Wang X, Yang L, Sun D, Tao Z, Tsushima A, Wu G, Xu L, Chen C, Yi B, Cai J, Tang X, Wang J, Li D, Yuan Q, Liao Z, Chen J, Li Z, Lu J, Guan MX. Mitochondrial tRNASer(UCN) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun 2007; 361:133-9. [PMID: 17659260 DOI: 10.1016/j.bbrc.2007.06.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Mutations in mitochondrial DNA is one of the important causes of hearing loss. Here, we performed a mutational screening of tRNA(Ser(UCN)) gene in 1542 Chinese subjects with hearing loss. One subject and five subjects carried tRNA(Ser(UCN)) A7445C and G7444A mutations, respectively, while two subjects harbored both G7444A and 12S rRNA A1555G mutations. Clinical evaluation revealed the variable phenotype of bilateral hearing impairment including severity and audiometric configuration in these subjects. Six pedigrees carrying only G7444A or A7445C mutation exhibited extremely low penetrance of hearing loss, while two families carrying both G7444A and A1555G mutations displayed high penetrance of hearing loss. Of 94 matrilineal relatives in these families, eight subjects suffered from aminoglycoside-induced hearing loss, while seven hearing-impaired subjects did not have a history of exposure to aminoglycosides. Those suggest that G7444A and A7445C mutations themselves are insufficient to produce a clinical phenotype and aminoglycosides are the major modifier factors for the development of deafness in these Chinese families. The combination of A1555G and G7444A mutations increased deafness expression. These observations provide an additional evidence for the early diction and prevention of deafness at the high risk populations carrying these mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Longjin Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|