1
|
Ju X, Wu X, Chen Y, Cui S, Cai Z, Zhao L, Hao Y, Zhou F, Chen F, Yu Z, Yang D. Mucin Binding Protein of Lactobacillus casei Inhibits HT-29 Colorectal Cancer Cell Proliferation. Nutrients 2023; 15:nu15102314. [PMID: 37242197 DOI: 10.3390/nu15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Many Lactobacillus casei strains are reported to exhibit anti-proliferative effects on colorectal cancer cells; however, the mechanism remains largely unknown. While there has been considerable interest in bacterial small metabolites such as short chain fatty acids, prior reports suggested that larger-sized molecules mediate the anti-proliferative effect of L. casei. Here, other possible ways of communication between gut bacteria and its host are investigated. LevH1 is a protein displayed on the surface of L. casei, and its mucin binding domain is highly conserved. Based on previous reports that the cell-free supernatant fractions decreased colorectal cell proliferation, we cloned the mucin binding domain of the LevH1 protein, expressed and purified this mucin binding protein (MucBP). It has a molecular weight of 10 kDa, is encoded by a 250 bp gene, and is composed primarily of a β-strand, β-turns, and random coils. The amino acid sequence is conserved while the 36th amino acid residue is arginine in L. casei CAUH35 and serine in L. casei IAM1045, LOCK919, 12A, and Zhang. MucBP36R exhibited dose-dependent anti-proliferative effects against HT-29 cells while a mutation of 36S abolished this activity. Predicted structures suggest that this mutation slightly altered the protein structure, thus possibly affecting subsequent communication with HT-29 cells. Our study identified a novel mode of communication between gut bacteria and their host.
Collapse
Affiliation(s)
- Xuan Ju
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yukun Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shanshan Cui
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhengquan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R. Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Sci Rep 2021; 11:16007. [PMID: 34362962 PMCID: PMC8346543 DOI: 10.1038/s41598-021-95356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus delbrueckii JCM 1002T grows on highly polymerized inulin-type fructans as its sole carbon source. When it was grown on inulin, a > 10 kb long gene cluster inuABCDEF (Ldb1381-1386) encoding a plausible ABC transporter was suggested to be induced, since a transcriptome analysis revealed that the fourth gene inuD (Ldb1384) was up-regulated most prominently. Although Bacillus subtilis 168 is originally unable to utilize inulin, it became to grow on inulin upon heterologous expression of inuABCDEF. When freshly cultured cells of the recombinant B. subtilis were then densely suspended in buffer containing inulin polymers and incubated, inulin gradually disappeared from the buffer and accumulated in the cells without being degraded, whereas levan-type fructans did not disappear. The results imply that inuABCDEF might encode a novel ABC transporter in L. delbrueckii to "monopolize" inulin polymers selectively, thereby, providing a possible advantage in competition with other concomitant inulin-utilizing bacteria.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan ,grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Ro Osawa
- grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
4
|
Fuhren J, Schwalbe M, Rösch C, Nijland R, Wels M, Schols HA, Kleerebezem M. Dietary Inulin Increases Lactiplantibacillus plantarum Strain Lp900 Persistence in Rats Depending on the Dietary-Calcium Level. Appl Environ Microbiol 2021; 87:e00122-21. [PMID: 33608291 PMCID: PMC8091021 DOI: 10.1128/aem.00122-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit health benefits in the consumer. Lactiplantibacillus plantarum strains display high survival during transit through the mammalian gastrointestinal tract and were shown to have health-promoting properties. Growth on the fructose polysaccharide inulin is relatively uncommon in L. plantarum, and in this study we describe FosE, a plasmid-encoded β-fructosidase of L. plantarum strain Lp900 which has inulin-hydrolyzing properties. FosE contains an LPxTG-like motif involved in sortase-dependent cell wall anchoring but is also (partially) released in the culture supernatant. In addition, we examined the effect of diet supplementation with inulin on the intestinal persistence of Lp900 in adult male Wistar rats in diets with distinct calcium levels. Inulin supplementation in high-dietary-calcium diets significantly increased the intestinal persistence of L. plantarum Lp900, whereas this effect was not observed upon inulin supplementation of the low-calcium diet. Moreover, intestinal persistence of L. plantarum Lp900 was determined when provided as a probiotic (by itself) or as a synbiotic (i.e., in an inulin suspension) in rats that were fed unsupplemented diets containing the different calcium levels, revealing that the synbiotic administration increased bacterial survival and led to higher abundance of L. plantarum Lp900 in rats, particularly in a low-calcium-diet context. Our findings demonstrate that inulin supplementation can significantly enhance the intestinal delivery of L. plantarum Lp900 but that this effect strongly depends on calcium levels in the diet.IMPORTANCE Synbiotics combine probiotics with prebiotics to synergistically elicit a health benefit in the consumer. Previous studies have shown that prebiotics can selectively stimulate the growth in the intestine of specific bacterial strains. In synbiotic supplementations the prebiotics constituent could increase the intestinal persistence and survival of accompanying probiotic strain(s) and/or modulate the endogenous host microbiota to contribute to the synergistic enhancement of the health-promoting effects of the synbiotic constituents. Our study establishes a profound effect of dietary-calcium-dependent inulin supplementation on the intestinal persistence of inulin-utilizing L. plantarum Lp900 in rats. We also show that in rats on a low-dietary-calcium regime, the survival and intestinal abundance of L. plantarum Lp900 are significantly increased by administering it as an inulin-containing synbiotic. This study demonstrates that prebiotics can enhance the intestinal delivery of specific probiotics and that the prebiotic effect is profoundly influenced by the calcium content of the diet.
Collapse
Affiliation(s)
- Jori Fuhren
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Christiane Rösch
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Reindert Nijland
- Marine Animal Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|
6
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
7
|
|
8
|
Petrov K, Popova L, Petrova P. High lactic acid and fructose production via Mn 2+-mediated conversion of inulin by Lactobacillus paracasei. Appl Microbiol Biotechnol 2017; 101:4433-4445. [PMID: 28337581 DOI: 10.1007/s00253-017-8238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn2+-151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.
Collapse
Affiliation(s)
- Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103, Acad. G. Bontchev Str.,1113, Sofia, Bulgaria.
| | - Luiza Popova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103, Acad. G. Bontchev Str.,1113, Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. G. Bontchev Str.,1113, Sofia, Bulgaria
| |
Collapse
|
9
|
The cell wall anchored β-fructosidases of Lactobacillus paracasei : Overproduction, purification, and gene expression control. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
A panorama of bacterial inulinases: Production, purification, characterization and industrial applications. Int J Biol Macromol 2016; 96:312-322. [PMID: 27932256 DOI: 10.1016/j.ijbiomac.2016.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
Abstract
Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications.
Collapse
|
11
|
Holyavka M, Artyukhov V, Kovaleva T. Structural and functional properties of inulinases: A review. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1196486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Rawat HK, Soni H, Treichel H, Kango N. Biotechnological potential of microbial inulinases: Recent perspective. Crit Rev Food Sci Nutr 2016; 57:3818-3829. [DOI: 10.1080/10408398.2016.1147419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hemant Kumar Rawat
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Hemant Soni
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Helen Treichel
- Universidade Federal da Fronteira Sul-Campus de Erechim, Erechim, Brazil
| | - Naveen Kango
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| |
Collapse
|
13
|
Shen J, Zhang R, Li J, Tang X, Li R, Wang M, Huang Z, Zhou J. Characterization of an exo-inulinase from Arthrobacter: a novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered 2016; 6:99-105. [PMID: 25695343 DOI: 10.1080/21655979.2015.1019686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A glycoside hydrolase family 32 exo-inulinase gene was cloned from Arthrobacter sp. HJ7 isolated from saline soil located in Heijing town. The gene encodes an 892-residue polypeptide with a calculated mass of 95.1 kDa and a high total frequency of amino acid residues G, A, and V (30.0%). Escherichia coli BL21 (DE3) cells were used as hosts to express the exo-inulinase gene. The recombinant exo-inulinase (rInuAHJ7) showed an apparently maximal activity at pH 5.0-5.5 and 40-45°C. The addition of 1.0 and 10.0 mM Zn(2+) and Pb(2+) had little or no effect on the enzyme activity. rInuAHJ7 exhibited good salt tolerance, retaining more than 98% inulinase activity at a concentration of 3.0%-20.0% (w/v) NaCl. Fructose was the main product of inulin, levan, and Jerusalem artichoke tubers hydrolyzed by the enzyme. The present study is the first to report the identification and characterization of an Arthrobacter sp exo-inulinase showing a high molecular mass of 95.1 kDa and NaCl tolerance. These results suggest that the exo-inulinase might be an alternative material for potential applications in processing seafood and other foods with high saline contents, such as marine algae, pickles, and sauces.
Collapse
Affiliation(s)
- Jidong Shen
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy; Ministry of Education ; Yunnan Normal University ; Kunming , PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ma JY, Cao HL, Tan HD, Hu XJ, Liu WJ, Du YG, Yin H. Cloning, Expression, Characterization, and Mutagenesis of a Thermostable Exoinulinase From Kluyveromyces cicerisporus. Appl Biochem Biotechnol 2015; 178:144-58. [DOI: 10.1007/s12010-015-1864-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
|
15
|
Petrova P, Velikova P, Popova L, Petrov K. Direct conversion of chicory flour into L(+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. BIORESOURCE TECHNOLOGY 2015; 186:329-333. [PMID: 25824595 DOI: 10.1016/j.biortech.2015.03.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Highly effective bio-process for lactic acid (LA) production by simultaneous saccharification and fermentation (SSF) of chicory flour was developed. The strain used, Lactobacillus paracasei DSM 23505 produced natural inulinase (EC 3.2.1.80) with molecular weight ∼130 kDa, located in the cell wall fraction. In batch fermentation with optimized medium content and fermentation conditions, a complete conversion of 136 g/L chicory flour (89.3% inulin and 10.7% mix of sucrose, fructose and glucose) into 123.7 g/L LA was achieved. These yield and conversion rate are the highest obtained by SSF for LA production from inulin. The high efficiency, the cheap fermentation broth and the simple process performance disclose the promising use of the chicory flour in industrial biotechnology for LA production.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. G. Bontchev Str., 1113 Sofia, Bulgaria
| | - Petya Velikova
- Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. G. Bontchev Str., 1113 Sofia, Bulgaria
| | - Luiza Popova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103, Acad. G. Bontchev Str., 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 103, Acad. G. Bontchev Str., 1113 Sofia, Bulgaria.
| |
Collapse
|
16
|
Naidoo K, Kumar A, Sharma V, Permaul K, Singh S. Purification and Characterization of an Endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 Mutant. Food Technol Biotechnol 2015; 53:146-153. [PMID: 27904343 PMCID: PMC5068403 DOI: 10.17113/ftb.53.02.15.3902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/23/2015] [Indexed: 11/12/2022] Open
Abstract
An extracellular endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 mutant was purified to homogeneity by gel filtration chromatography and showed a specific activity of 119 U/mg. The optimum pH and temperature of the purified enzyme were found to be 6.0 and 50 °C, respectively. The enzyme was stable up to 60 °C, retaining 60% of residual activity for 30 min, but inactivated rapidly above 60 °C. The enzyme was found to be stable at pH=6-9 when it retained 100% of its residual activity. The Lineweaver-Burk plot showed that the apparent Km and vmax values of the inulinase when using inulin as a substrate were 1.15 mg/mL and 0.15 µM/min, respectively, whereas the kcat value was found to be 0.145 min-1. The calculated catalytic efficiency of the enzyme was found to be 0.126 (mg·min)/mL. The purified inulinase can be used in the production of high fructose syrups.
Collapse
Affiliation(s)
| | | | - Vikas Sharma
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences,
Durban University of Technology, P.O. Box 1339, Durban 4001, Republic of South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences,
Durban University of Technology, P.O. Box 1339, Durban 4001, Republic of South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences,
Durban University of Technology, P.O. Box 1339, Durban 4001, Republic of South Africa
| |
Collapse
|
17
|
Zhou J, Lu Q, Peng M, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Huang Z. Cold-active and NaCl-tolerant exo-inulinase from a cold-adapted Arthrobacter sp. MN8 and its potential for use in the production of fructose at low temperatures. J Biosci Bioeng 2015; 119:267-74. [DOI: 10.1016/j.jbiosc.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/19/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023]
|
18
|
Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr Polym 2015; 119:85-100. [DOI: 10.1016/j.carbpol.2014.11.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/24/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
|
19
|
Vandamme AM, Michaux C, Mayard A, Housen I. Asparagine 42 of the conserved endo-inulinase INU2 motif WMNDPN from Aspergillus ficuum plays a role in activity specificity. FEBS Open Bio 2013; 3:467-72. [PMID: 24251113 PMCID: PMC3829992 DOI: 10.1016/j.fob.2013.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022] Open
Abstract
Endo-inulinase INU2 from Aspergillus ficuum belongs to glycosidase hydrolase family 32 (GH32) that degrades inulin into fructo oligosaccharides consisting mainly of inulotriose and inulotetraose. The 3D structure of INU2 was recently obtained (Pouyez et al., 2012, Biochimie, 94, 2423–2430). An enlarged cavity compared to exo-inulinase formed by the conserved motif W-M(I)-N-D(E)-P-N-G, the so-called loop 1 and the loop 4, was identified. In the present study we have characterized the importance of 12 residues situated around the enlarged cavity. These residues were mutated by site-directed mutagenesis. Comparative activity analysis was done by plate, spectrophotometric and thin-layer chromatography assay. Most of the mutants were less active than the wild-type enzyme. Most interestingly, mutant N42G differed in the size distribution of the FOS synthesized. Endo-inulinase INU2 degrades inulin into fructo oligosaccharides. 12 residues around the catalytic pockets of INU2 enzyme were determined. These residues were mutated to either a G or A residue. The activity has been tested by plate, spectrophotometric and TLC assays. One mutation, N42G, which changes the specificity of activity, has been identified.
Collapse
Affiliation(s)
- Anne-Michèle Vandamme
- Unité de Recherche en Biologie des Microorganismes, Biology Department, University of Namur, Belgium
| | | | | | | |
Collapse
|
20
|
The ABC transporter encoded at the pneumococcal fructooligosaccharide utilization locus determines the ability to utilize long- and short-chain fructooligosaccharides. J Bacteriol 2012; 195:1031-41. [PMID: 23264576 DOI: 10.1128/jb.01560-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that requires carbohydrates for growth. The significance of carbohydrate acquisition is highlighted by the genome encoding more than 27 predicted carbohydrate transporters. It has long been known that about 60% of pneumococci could utilize the fructooligosaccharide inulin as a carbohydrate source, but the mechanism of utilization was unknown. Here we demonstrate that a predicted sucrose utilization locus is actually a fructooligosaccharide utilization locus and imparts the ability of pneumococci to utilize inulin. Genes in strain TIGR4 predicted to encode an ABC transporter (SP_1796-8) and a β-fructosidase (SP_1795) are required for utilization of several fructooligosaccharides longer than kestose, which consists of two β(2-1)-linked fructose molecules with a terminal α(1-2)-linked glucose molecule. Similar to other characterized pneumococcal carbohydrate utilization transporter family 1 transporters, growth is dependent on the gene encoding the ATPase MsmK. While the majority of pneumococcal strains encode SP_1796-8 at this genomic location, 19% encode an alternative transporter. Although strains encoding either transporter can utilize short-chain fructooligosaccharides for growth, only strains encoding SP_1796-8 can utilize inulin. Exchange of genes encoding the SP_1796-8 transporter for those encoding the alternative transporter resulted in a TIGR4 strain that could utilize short-chain fructooligosaccharide but not inulin. These data demonstrate that the transporter encoded at this locus determines the ability of the bacteria to utilize long-chain fructooligosaccharides and explains the variation in inulin utilization between pneumococcal strains.
Collapse
|
21
|
Liu GL, Chi Z, Chi ZM. Molecular characterization and expression of microbial inulinase genes. Crit Rev Microbiol 2012; 39:152-65. [PMID: 22734928 DOI: 10.3109/1040841x.2012.694411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.
Collapse
Affiliation(s)
- Guang-Lei Liu
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, Qingdao, China
| | | | | |
Collapse
|